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ABSTRACT

We study the problem of answering k-hop reachability queries in

a directed graph, i.e., whether there exists a directed path of length

k, from a source query vertex to a target query vertex in the in-

put graph. The problem of k-hop reachability is a general problem

of the classic reachability (where k = ∞). Existing indexes for

processing classic reachability queries, as well as for processing

shortest path queries, are not applicable or not efficient for pro-

cessing k-hop reachability queries. We propose an index for pro-

cessing k-hop reachability queries, which is simple in design and

efficient to construct. Our experimental results on a wide range of

real datasets show that our index is more efficient than the state-of-

the-art indexes even for processing classic reachability queries, for

which these indexes are primarily designed. We also show that our

index is efficient in answering k-hop reachability queries.

1. INTRODUCTION
The reachability query, which asks whether one vertex can reach

another vertex in a directed and unweighted graph, is a basic oper-

ator for a variety of databases (e.g., XML, RDF) and network ap-

plications (e.g., social and biological networks). The problem of

how to efficiently answer reachability queries has attracted a lot of

interest lately [2, 3, 5, 6, 7, 14, 15, 16, 17, 19, 23, 24, 26, 27, 28,

29, 32, 34]. There are also several extensions to the classic reacha-

bility problem; for example, reachability in uncertain graphs where

the existence of an edge is given by a probability [21], and reacha-

bility with constraints such as edges on the path must have certain

labels [20], etc.

In this work, we study a new type of reachability queries. Instead

of asking whether a vertex t is reachable from a vertex s, we ask

whether t is reachable within k hops from s. In other words, the

query asks whether there exists a path from s to t such that the

length of the path is no more than k. We call this problem the

k-hop reachability problem.

The primary motivation for the k-hop reachability problem is

that in many real life networks (e.g., wireless or sensor networks,

the Web and Internet, telecommunication networks, social networks,

etc.), the number of hops within which s can reach t indicates the

level of influence s has over t. Applications on such networks can

benefit more from k-hop reachability than classic reachability (i.e.,

k =∞). We give some examples as follows.

In a wireless or sensor network, where a broadcasted message

may get lost during any hop, the probability of reception degrades

exponentially over multiple hops. In these applications, reachabil-

ity may not be meaningful or have much practical use, while k-hop

reachability, since it can model the level and sphere of the influ-

ence, is helpful in many analytical tasks.

In many real life networks, the k-hop reachability between two

vertices is of more interest when the value of k is small. In a sensor

network, the probability of reception degrades exponentially. Thus,

after a few hops, the probability will be well below the threshold

of interest. In social networks, although there is a well-known six-

degrees-of-separation theory (i.e., any two persons are only 6 or

fewer hops away from each other), the degree of acquaintance may

even decrease super-exponentially (i.e., two persons may hardly

know each other if they are just 3 hops apart).

Clearly, we are more interested to know if two persons are con-

nected within only a few hops, instead of beyond 6 hops for which

case one can almost know for sure they are connected. On the

other hand, a small k does not necessarily make the problem eas-

ier. Consider an application that, given two persons, asks whether

one is reachable from the other within 6 hops. A naive implemen-

tation is to invoke a breadth-first search (BFS). However, among

the search quests in reality, a majority of them have at least one of

the persons as a celebrity at some level of the BFS. A BFS from a

celebrity (e.g., Lady Gaga, who has 40,000,000 fans on Facebook)

can quickly cover a considerable proportion of the entire social net-

work within as small as 3 hops, and is clearly out of the question

for online query processing.

The problem of k-hop reachability cannot be derived from clas-

sic reachability, which is actually a special case of k-hop reach-

ability, i.e., when k = ∞. Indeed, the k-hop problem is more

challenging since more information is required to answer the k-

hop reachability query. To see this, consider the transitive closure

[26] of the adjacency matrix of a directed graph. If we are given

this transitive matrix, we can find out if s can reach t instantly by

checking whether their corresponding entry in the transitive matrix

is 1 or 0. However, for large graphs, it is infeasible to pre-compute

and store the transitive closure, as it takes O(n2) space, where n is

the number of vertices in the graph. Thus, the reachability problem

is essentially the problem of how to effectively “encode” the 0-1
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transitive matrix into a small index structure which still provides

efficient lookup of reachability between any two vertices. For k-

hop reachability, the matrix we need to “encode” is no longer a 0-1

matrix. Instead, each entry cst in the matrix contains the length of

the shortest path from s to t. Clearly, this matrix contains much

more information than the 0-1 transitive matrix. In Section 3, we

further analyze in details why all the existing indexes are not suit-

able for processing k-hop reachability queries.

We propose an efficient index, called k-reach, to process k-hop

reachability queries. The k-reach index is constructed based on the

concept of vertex cover [18]. The main idea of the index design is

based on the fact that all vertices in a graph are reachable within

1 hop of some vertex in the vertex cover of the graph. The vertex

cover is small for a wide range of real world graphs. Thus, we only

need to pre-compute k-hop reachability information among a small

portion of the vertices, while we also show that it only requires at

most 2 bits for encoding each k-hop reachability information.

Another advantage of k-reach is that it allows the inclusion of

all high-degree vertices in the vertex cover. This not only gives the

same coverage with a smaller vertex cover (and hence reduces the

index size), but also allows queries that involve high degree vertices

to be answered more efficiently (e.g., the “Lady Gaga” example

given earlier). In addition, we also propose a method that further

reduces the size of the index by extending the coverage of the vertex

cover to h-hop neighbors.

The k-reach index is simple in design and easy to implement.

The index can handle both classic reachability queries and k-hop

reachability queries. We conducted experiments on a wide range of

15 real datasets. Our results show that even for processing classic

reachability queries, k-reach is significantly more efficient than the

state-of-the-art indexes [23, 24, 28, 32] that are primarily designed

for classic reachability. We also show that k-reach is orders of mag-

nitude faster than k-hop BFS and the shortest-path distance index

[13], which can be used to answer k-hop reachability queries, thus

demonstrating the need for a k-hop reachability index. In addition,

the performance of k-reach is stable for both small and large values

of k. The results also show that k-reach is efficient to construct and

has a small storage size.

Organization. Section 2 formally defines the notations and the

problem. Section 3 analyzes the difficulties of applying the existing

works for handling k-hop reachability and highlight the challenges.

Section 4 presents the details of the k-reach index. Section 5 de-

scribes a method to further reduce the index size. Section 6 reports

the experimental results. Section 7 discusses other related works,

followed by the conclusions in Section 8.

2. PROBLEM DEFINITION
Table 1 lists the notations that are frequently used in this paper.

Let G = (V,E) be an unweighted, directed graph, where V is

the set of vertices and E is the set of edges in G, respectively. An

edge (u, v) ∈ E is a directed edge from u to v, while (v, u) ∈ E
means that the edge is directed from v to u.

Given a pair of vertices s and t in G, we say that t is reachable

from s, denoted by s → t, if there exists a simple directed path

P = 〈s, · · · , t〉 in G. If |P | ≤ k, where |P | is the path length (i.e.,

the number of edges on P ), then t is also k-hop reachable from s,

denoted by s→k t. A reachability query is to determine whether

s → t, while a k-hop reachability query is to determine whether

s→k t. Note that a reachability query is in fact an n-hop or∞-hop

reachability query.

The k-hop reachability indexing problem. Given an unweighted,

Table 1: Frequently used notations

Notation Description

G = (V, E) A directed, unweighted graph

n or m The number of vertices or edges in G

s → t t is reachable from s

s →k t t is reachable from s within k hops

inNei(v, G) the set of in-neighbors of v in G

inDeg(v, G) the in-degree of v in G, i.e., |inNei(v, G)|
outNei(v, G) the set of out-neighbors of v in G

outDeg(v, G) the out-degree of v in G, i.e., |outNei(v, G)|
Nei(v, G) the set of neighbors of v in G

Deg(v, G) the out-degree of v in G, i.e., |Nei(v, G)|

directed graph G, the paper proposes an index structure for G to

answer k-hop reachability queries.

The following notations will also be used throughout the paper

in the discussion of our indexing and query processing algorithms.

Given G = (V,E), define n = |V | and m = |E|. We de-

note the set of in-neighbors of a vertex v in G by inNei(v,G) =
{u : (u, v) ∈ E}, and the in-degree of v in G as inDeg(v,G) =
|inNei(v,G)|. Similarly, we denote the set of out-neighbors of v
in G by outNei(v,G) = {u : (v, u) ∈ E}, and the out-degree

of v in G as outDeg(v,G) = |outNei(v,G)|. We also denote

the set of neighbors of v in G by Nei(v,G) = (inNei(v,G) ∪
ourNei(v,G)), and the degree of v inG as Deg(v,G)=|Nei(v,G)|.

3. REACHABILITY VS. KHOP REACHA

BILITY
In this section, we analyze the suitability of the existing graph

reachability indexes [2, 3, 5, 6, 7, 14, 15, 16, 17, 19, 23, 24, 26, 27,

28, 29, 32, 34] for processing k-hop reachability queries. An under-

standing of these existing works with their relation to the problem

of k-hop reachability query processing helps not only the work in

this paper but also potential future work along this direction.

We categorize the existing works of reachability indexing into

six approaches and then show that they cannot be applied or are in-

efficient for processing k-hop reachability queries. Note that some

existing works may fall into more than one category since they may

combine different approaches to solve the problem.

3.1 Directed Acyclic Graph based Approach
The first category of indexes is related to directed acyclic graph

(DAG). Many existing indexes for processing reachability queries

assume that the input graph is a DAG [5, 6, 7, 19, 23, 24, 26, 28,

34], because if the input graph is not a DAG, one can pre-process

it and turn it into a DAG as follows. First, compute all the strongly

connected components (SCCs) in the input graph. Then, condense

each SCC into a single super-vertex, where each super-vertex is a

vertex in the DAG. Finally, a directed edge (c1, c2) is added from a

vertex c1 to another vertex c2 in the DAG iff there exists a directed

edge (u, v) in the original graph such that u is in c1 and v is in c2
(note that c1 and c2 are two SCCs in the original graph).

Condensing a general graph into a DAG can save space and it

works for processing reachability queries since all vertices within

an SCC are pairwise reachable from each other. However, for pro-

cessing k-hop reachability queries, the DAG-based approach fails

because two reachable vertices in the DAG may not be k-hop reach-

able in the original graph, since the shortest path connecting them

may have been condensed into a much shorter path (of length ≤ k)
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in the DAG. To answer a k-hop reachability query, one has to ex-

pand the vertices involved in the DAG to their corresponding SCCs

in the original graph in order to examine the k-hop information,

which is no cheaper than directly checking k-hop in the original

graph.

3.2 Traversalbased Vertex Coding Approach
The second category of graph reachability indexes focuses on

designing some vertex coding scheme based on graph traversal [2,

5, 7, 27, 29, 32, 34]. A traversal (e.g., DFS) of a graph assigns

each vertex a pair of codes according to the traversal order (e.g.,

the discovery time and finish time of a vertex in a DFS). The pair

of codes obtained from a traversal forms an interval, which can be

further modified to capture more information of descendants or of

other relevant links. Then, reachability queries can be answered

based on the containment relationship of the intervals. Different

graph traversal methods may be applied and there can be multiple

traversals depending on the design of the index.

For processing k-hop reachability queries, however, the interval

containment test of a traversal-based approach fails to capture the

k-hop requirement. To examine the number of hops from the source

vertex to the target vertex, one needs to explore the input graph.

Although the vertex coding may help guide the exploration, the

process can be as expensive as a trivial BFS to process the k-hop

reachability query starting from the source vertex.

3.3 Chain Cover based Approach
The third category of graph reachability indexes are constructed

based on a chain cover of the input graph or partially relied on

some chain cover [6, 7, 19, 23, 24]. A chain cover of a graph

G = (V,E) consists a set of chains, {C1, · · · , Ct}, where Ci ⊆
V ,

⋃
1≤i≤t

Ci = V and (Ci ∩ Cj) = ∅, for 1 ≤ i, j ≤ t and

i 6= j. For each chain Ci = {v1, · · · , vci}, we have vx → vy
for 1 ≤ x < y ≤ ci. After computing a chain cover of G, each

vertex v ∈ V is assigned a list of chain codes {σ1, · · · , σt}, where

σi indicates that v can reach the vertex at the σi-th position in the

chain Ci. Thus, a reachability query can be answered by examining

the lists of chain codes of the vertices involved.

Since a chain or the list of chain codes of a vertex retain only

the reachability information between the vertices, the chain cover

based indexes cannot process a k-hop reachability query. It is not

clear how we may extend the chain cover to contain the informa-

tion of k-hop reachability, since the connections among both the

chains and vertices in a chain are all involved. Even though the in-

formation of k-hop reachability can be indexed in the chain cover,

resolving the inter-connection between chains and intra-connection

within a chain to process k-hop reachability can be complicated and

expensive.

3.4 2Hop Cover based Approach
The fourth category of works construct reachability indexes based

on the concept of 2-hop cover [3, 14, 15, 16, 17, 23]. The 2-

hop cover approach computes for each vertex v in an input graph

G = (V,E) two vertex subsets, Lin (v) and Lout(v), where Lin (v)
consists of a set of vertices in G that can reach v and Lout(v) con-

sists of a set of vertices in G that can be reached from v. Then,

a reachability query is answered as follows: a source vertex s can

reach a target vertex t if and only if (Lout (s) ∩ Lin (t)) 6= ∅.
The 2-hop cover clearly also cannot be used to process k-hop

reachability queries because all distance information between the

vertices is lost. The 2-hop cover can be extended to encode the

distance information of each reachable vertex in Lin (v) or Lout(v)
related to v. However, as shown in many existing works of graph

reachability, the 2-hop cover has not only a higher complexity but is

also significantly less efficient than the recent indexes in real perfor-

mance for processing reachability queries, not to mention for pro-

cessing k-hop reachability queries. On the contrary, we show that

our approach is efficient for processing both reachability queries

and k-hop reachability queries.

3.5 ShortestPath Approaches
Indexes for processing shortest-path or distance queries can be

trivially used to process k-hop reachability queries. Shortest-path

or distance query processing, however, has a significantly higher

cost than k-hop reachability query processing. In particular, the 2-

hop cover based indexes [13, 17] are not efficient enough for pro-

cessing k-hop reachability queries, as explained in Section 3.4 and

also to be shown in Section 6.3.1. Moreover, the works by Xiao

et al. [31] and Wei [30] are designed for undirected graphs, while

graph reachability mostly considers directed graphs.

Apart from the above-mentioned indexes, there are also many in-

dexes developed for processing shortest-path and distance queries

in planar graphs or road networks (see [1] and the references therein).

However, these indexes are specifically optimized for road net-

works and cannot be applied to directed general graphs.

3.6 Other Approaches
Other approaches such as transitive closure [26] can also be ex-

tended to encode the k-hop reachability information. However, the

transitive closure is in general too large to be practical. A recent

work has been proposed to compress the transitive closure using

bit vector compression techniques [28], which has shown to be ef-

fective for processing reachability queries. However, unlike en-

coding for graph reachability which requires only boolean indica-

tors, encoding the k-hop reachability information not only requires

more bits for each entry, but also breaks the continuity of long se-

quences of ‘0’s and ‘1’s which is crucial for the effectiveness of the

bit vector compression techniques [28]. More critically, both tran-

sitive closure [26] and compression on transitive closure [28] work

only on the much smaller DAG of the input graph, while the DAG-

based approach is not applicable for processing k-hop reachability

queries as discussed in Section 3.1.

4. A VERTEXCOVERBASED INDEX
Having discussed the limitations of the existing indexes for pro-

cessing k-hop reachability queries, in this section we propose an

efficient index, called k-reach, as a solution.

4.1 KReach: Index Construction
The k-reach index is constructed based on the concept of vertex

cover [18]. We first discuss how to compute a small vertex cover

of a graph G. Then, we define the index structure and describe the

algorithm that constructs the index.

4.1.1 Minimum Vertex Cover Approximation

A set of vertices, S, is a vertex cover of a graph G = (V,E) if

for every edge (u, v) ∈ E, we have ({u, v} ∩ S) 6= ∅. Obviously,

V itself is a vertex cover of G but is too large to be used to construct

an index. Thus, we want to minimize the size of the vertex cover.

A vertex cover S is called a minimum vertex cover of G if S has

the smallest size among all vertex covers of G. The problem of

computing the minimum vertex cover is well-known to be NP-hard

[18]. However, there is a polynomial time algorithm for computing

a 2-approximate minimum vertex cover, which is given as follows.

We randomly select an edge (u, v) from E, add both u and v
to S, and then remove u and v from G, together with all edges
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Algorithm 1 Construction of k-reach

Input: a directed graph G = (V,E) and an integer k
Output: a k-reach index of G

1. Compute a 2-approximate minimum vertex

cover, S, of G;

2. Initialize a weighted, directed graph I = (VI , EI , ωI);
3. VI ← S;

4. for each u ∈ S do

5. Compute Sk(u) = {v : v ∈ S, u→k v}
by a k-hop BFS from u;

6. for each v ∈ Sk(u) do

7. EI ← (EI ∪ {(u, v)});
8. if(u→k−2 v)

9. ωI((u, v))← (k − 2);
10. else if(u→k−1 v)

11. ωI((u, v))← (k − 1);
12. else /∗ (u→k v) ∗/
13. ωI((u, v))← k;

14. return I = (VI , EI , ωI);

incident on the two vertices. Note that all edges incident on u or

v, whether in-edges or out-edges, can be removed from G because

all these edges are covered by either u or v in S. This process is

repeated until all edges are removed from G.

The above algorithm takes O(m + n) time since every edge is

only touched once. Let C be a minimum vertex cover of G. Then,

for every pair of vertices, u and v, selected to be included in S in

the above process, either u or v must be in C, because otherwise the

edge (u, v) is not covered by any vertex in C. Thus, we have |S| ≤
2|C|. From the analysis, we also see that we may simply ignore

the direction of the edges in computing a 2-approximate minimum

vertex cover of G.

4.1.2 Definition of kReach and Its Construction

We now define the structure of the k-reach index as follows.

Definition 1 (K-REACH). Given a directed graph G = (V,E),
a vertex cover S of G, and an integer k, the k-reach index of G is

a weighted, directed graph I = (VI , EI , ωI) defined as follows.

• VI = S.

• EI = {(u, v) : u, v ∈ S, u→k v}.

• ωI is a weight function that assigns a weight to each edge

e = (u, v) ∈ EI as follows:

– if u→k−2 v, then ωI(e) = (k − 2);

– else if u→k−1 v, then ωI(e) = (k − 1);

– else if u→k v, then ωI(e) = k.

Note that in Definition 1, “u →k−2 v” implies “u →k−1 v”,

both of which also imply “u→k v”.

Next, we describe the index construction process, as shown in

Algorithm 1.

Algorithm 1 first computes a 2-approximate minimum vertex

cover, S, of the input graph G by the algorithm given in Section

4.1.1. Then, it constructs the graph I = (VI , EI , ωI) by perform-

ing a breath-first search (BFS) of G within k hops from each start-

ing vertex u ∈ S. This process computes the set of all vertices in S
that can be reached from u in k hops in G, i.e., the set Sk(u) in Line

5. The rest of the algorithm is simply including each edge (u, v) in

EI , for each v ∈ Sk(u), and assigning the weight to (u, v).
We give an example of the k-reach index constructed by Algo-

rithm 1 as follows.

Example 1. Given the graph G in Figure 1. Assume that the 2-

approximate algorithm randomly picks the edges, (b, d) and (g, i),
in G. Then, {b, d, g, i} forms the set of 2-approximate minimum

vertex cover of G. We can verify that {b, d, g, i} is indeed a vertex

cover of G, since every edge in G is incident on at least one of the

vertices in {b, d, g, i}.
Let k = 3. The k-reach graph, I = (VI , EI , ωI), of G is shown

in Figure 2. Since k = 3, the possible edge weights are k− 2 = 1,

k−1 = 2, and k = 3. For example, b→3 g in G and thus we have

the directed edge (b, g) with ωI((b, g)) = 3 as shown in Figure 2.

We will further explain how we use the k-reach graph to process a

k-hop reachability query in Example 2 in Section 4.2. ✷

Figure 1: An example graph G (the vertex cover is {b, d, g, i})

✁ ✂

✄ ☎

�

✆

�

✝ ✝

✆

Figure 2: The k-reach graph (k = 3), I = (VI , EI , ωI), of G in

Figure 1

4.1.3 Complexity of Constructing kReach

Computing the 2-approximate minimum vertex cover S requires

O(m + n) time. Constructing the weighted, directed graph I =
(VI , EI , ωI) takes O(

∑
u∈S
|Gk(u)|) time, where Gk(u) is the

subgraph of G that can be reached from u in k hops. Note that it is

straightforward to parallelize this process if more machines or CPU

cores are available.

The size of the index, i.e., the size of the graph I , depends on

both the size of S and Sk(u) for each u ∈ S. However, it is difficult

to derive a theoretical bound of S or Sk(u) for real-world graphs

since they often vary significantly in characteristics with respect to

S and Sk(u), even though some graphs may share some similar

properties such as sparsity and power-law degree distribution. We

are not aware of any existing work that gives a theoretical bound on

the size of the minimum vertex cover for real-world graphs. Thus,

we examine the size of the index experimentally for a wide range

of real-world graphs.

Finally, constructing the k-reach index uses O(m + n) memory

space. Note that the constructed index is then stored on disk.

4.2 KReach: Query Processing
We now discuss how we process a k-hop reachability query using

the k-reach index.
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Algorithm 2 Query processing using k-reach

Input: a directed graph, G = (V,E),
the k-reach index, I = (VI , EI , ωI), of G,

and two query vertices, s and t
Output: a boolean indicator whether s→k t

/∗ Case 1: both s and t are in the vertex cover ∗/
1. if(s ∈ VI and t ∈ VI )

2. if((s, t) ∈ EI )

3. return true;

4. else

5. return false;

/∗ Case 2: only s is in the vertex cover ∗/
6. else if(s ∈ VI and t /∈ VI )

7. if(∃v ∈ inNei(t, G) such that

(s, v) ∈ EI and ωI((s, v)) ≤ (k − 1))
8. return true;

9. else

10. return false;

/∗ Case 3: only t is in the vertex cover ∗/
11. else if(s /∈ VI and t ∈ VI )

12. if(∃v ∈ outNei(s,G) such that

(v, t) ∈ EI and ωI((v, t)) ≤ (k − 1))
13. return true;

14. else

15. return false;

/∗ Case 4: both s and t are not in the vertex cover ∗/
16. else if(s /∈ VI and t /∈ VI )

17. if(∃u ∈ outNei(s,G) and ∃v ∈ inNei(t, G) such that

(u, v) ∈ EI and ωI((u, v)) ≤ (k − 2))
18. return true;

19. else

20. return false;

4.2.1 Query Processing using kReach

We give the algorithm for query processing using k-reach in Al-

gorithm 2.

Given two query vertices, s and t, Algorithm 2 processes the k-

hop reachability query by considering four cases. The following

theorem proves the correctness of the algorithm for processing a

k-hop reachability query using the k-reach index. The proof also

explains how a query is processed.

THEOREM 1. Given a directed graph, G = (V, E), the k-reach

index, I = (VI , EI , ωI), of G, and two query vertices, s and t,
Algorithm 2 returns true if s→k t in G and false otherwise.

PROOF. Note that VI is a vertex cover of G. There are only four

possible cases in processing a k-hop reachability query by consid-

ering the membership of s and t in VI . Algorithm 2 processes the

query according to which case the query belongs to as follows.

Case 1: both s and t are in VI . In this case, if s→k t in G, then

the edge (s, t) must exist in I . Thus, the answer to the query by

Algorithm 2 is trivially correct.

Case 2: only s is in VI . In this case, all in-neighbors (if any)

of t must be in VI . Otherwise if ∃v ∈ inNei(t,G) such that v is

not in VI , then the edge (v, t) is not covered since both v and t are

not in the vertex cover VI . Thus, if s →k t in G, then there must

exist an in-neighbor v of t such that ωI((s, v)) ≤ (k − 1), since

the (directed) path from s to t must pass through at least one in-

neighbor of t. Therefore, it is sufficient to check whether (s, v) ∈
EI and ωI((s, v)) ≤ (k−1) in order to determine whether s→k t.

Case 3: only t is in VI . This case is similar to Case 2. Now

since s is not in the vertex cover VI , all out-neighbors (if any) of

s must be in VI ; otherwise the edge (s, v) is not covered for some

v ∈ outNei(s,G) and v /∈ VI . Thus, similar to Case 2, it is

sufficient to check whether (v, t) ∈ EI and ωI((v, t)) ≤ (k − 1)
in order to determine whether s→k t.

Case 4: both s and t are not in VI . In this case, all out-neighbors

(if any) of s and all in-neighbors (if any) of t must be in VI ; oth-

erwise the edges (s, u) and (v, t) are not covered for some u ∈
outNei(s,G), v ∈ inNei(t,G), and u, v /∈ VI . Thus, if s→k t in

G, then there must exist an out-neighbor u of s and an in-neighbor

v of t such that ωI((u, v)) ≤ (k − 2), since the (directed) path

from s to t must first go from s to some u ∈ outNei(s,G), and

finally pass through some v ∈ inNei(t, G) to t. Therefore, it is

sufficient to check whether (u, v) ∈ EI and ωI((u, v)) ≤ (k − 2)
in order to determine whether s→k t.

We give an example of using the k-reach index to process k-hop

reachability queries as follows. We use s 9k t to indicate that t is

not k-hop reachable from s.

Example 2. Given the graph G in Figure 1 and the k-reach graph

I = (VI , EI , ωI) of G in Figure 2, where k = 3. We discuss how

we use k-reach to process each of four cases in Algorithm 2 as

follows.

Case 1: both s and t are in VI . Let s = b ∈ VI . We first consider

t = g ∈ VI . Since (b, g) ∈ EI , we have b →k g. However, if

t = i ∈ VI , then b 9k i since (b, i) /∈ EI , although b can reach i
in G (but in 4 > k = 3 hops).

Case 2: only s is in VI . Let s = d ∈ VI . If t = h /∈ VI ,

then we have d →k h since there is an in-neighbor g of h such

that (d, g) ∈ EI with ωI((d, g)) = 2 ≤ (k − 1) = 2. But if

t = j /∈ VI , then d 9k j since for the only in-neighbor i of j,

although (d, i) ∈ EI , we have ωI((d, i)) = 3 > (k − 1). We can

easily verify in G that j is reachable from d in at least 4 hops and

thus not 3-hop reachable from d.

Case 3: only t is in VI . Let s = a /∈ VI . If t = d ∈ VI , we have

a→k d since there is an out-neighbor b of a such that (b, d) ∈ EI

with ωI((b, d)) = 1 ≤ (k − 1) = 2. But if t = g ∈ VI , then

a 9k g since ωI((b, g)) = 3 > (k − 1). We can easily verify in

G that g is reachable from a in at least 4 hops and thus not 3-hop

reachable from a.

Case 4: both s and t are not in VI . Let s = c /∈ VI . If t = f /∈
VI , we have c →k f since there is an out-neighbor b of c and an

in-neighbor d of f such that (b, d) ∈ EI with ωI((b, d)) = 1 ≤
(k− 2) = 1. But if t = h /∈ VI , then c 9k h since h has only one

in-neighbor g but ωI((b, g)) = 3 > (k − 2). We can easily verify

in G that h is reachable from c in at least 5 hops and thus not 3-hop

reachable from c. ✷

4.2.2 Complexity of Query Processing using kReach

The membership tests whether s and t belong to VI take O(1)
time. Checking whether an edge (u, v) exists in EI and retrieving

its weight take O(log outDeg(u, I)) or O(log inDeg(v, I)) CPU

time if I is stored as adjacency lists. Thus, Case 1 of Algorithm 2

takes O(log outDeg(s, I)) time, Case 2 takes O(outDeg(s, I) +
inDeg(t, G)) time, Case 3 takes O(outDeg(s,G) + inDeg(t, I))
time, Case 4 uses O(

∑
u∈outNei(s,G)(outDeg(u,I)+inDeg(t,G)))

time. Note that for Cases 2 to 4 we can perform intersection of the

involved adjacency lists and terminate earlier as soon as an edge is

found to give a true answer.
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In addition to the CPU cost, to retrieve an adjacency list L from

disk, it also requires O(|L|/B) I/Os, where B is the disk block

size. In practice, we have |L| < B for the majority of vertices and

therefore the I/O cost is small in most cases.

4.3 The Curse of HighDegree Vertices
According to the complexity analysis of query processing in Sec-

tion 4.2.2, the query performance depends largely on the degree of

a vertex in G and in I . Many large real-world graphs have a power-

law degree distribution and hence a small number of vertices may

have a very high degree. For example, the singer-songwriter Lady

Gaga has 40,000,000 fans on Facebook. Therefore, it is crucial to

avoid having these high-degree vertices as query vertices that fall

into Case 4, or even Cases 2 and 3, of Algorithm 2. Nevertheless,

statistically these high-degree vertices may indeed have a higher

probability to be picked as query vertices since they usually repre-

sent objects that attract more attention.

To enable these high-degree query vertices to be processed effi-

ciently, we modify the algorithm for computing the 2-approximate

minimum vertex cover in Section 4.1.1 as follows. In picking an

edge in order to include its two end vertices in the vertex cover,

we give higher priority to edges with either or both end vertices

that have a high degree. Since most real-world graphs have only a

very small percentage of high-degree vertices [25], we can easily

include all such vertices in the vertex cover without sacrificing the

approximation ratio. In fact, including the high-degree vertices in

the vertex cover is a greedy strategy that tends to reduce the size of

the vertex cover in practice, since a high-degree vertex covers more

edges than a low-degree one.

Prior study has shown that for a typical real-world graph with

power-law degree distribution, if the graph has 1 million vertices,

then the “h-index” of the graph is only about 300 [10, 11]; that is,

the 1 million-vertex graph contains only about h = 300 vertices

with degree at least h = 300.

The vertices that have a high degree in G, however, also tend to

have a high degree in I . This not only reflects a tradeoff in query

performance but also increases the index size. However, this prob-

lem can be alleviated as follows. Since there are only three types

of edge weight, i.e., k, (k − 1), and (k − 2), in I , we only need to

use 2 bits to represent each edge weight. Thus, the set of neighbors

of those high-degree vertices in I can be effectively represented

in a more compact way, such as interval lists or partitioned word

aligned hybrid compression [28], which have been shown effective

for reducing the storage size of the edge transitive closure graph for

processing reachability queries. Note that with the compact repre-

sentations, we only need to locate the corresponding interval or bits

for query processing [28], instead of searching the list of neighbors.

4.4 A General k
We next consider if one wants to ask k-hop reachability queries

for different values of k. In this case, a specific k-reach index (i.e.,

the index is built on a specific value of k) is not able to handle a gen-

eral k. However, we note that if the index can process k-hop reach-

ability queries with a general k, then the index is essentially an

index for shortest-path distance queries. To the best of our knowl-

edge, so far there is no efficient index for answering shortest-path

or distance queries in directed general graphs (see Section 3.5). We

discuss two possible approaches of handling a general k as follows.

First, our index can be easily generalized to process distance

queries by keeping the distance information between any two ver-

tices in the vertex cover, which can be computed by doing a full

BFS instead of a k-hop BFS in Line 5 of Algorithm 1. This re-

quires lg d bits for each edge weight (instead of 2 bits as with a

specific k), where d is the diameter of the input graph. However,

in order to answer distance queries, the k-reach graph for a general

k is a complete graph, while the k-reach graph for a specific k is a

sparse graph. Thus, this generalization of k-reach works only for

small d and small graphs.

The second approach is based on the observation that in many

applications (e.g., message broadcasting in sensor networks and

connectivity in social networks), the influence/significance of a k-

hop neighbor on/to a vertex decreases quickly as k increases. Thus,

we can build (lg d) i-reach indexes, where i = 21, · · · , 2lg d = d.

Then, to answer whether s can reach t within k hops, we use the

2⌈lg k⌉-reach index. If s can reach t within k hops, or s cannot

reach t within 2⌈lg k⌉ hops, then clearly the index gives a correct

answer. Otherwise, the index gives an approximate answer that s
can reach t within k′ hops, where k < k′ ≤ 2⌈lg k⌉ hops. Thus, this

method gives higher significance to smaller k because the range of

k′ becomes larger as k becomes larger.

The overall space taken by the (lg d) i-reach indexes is approxi-

mately lg d times the space of a single k-reach, as the size of the i-
reach index remains rather stable for different values of i (as tested

in Section 6.3). For many real-world graphs, d is relatively small

according to the six-degree-of-separation theory. For the 15 real

datasets used in our experiments, d is around 10 for most of them

and the largest d is 24 (see Table 2).

If accuracy is critical for some applications, one may even build

the i-reach indexes for each i = 2, · · · , d, to obtain exact answer

for k-hop reachability queries of any k. Given the small value of d
in many real-world graphs, the storage size may be affordable. Or

some applications may be only interested in small values of k and

hence construct only the k-reach index for the first few k (e.g., for

k < 6). Note that none of the existing reachability indexes support

k-hop reachability even if we limit k to a small number.

5. A TRADEOFF BETWEEN INDEXING

AND QUERYING
It is well-known that there is a tradeoff between the cost of con-

structing a reachability index and the cost of processing reachabil-

ity queries [33]. More specifically, one can spend O(nm) time

to construct an index of size O(n2) so that any query can be an-

swer in O(1) time. On the contrary, one can answer a query in

O(n + m) time without an index. All the existing reachability

indexes lie somewhere between these two extremes, attempting to

attain a low querying cost with a reasonable indexing cost.

The tradeoff between indexing cost and querying cost also exists

in k-reach. This section proposes a method to reduce the index size

when it becomes large.

5.1 An hHop VCbased kReach Index
The idea to reduce the indexing time and index storage size is

based on the concept of a path-based vertex cover. We first present

the concept of the path-based vertex cover and then discuss how to

construct a new k-reach index.

5.1.1 Minimum hHop Vertex Cover

We first define the notion of h-hop vertex cover [4] as follows.

A set of vertices, S, is an h-hop vertex cover of a graph G =
(V,E), where 1 ≤ h < n, if for every path P = 〈v0, · · · , vh〉 of

length h in G, we have ({v0, · · · , vh} ∩ S) 6= ∅. An h-hop vertex

cover S is called a minimum h-hop vertex cover of G if S has the

smallest size among all h-hop vertex covers of G.

Trivially, V itself is an h-hop vertex cover of G for any valid h.

In fact, a vertex cover of G is also an h-hop vertex cover of G for

any valid h. More specifically, we have the following lemma.
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LEMMA 1. An i-hop vertex cover of a graph G is also a j-hop

vertex cover of G, where 1 ≤ i ≤ j < n.

PROOF. Since every path of length i in G is covered by some

vertex in the i-hop vertex cover, every path P of length j is clearly

covered by the same vertex that covers the length-i sub-path of P .

Thus, an i-hop vertex cover of G is also a j-hop vertex cover of

G.

The following corollary follows from Lemma 1.

COROLLARY 1. Let Si be a minimum i-hop vertex cover of a

graph G and Sj be a minimum j-hop vertex cover of G, where

1 ≤ i ≤ j < n. Then, |Sj | ≤ |Si|.

PROOF. The proof is trivial since by Lemma 1, one can use Si

as the minimum j-hop vertex cover if |Sj | > |Si|, contradicting

that Sj is minimum.

Corollary 1 shows that we can construct an index based on a

minimum h-hop vertex cover of a larger h in order to obtain a small

index size.

We can easily prove that the general problem of computing a

minimum h-hop vertex cover is also NP-hard, since the special case

minimum 1-hop vertex cover, or simply minimum vertex cover, is

NP-hard. We give a polynomial time algorithm that computes a

(h+ 1)-approximate minimum h-hop vertex cover as follows.

We randomly select a path P = 〈v0, · · · , vh〉 of length h in G,

and add all vertices on the path, i.e., {v0, · · · , vh}, to S. Then,

we remove all vertices in {v0, · · · , vh} from G, together with all

edges incident on these vertices. Note that all edges incident on

{v0, · · · , vh}, whether in-edges or out-edges, can be removed from

G because any length-h path containing any of these edges is cov-

ered by some vertices in {v0, · · · , vh}. This process is repeated

until no path of length h exists in G.

It is not difficult to see that the above algorithm is (h + 1)-
approximate. Let C be a minimum h-hop vertex cover of G. For

every path P = 〈v0, · · · , vh〉 selected, we include {v0, · · · , vh} in

S in the above process. Note that at least one vertex in {v0, · · · , vh}
must be in C, because otherwise P is not covered by any vertex in

C. Thus, we have |S| ≤ (h+ 1)|C|.
Bresar et al. [4] studied the theoretical upper bound on the size

of a minimum h-hop vertex cover of general graphs, outerplanar

graphs, and trees. For general graphs, they show that the size of a

minimum h-hop vertex cover is at most (n−h−1
h

∑
v∈V

2
1+Deg(v,G)

).

This upper bound is for every general graph and therefore often

too loose. For most real-world graphs, the size of a minimum h-

hop vertex cover is reasonably small for our indexing purpose even

when a small h is used.

We also remark that, by Lemma 1 and Corollary 1, for index

construction we always have a smaller (j + 1)-approximate min-

imum j-hop vertex cover than an (i + 1)-approximate minimum

i-hop vertex cover, where 1 ≤ i ≤ j < n. This is true because,

if any (i+1)-approximate minimum i-hop vertex cover is smaller,

we can always simply use it as a (j + 1)-approximate minimum

j-hop vertex cover.

5.1.2 The (h,k)Reach Index

The structure of the new h-hop vertex cover based k-reach index

is given as follows.

Definition 2 ((h, k)-REACH). Given a directed graph G =
(V,E), an h-hop vertex cover S of G, and an integer k, where

h < k/2, the h-hop vertex cover based k-reach, or (h,k)-reach

in short, of G is a weighted, directed graph H = (VH , EH , ωH)
defined as follows.

• VH = S.

• EH = {(u, v) : u, v ∈ S, u→k v}.

• ωH is a function that assigns a weight to each edge e =
(u, v) ∈ EH as follows: ωH(e) = (k− i) iff u→k−i v and

u 9k−i−1 v, where 0 ≤ i ≤ 2h, and u 9k−i−1 v means

that v cannot be reached from u within (k − i− 1) hops.

Note that the value of h is set as h < k/2 because we consider

at most k/2 hops from a neighbor of s and at most k/2 hops to a

neighbor of t when both query vertices s and t are not in the vertex

cover.

The index construction process is identical to Algorithm 1, ex-

cept that we use an (h + 1)-approximate minimum h-hop vertex

cover instead of a 2-approximate minimum vertex, and assign the

edge weight according to Definition 2.

The complexity analysis of Algorithm 1 applies in the same way

to the complexity of index construction for (h, k)-reach. However,

the indexing time and the index storage space are both reduced

because, according to the discussion in Section 5.1.1, the size of

an (h + 1)-approximate minimum h-hop vertex cover is always

smaller than that of a 2-approximate minimum vertex.

We give an example of an (h, k)-reach index as follows.

Example 3. Given the graph G in Figure 3, which is the same

graph of Figure 1 in Example 1 but this time we apply the h-hop

vertex cover of G. Let h = 2. Assume that the 3-approximate

algorithm randomly picks the 2-hop path, 〈d, e, g〉, in G. Then,

{d, e, g} forms a 3-approximate minimum 2-hop vertex cover of

G. We can easily verify that {d, e, g} is indeed a 2-hop vertex

cover of G, since every path of length 2 in G is incident on at least

one of the vertices in {d, e, g}.
Let k = 5. The (2, 5)-reach graph, H = (VH , EH , ωH), of G

is shown in Figure 4. We will further illustrate how we process a

k-hop reachability query using H in Example 4 in Section 5.2. ✷

Figure 3: An example graph G (the 2-hop vertex cover is

{d, e, g})

Figure 4: The (h, k)-reach graph (h = 2, k = 5), H =
(VH , EH , ωH), of G in Figure 3

5.2 Query Processing using (h,k)Reach
We now discuss how we use (h, k)-reach to process a k-hop

reachability query, as shown in Algorithm 3. Before we discuss

the details of the algorithm, we need to first define a few notations

that are used in the algorithm description and complexity analysis.

We denote the set of i-hop in-neighbors of a vertex v in G by

inNei i(v,G) = {u : u →i v}, and the i-hop in-degree of v in
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Algorithm 3 Query processing using (h,k)-reach

Input: a directed graph, G = (V,E),
the (h, k)-reach index,

H = (VH , EH , ωH), of G,

and two query vertices, s and t
Output: a boolean indicator whether s→k t

/∗ Case 1: both s and t are in the h-hop vertex cover ∗/
1. if(s ∈ VH and t ∈ VH)

2. if((s, t) ∈ EH )

3. return true;

4. else

5. return false;

/∗ Case 2: only s is in the h-hop vertex cover ∗/
6. else if(s ∈ VH and t /∈ VH)

7. if(∃v ∈ inNeii(t, G), where 1 ≤ i ≤ h,

such that (s, v) ∈ EH and ωH((s, v)) ≤ (k − i))
8. return true;

9. else

10. return false;

/∗ Case 3: only t is in the h-hop vertex cover ∗/
11. else if(s /∈ VH and t ∈ VH )

12. if(∃v ∈ outNei i(s,G), where 1 ≤ i ≤ h,

such that (v, t) ∈ EH and ωH((v, t)) ≤ (k − i))
13. return true;

14. else

15. return false;

/∗ Case 4: both s and t are not in the h-hop vertex cover ∗/
16. else if(s /∈ VH and t /∈ VH )

17. if(∃u ∈ outNei i(s,G) and ∃v ∈ inNeij(t, G),
where 1 ≤ i ≤ h and 1 ≤ j ≤ h,

such that (u, v) ∈ EH and ωH((u, v)) ≤ (k − i− j))
18. return true;

19. else

20. return false;

G as inDeg i(v,G) = |inNei i(v,G)|. Similarly, we denote the

set of i-hop out-neighbors of v in G by outNei i(v,G) = {u :
v →i u}, and the i-hop out-degree of v in G as outDeg i(v,G) =
|outNei i(v,G)|.

Algorithm 3 is similar to Algorithm 2 except that it considers the

i-hop neighbors of a query vertex v if v is not in the h-hop vertex

cover, while Algorithm 2 considers the direct neighbors, i.e., the

1-hop neighbors of v only.

The following theorem states the correctness of the algorithm.

THEOREM 2. Given a directed graph, G = (V,E), the (h, k)-
reach index, H = (VH , EH , ωH), of G, and two query vertices,

s and t, Algorithm 3 returns true if s →k t in G and false

otherwise.

PROOF. The proof follows a similar logic as that of Theorem

1.

We give an example of query processing using the (h, k)-reach

index as follows.

Example 4. Given the graph G in Figure 3 and the (h, k)-reach

graph H = (VH , EH , ωH) of G in Figure 4, where h = 2 and

k = 5. We discuss how we use H to process each of four cases in

Algorithm 3 as follows.

Case 1: both s and t are in VH . Let s = e ∈ VH . If t = g ∈ VH ,

then e →k g since (e, g) ∈ EH . On the contrary, if t = d ∈ VH ,

then e 9k d since (e, d) /∈ EH .

Case 2: only s is in VH . Let s = d ∈ VH . Consider t =
h /∈ VH . Since g ∈ inNei1(h,G) such that (d, g) ∈ EH and

ωH((d, g)) = 2 ≤ (k − 1) = 4, we have d →k h. Note that

e ∈ inNei2(h,G) can also be used to process the query but the

process terminates as soon as a vertex in VH can be used to answer

the query. Now consider t = a /∈ VH . Since inNeii(a,G) = ∅,
where 1 ≤ i ≤ h = 2, we have d 9k a.

Case 3: only t is in VH . Let s = a /∈ VH . If t = g ∈ VH ,

we have a →k g since we have d ∈ outNei2(a,G) such that

(d, g) ∈ EH and ωH((d, g)) = 2 ≤ (k − 2) = 3.

Case 4: both s and t are not in VH . Let s = a /∈ VH . If

t = i /∈ VH , we have a →k i since d ∈ outNei2(a,G) and g ∈
inNei1(i, G) such that (d, g) ∈ EH and ωH((d, g)) = 2 ≤ (k −
2− 1) = 2. However, if t = j /∈ VH , then a 9k j since we only

have d ∈ outNei2(a,G) and g ∈ inNei2(j, G), but ωH((d, g)) =
2 > (k − 2− 2) = 1. We can easily verify in G that a can reach i
in 5 hops but can reach j in at least 6 > k = 5 hops. ✷

Compared with the k-reach index, the (h, k)-reach index trades

querying time for indexing time and index storage size. The in-

creased time complexity for query processing is mainly due to that

the search space is expanded from the direct neighbors to the i-hop

neighbors, where 1 ≤ i ≤ h. We analyze the querying complexity

as follows.

In the worst case, query processing for Case 1 of Algorithm 3

takes O(log outDeg(s,H)) time, Case 2 takes O(outDeg(s,H)
+ inDeg i(t,G)) time, Case 3 takes O(outDeg i(s,G) +
inDeg(t,H)) time, and Case 4 takes O(

∑
u∈outNeii(s,G)

(outDeg(u,H) + inDegj(t,G))) time, where 1 ≤ i ≤ h and

1 ≤ j ≤ h.

In most cases, query processing does not search all the i-hop or

j-hop in/out-neighbors, but terminates earlier as soon as a match is

found.

6. EXPERIMENTAL EVALUATION
We evaluate the performance of k-reach, by comparing with the

state-of-the-art indexes for processing classic reachability queries,

including path-tree cover1 (PTree) [24], 3-hop2 [23], GRAIL [32],

and Partitioned Word Aligned Hybrid compression (PWAH) [28].

All systems, both ours and others we compared with, were im-

plemented in C++ and compiled using the same gcc compiler. We

ran all the experiments on a machine with an Intel Quad Q9400

2.66GHz CPU and 4GB RAM, running Scientific Linux release

6.0. The experiments were run for 10 times and the results were

found to be consistent over the 10 runs.

6.1 Datasets
We conducted our experiments on a list of 15 real datasets that

are popularly used to assess the performance of graph reachability

indexes in the existing works [23, 24, 28, 32].

The datasets, AgroCyc, Anthra, Ecoo, Human, Mtbrv, and

Vchocyc, are from EcoCyc (ecocyc.org) and describe the genome

1We only recently learnt that the PTree code we downloaded from
the authors’ website has been updated. Some comparison results
between their updated code and other reachability indexes can be
found in [22].
2Note that 3-hop is only the name of the index [23] for processing
classic reachability queries, and does not imply 3-hop reachability.
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and biochemical machinery of E. coli K-12 MG1655. The datasets,

aMaze and Kegg, are metabolic networks [27]. The datasets,

Nasa and Xmark, are XML documents [24]. The datasets, ArXiv

(arxiv.org), CiteSeer (citeseer.ist.psu.edu), and PubMed (pub-

medcentral.nih.gov), are citation networks. The GO dataset (www.

geneontology.org) is a gene ontology graph. The YAGO dataset

(mpi-inf.mpg.de/yago-naga/yago) is a graph that describes the struc-

ture of relationships among terms in the semantic knowledge data-

base YAGO.

Table 2 shows the number of vertices and edges (|V | and |E|),
the maximum vertex degree (Degmax ), the diameter (d), and the

median length of all shortest paths (µ) of the datasets. We also

show the number of vertices and edges of the corresponding DAG

of each dataset (|VDAG | and |EDAG|), since the existing indexes we

compare with all assume that the input graph is a DAG.

Table 2: Datasets
|V | |E| |VDAG | |EDAG | Degmax d µ

AgroCyc 13,969 17,694 12,684 13,657 5,488 10 2

aMaze 11,877 28,700 3,710 3,947 3,097 11 2

Anthra 13,766 17,307 12,499 13,327 5,401 10 2

ArXiv 6,000 66,707 6,000 66,707 700 20 4

CiteSeer 10,720 44,258 10,720 44,258 192 18 3

Ecoo 13,800 17,308 12,620 13,575 5,435 10 2

GO 6,793 13,361 6,793 13,361 71 11 3

Human 40,051 43,879 38,811 39,816 28,571 10 2

Kegg 14,271 35,170 3,617 4,395 3,282 16 2

Mtbrv 10,697 13,922 9,602 10,438 4,005 12 2

Nasa 5,704 7,942 5,605 6,538 32 22 7

PubMed 9,000 40,028 9,000 40,028 432 11 4

Vchocyc 10,694 14,207 9,491 10,345 3,917 10 2

Xmark 6,483 7,654 6,080 7,051 887 24 5

YAGO 6,642 42,392 6,642 42,392 2,371 9 1

6.2 Performance Comparison with the
Existing Indexes

Since there is no other existing work for processing k-hop reach-

ability queries, we compare with the state-of-the-art indexes for

processing classic reachability queries. Such a performance com-

parison is not meaningless because a reachability query is a special

case of a k-hop reachability query, that is, when k = n or k =∞.

However, we remark that processing k-hop reachability queries has

a higher cost than processing reachability queries since some dis-

tance information needs to be handled for k-hop reachability.

We compare with PTree [24], 3-hop [23], GRAIL [32] and PWAH

[28], on the performance of both index construction performance

and query processing. We denote our index as n-reach, for the

case when k = n, which is essentially an index for processing

reachability queries.

6.2.1 Performance of Index Construction

Table 3 reports the index construction time of all the indexes

for all the datasets. The result shows that the construction of the n-

reach index is faster than that of the PTree index in all cases. On av-

erage, constructing n-reach is approximately 7.9 times faster than

constructing PTree. Compared with the construction of GRAIL

and PWAH, however, the construction of n-reach is slower, though

the time difference is rather small compared with the difference be-

tween our indexing time and that of PTree. More importantly, we

will show next in Table 5 that query processing by n-reach is sig-

nificantly faster than both GRAIL and PWAH. For the construction

of the 3-hop index, we were not able to obtain the result for most of

Table 3: Index construction time (elapsed time in milliseconds)

of n-reach, PTree, 3-hop, GRAIL, and PWAH (shortest time

shown in bold)
n-reach PTree 3-hop GRAIL PWAH

AgroCyc 27.71 129.14 - 10.86 4.40

aMaze 18.09 476.69 959,821 2.92 7.01

Anthra 24.08 123.43 - 10.74 3.90

ArXiv 352.51 6,319.66 - 10.58 111.00

CiteSeer 245.46 403.35 44,328 16.04 93.26

Ecoo 26.70 129.74 - 10.88 4.47

GO 106.84 110.83 11,914 6.50 19.57

Human 67.78 397.05 - 41.45 6.71

Kegg 21.01 537.17 - 2.92 6.77

Mtbrv 20.24 98.13 - 7.92 3.86

Nasa 57.93 62.22 13,739 4.51 10.54

PubMed 166.23 437.16 73,243 11.63 70.63

Vchocyc 19.77 97.34 - 7.60 4.00

Xmark 44.50 136.87 68,219 4.96 11.53

YAGO 32.47 282.45 5,006 9.47 36.49

Table 4: Index size (in MB) of n-reach, PTree, 3-hop, GRAIL,

and PWAH (smallest size shown in bold)

n-reach PTree 3-hop GRAIL PWAH

AgroCyc 0.39 0.29 - 0.19 0.44

aMaze 0.13 0.09 5.41 0.06 0.22

Anthra 0.36 0.29 - 0.19 0.42

ArXiv 1.61 0.38 - 0.09 2.46

CiteSeer 3.17 0.45 0.20 0.16 3.08

Ecoo 0.40 0.29 - 0.19 0.43

GO 1.28 0.20 0.11 0.10 0.63

Human 1.17 0.89 - 0.59 1.25

Kegg 0.16 0.08 - 0.06 0.23

Mtbrv 0.29 0.22 - 0.15 0.34

Nasa 0.66 0.13 0.06 0.09 0.40

PubMed 2.03 0.50 0.29 0.14 2.80

Vchocyc 0.28 0.22 - 0.14 0.33

Xmark 0.49 0.13 0.43 0.09 0.45

YAGO 0.48 0.22 0.09 0.10 0.96

the datasets (as indicated by “-” in Tables 3 to 5) due to long run-

ning time or large memory consumption. We note that the 3-hop

index was primarily designed for processing denser graphs.

The memory consumption of constructing the n-reach index, as

well as GRAIL and PWAH, is all very small. These three indexes

use similar amount of memory, which varies from about 4 MB to

10 MB from dataset to dataset. The memory consumption of con-

structing the PTree and 3-hop indexes is considerably higher.

Table 4 reports the storage size (on disk) of the various indexes

for the different datasets. The result shows that the size of GRAIL

is the smallest among almost all datasets. The size of n-reach is

slightly larger than that of PTree but smaller than that of PWAH for

most datasets. Overall, the difference in size is small and affordable

with today’s disk storage size. However, we remark that our index

is mainly designed for processing k-hop reachability queries, and

therefore it is reasonable that it uses more space since more distance

information is required to be indexed.

6.2.2 Performance of Query Processing

To compare the performance of query processing of the various

indexes, we randomly generated 1 million queries. We emphasize

1300



that, as we will explain later in details in Table 8, these queries are

not chosen to favor the performance of our index.

Table 5 reports the total time used to process the 1 million queries

by the different indexes. The memory consumption of query pro-

cessing by the various indexes is roughly the same as their respec-

tive index size.

Table 5: Total running time (elapsed time in milliseconds) of n-

reach, PTree, 3-hop, GRAIL, and PWAH, for processing 1 mil-

lion randomly generated queries (shortest time shown in bold)

n-reach PTree 3-hop GRAIL PWAH

AgroCyc 5.50 17.74 - 135.14 15.68

aMaze 14.39 20.68 28404.20 2982.61 39.71

Anthra 5.39 17.66 - 121.12 14.92

ArXiv 87.86 75.28 - 2032.96 311.55

CiteSeer 115.64 58.28 1225.25 268.33 339.23

Ecoo 5.47 17.73 - 154.41 15.77

GO 27.00 35.77 455.83 113.46 59.10

Human 5.95 28.48 - 300.23 13.35

Kegg 16.27 22.51 - 4030.89 44.52

Mtbrv 5.47 17.48 - 104.15 16.12

Nasa 18.26 23.62 359.16 64.27 43.94

PubMed 39.31 103.44 1198.70 239.40 368.44

Vchocyc 5.49 17.72 - 103.23 16.13

Xmark 14.49 22.02 491.44 245.11 69.78

YAGO 106.25 42.32 705.09 116.43 137.09

The result shows that query processing by n-reach is signifi-

cantly faster than all the other indexes. On average, n-reach is

2.2 times faster than PTree in query processing, but is 7.9 times

faster in index construction (see Table 3). Query processing by n-

reach is also 3.2 times faster than PWAH on average, with slightly

longer indexing time. Compared with GRAIL and 3-hop, n-reach

is a clear winner since the running time of n-reach is up to orders

of magnitude shorter.

6.2.3 Overall Performance

Table 6 gives a ranking on the performance of the various indexes

for both index construction and query processing. Each ranking is

obtained based on the overall ranking of the performance results of

the indexes reported in Tables 3, 4, and 5, respectively.

Table 6: Performance ranking for n-reach, PTree, 3-hop,

GRAIL, and PWAH on indexing time, index size, and query

processing time (1 is the best)

n-reach PTree 3-hop GRAIL PWAH

Indexing time 3 4 5 1 2

Index size 3 2 5 1 4

Querying time 1 2 5 4 3

For index construction, GRAIL is the clear winner. The indexing

performance of n-reach, PTree, and PWAH is comparable overall,

as they are better than the other in indexing time but worse in index

size, and no one is the clear winner among them.

For query processing, n-reach is the clear winner, as Table 3

shows that n-reach is the fastest in almost all cases and on average a

few times faster than PTree and PWAH. The query performance of

GRAIL, however, cannot match up with its indexing performance

and is up to two orders of magnitude slower than n-reach.

Overall, given its reasonable indexing performance, the superior

query performance of n-reach makes it a good choice even for pro-

cessing classic reachability queries, even though the index is pri-

marily designed for processing k-hop reachability queries. This re-

sult is surprising since the processing of k-hop reachability queries

needs to handle some distance information as well and hence is ex-

pected to take longer time. Therefore, the result suggests the effec-

tiveness of our method for indexing graph reachability in general.

6.3 Performance of kReach
In this subsection, we investigate the performance of k-reach

over a range of values of k. We test k = 2, 4, 6, µ, and n, where

µ is the median length of all shortest paths in the corresponding

dataset (see Table 2).

In Section 6.2 we have shown that the construction of the n-reach

index is efficient and competitive with the existing reachability in-

dexes. The construction time and index size of k-reach for other

values of k is only slightly lower. We thus omit the details and

report only the results of query processing by k-reach.

We use the same set of randomly generated queries used in Sec-

tion 6.2. Note that for the same query, s and t, the answer whether

t is reachable from s within k hops may be different for different

values of k.

6.3.1 Performance of Different kReach Indexes,
kHop BFS, and ShortestPath Distance Index

Table 7 reports the total running time of processing the 1 million

queries by k-reach, for k = 2, 4, 6, µ, n. The result shows that the

performance of the different k-reach index is stable with the differ-

ent values of k for all the datasets. Note that the values of k ranging

from 2 to n cover the two extreme ends (k = 1 is trivial since it

only needs to check edge existence). Thus, the result demonstrates

the efficiency of the k-reach index for processing k-hop reachabil-

ity queries of any k.

Table 7: Total running time (elapsed time in milliseconds) of k-

reach for k = 2, 4, 6, µ, n, and µ-BFS and µ-dist for processing

1 million randomly generated queries
2-reach 4-reach 6-reach µ-reach n-reach µ-BFS µ-dist

AgroCyc 5.47 5.49 5.47 5.56 5.50 6666.61 81.32

aMaze 14.38 14.42 14.40 14.39 14.39 9145.64 193.71

Anthra 5.43 5.36 5.36 5.33 5.39 6662.71 73.47

ArXiv 90.08 84.64 87.66 88.84 87.86 17645.10 30391.09

CiteSeer 116.44 117.08 107.72 116.50 115.64 7016.10 1392.21

Ecoo 5.48 5.47 5.50 5.43 5.47 6667.16 78.18

GO 26.99 27.00 26.97 27.00 27.00 6794.95 673.48

Human 5.98 6.02 6.09 6.03 5.95 6756.70 45.42

Kegg 16.16 16.32 16.22 16.12 16.27 9525.80 206.25

Mtbrv 5.49 5.48 5.47 5.46 5.46 6656.73 90.73

Nasa 18.26 18.30 18.24 18.23 18.26 6852.91 554.70

PubMed 39.25 39.37 39.52 39.36 39.31 7301.46 1079.70

Vchocyc 5.49 5.48 5.50 5.46 5.49 6678.73 90.62

Xmark 14.38 14.41 14.46 14.42 14.49 7145.60 132.90

YAGO 113.01 106.41 105.85 101.67 106.25 6723.07 586.10

Since the k-reach index is the first index for processing k-hop

reachability queries, we also show in Table 7 the time taken to pro-

cess the queries by performing BFS for k = µ steps, denoted by

µ-BFS, as well as the state-of-the-art index for processing distance

queries in directed graphs [13], denoted by µ-dist. Note that the

indexes [30, 31] do not work for directed graphs.

The query processing time of µ-BFS and µ-dist is reported here

as a reference only. However, the result does suggest the need of

an index for processing k-hop reachability queries, since µ-reach

is up to three orders of magnitude faster than µ-BFS and up to two
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orders of magnitude faster than µ-dist. Moreover, constructing µ-

dist takes 14 to 81 (average 44.25) times longer than µ-reach, and

uses 2.3 times more space on average.

6.3.2 The Four Categories of Queries

In Algorithm 2 we show that there are four cases in processing a

k-hop reachability query. The complexity analysis in Section 4.2.2

shows that processing a Case 1 query has the lowest time complex-

ity, and processing a Case 4 query is the most costly, while the cost

of processing a Case 2 or 3 query lies in the middle. Thus, we want

to examine whether the queries used in the experiments may favor

the performance of k-reach.

Table 8 reports the percentage of queries in each of the four cases

in Algorithm 2, for the 1 million queries tested. We can see that for

most of the datasets, the majority of the queries are Case 4 queries,

while the minority are Case 1 queries. This distribution is mainly

because the size of the vertex cover is only a small percentage of the

total number of vertices in the graph and hence a randomly selected

vertex has a lower probability being in the vertex cover.

Table 8: Percentage of queries (among the 1 million randomly

generated queries) in each case of Algorithm 2
Case 1 Case 2 Case 3 Case 4

AgroCyc 0.10 2.98 2.96 93.97

aMaze 1.65 11.19 11.23 75.93

Anthra 0.08 2.73 2.79 94.40

ArXiv 41.94 22.79 22.88 12.38

CiteSeer 19.15 24.62 24.62 31.61

Ecoo 0.10 3.02 3.05 93.83

GO 19.18 24.63 24.66 31.53

Human 0.01 0.94 0.96 98.09

Kegg 2.92 14.17 14.21 68.71

Mtbrv 0.15 3.66 3.67 92.52

Nasa 10.80 22.12 22.03 45.05

PubMed 15.12 23.77 23.71 37.40

Vchocyc 0.15 3.65 3.68 92.53

Xmark 4.06 16.08 16.10 63.75

YAGO 1.55 10.96 10.89 76.60

We calculated that, on average, it takes 12 times longer to pro-

cess a Case 4 query than a Case 1 query, and 5 to 6 times longer to

process a Case 2 or Case 3 query than a Case 1 query. Thus, we can

conclude that k-reach is efficient for processing any general k-hop

reachability queries, since our experimental results were not ob-

tained based on queries that were chosen to favor the performance

of our algorithm (i.e., Case 1 queries).

6.4 Performance of (h,k)Reach
In this subsection, we study the tradeoff between indexing cost

and querying cost by using the (h, k)-reach index.

Table 9 first reports the size of the vertex cover and that of the 2-

hop vertex cover (in the first two columns of the table). Considering

that the size of the vertex cover is already small (cf. the sizes of

the datasets in Table 2), the size of the 2-hop vertex cover further

reduces the size considerably. Since the size of these vertex covers

is already very small, the h-hop vertex cover, for h > 2, does not

further reduce the size significantly. Thus, we do not present the

results for h > 2. We also do not report in Table 9 the results of

those datasets whose size reduction is less than 20%.

Table 9 also reports the total running time of both µ-reach and

(2, µ)-reach, for processing 1 million queries. The result shows

that the degradation is acceptable, especially compared with the

Table 9: Sizes of vertex cover and 2-hop vertex cover, and total

query processing time (elapsed time in milliseconds) of µ-reach

and of (2, µ)-reach
Size of Size of 2-hop Query time of Query time of

vertex cover vertex cover µ-reach (2, µ)-reach

AgroCyc 389 298 5.56 21.55

aMaze 477 272 14.39 38.70

Anthra 357 278 5.33 21.32

Ecoo 396 302 5.43 21.56

Kegg 618 343 16.12 41.55

Mtbrv 367 287 5.46 21.66

Nasa 1841 1223 18.23 39.48

Vchocyc 362 277 5.46 21.71

performance of the other indexes shown in the previous experi-

ments. Thus, for large datasets where the index size is a concern,

the (h, k)-reach index may offer a possible recourse.

7. RELATED WORK
A large number of indexes have been proposed for processing

graph reachability queries [2, 3, 5, 6, 7, 14, 15, 16, 17, 19, 23, 24,

26, 27, 28, 29, 32, 34]. We have analyzed these indexes and dis-

cussed why they are not suitable for processing k-hop reachability

queries in Section 3. We have also discussed why the existing in-

dexes for processing shortest-path queries [1, 13, 17, 30, 31] are not

efficient for processing k-hop reachability queries in Section 3.5.

Some other variations of graph reachability have also been pro-

posed. For example, Jin et al. [21] studied distance-constraint

reachability in uncertain graphs where the existence of an edge is

given by a probability, and ask what is the probability that the dis-

tance from s to t is less than or equal to a user-defined threshold

d in an uncertain graph. Their work focuses on designing proba-

bilistic estimators for estimating the probability of reachability. Jin

et al. also proposed constrained graph reachability by requiring

edges on the path to have certain labels [20]. There are also many

other graph indexes proposed such as for processing subgraph [12]

and supergraph [9] queries, which are not applicable for processing

reachability queries.

We are also aware of a recent work that applies the concept of

vertex cover to construct an index for answering single-source dis-

tance queries [8]. They identified the limitation of vertex cover for

processing distance queries and proposed a tree-structured index in

which every node is a graph that keeps distance information. The

k-reach graph has a similar limitation, i.e., it is a complete graph,

if it is used for processing distance queries. However, the k-reach

graph for k-hop reachability is a significantly smaller sparse graph.

Moreover, their index is also too expensive for processing k-hop

reachability queries.

8. CONCLUSIONS
We conclude this paper with a summary of our main contribu-

tions as follows.

• To the best of our knowledge, we are the first to study the

problem of k-hop reachability.

• We proposed an efficient index, k-reach, to process k-hop

reachability queries. The k-reach index is simple in design

and easy to implement. In particular, it can effectively handle

skewed degree distribution in real-world graphs.

• The k-reach index can handle both classic reachability queries

(i.e., the case when k =∞) and k-hop reachability queries.
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• We analyzed the limitations of the existing works in handling

k-hop reachability (see Section 3). We also showed that even

for processing classic reachability queries, k-reach is more

efficient than the state-of-the-art indexes that are tailored for

classic reachability [23, 24, 28, 32].

• Our experimental results also verified the efficiency of k-

reach in answering k-hop reachability queries, for both small

and large values of k, thus demonstrating its suitability for

different real life applications where the value of k may vary.

In particular, we showed that k-reach is up to orders of mag-

nitude faster than k-hop BFS and the shortest-path index [13].

For future work, we plan to study efficient indexing techniques

for processing very large graphs, for which the current index may

give a large index size and may not scale. I/O-efficient algorithms

and parallelization may be necessary to construct indexes for those

large graphs, such as the index for shortest paths as studied in [8].
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