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ABSTRACT

Factorised databases are relational databases that use com-
pact factorised representations at the physical layer to re-
duce data redundancy and boost query performance.

This paper introduces FDB, an in-memory query engine
for select-project-join queries on factorised databases. Key
components of FDB are novel algorithms for query optimi-
sation and evaluation that exploit the succinctness brought
by data factorisation. Experiments show that for data sets
with many-to-many relationships FDB can outperform rela-
tional engines by orders of magnitude.

1. INTRODUCTION
This paper introduces FDB, an in-memory query engine

for select-project-join queries on factorised relational data.
At the outset of this work lies the observation that re-

lations can admit compact, factorised representations that
can effectively boost the performance of relational process-
ing. The relationship between relations and their factorised
representations is on a par with the relationship between
logic functions in disjunctive normal form and their equiva-
lent nested forms obtained by algebraic factorisation.

Example 1. Consider a database of a grocery retailer with
delivery orders, stock availability at different locations, avail-
ability of dispatcher units for each location, and suppliers
with items and locations they supply to (Figure 1).

The queryQ1 returns all orders with their respective items,
possible locations to retrieve them from, and dispatchers
available to deliver them (shown only partially):

Q1 = Order ✶item Store ✶location Disp

oid item location dispatcher

01 Milk Istanbul Adnan
01 Milk Istanbul Yasemin
01 Milk Izmir Adnan
01 Milk Antalya Volkan

. . .

This query result can be expressed as a relational ex-
pression built using singleton relations, union, and product,

whereby each singleton relation 〈v〉 holds one value v, each
tuple is a product of singleton relations, and the relation is
a union of products of singleton relations:

〈01〉 × 〈Milk〉 × 〈Istanbul〉 × 〈Adnan〉∪

〈01〉 × 〈Milk〉 × 〈Istanbul〉 × 〈Yasemin〉∪

〈01〉 × 〈Milk〉 × 〈Izmir〉 × 〈Adnan〉∪

〈01〉 × 〈Milk〉 × 〈Antalya〉 × 〈Volkan〉 ∪ . . .

Amore compact equivalent representation can be obtained
by algebraic factorisation using distributivity of product over
union and commutativity of product and union:

〈Milk〉 × 〈01〉 × (〈Istanbul〉 × (〈Adnan〉 ∪ 〈Yasemin〉)∪

〈Izmir〉 × 〈Adnan〉 ∪ 〈Antalya〉 × 〈Volkan〉)∪

〈Cheese〉 × (〈01〉 ∪ 〈03〉) × (〈Istanbul〉 × (〈Adnan〉 ∪ 〈Yasemin〉)∪

〈Antalya〉 × 〈Volkan〉)∪

〈Melon〉 × (〈02〉 ∪ 〈03〉) × 〈Istanbul〉 × (〈Adnan〉 ∪ 〈Yasemin〉)

This factorised representation has the following structure:
for each item, we construct a union of its orders and a union
of its possible locations with dispatchers. This nesting struc-
ture together with the attribute names form the schema of
the factorised representation, which we call a factorisation
tree, or f-tree for short.

Figure 2 depicts several f-trees; the leftmost one (T1) cap-
tures the nesting structure of the above factorisation. The
second f-tree (T2) is an alternative nesting structure for the
same query result, where for each location, we construct a
union of its items and orders and a union of dispatchers:

〈Istanbul〉 × (〈Milk〉 × 〈01〉 ∪ 〈Cheese〉 × (〈01〉 ∪ 〈03〉)∪

〈Melon〉 × (〈02〉 ∪ 〈03〉)) × (〈Adnan〉 ∪ 〈Yasemin〉)∪

〈Izmir〉 × 〈Milk〉 × 〈01〉 × 〈Adnan〉∪

〈Antalya〉 × (〈Milk〉 × 〈01〉 ∪ 〈Cheese〉 × (〈01〉 ∪ 〈03〉)) × 〈Volkan〉

The factorised result of the query Q2 = Produce ✶supplier

Serve over the f-tree T3 given in Figure 2 is:

〈Guney〉 × (〈Milk〉 ∪ 〈Cheese〉) × 〈Antalya〉∪

〈Dikici〉 × 〈Milk〉 × (〈Istanbul〉 ∪ 〈Izmir〉 ∪ 〈Antalya〉)∪

〈Byzantium〉 × 〈Melon〉 × 〈Istanbul〉 ✷

Factorisations are ubiquitous. They are most known for
minimisation of Boolean functions [9] but can be useful in
a number of read-optimised database scenarios. The sce-
nario we consider in this paper is that of factorising large
intermediate and final results to speed-up query evaluation
on data sets with many-to-many relationships. A further
scenario we envisage is that of compiled databases: these
are static databases, such as databases encoding the human
genome, that can be factorised to efficiently support a par-
ticular scientific workload. In provenance and probabilistic
databases, factorisations of provenance polynomials [12] are
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Orders

oid item

01 Milk
01 Cheese
02 Melon
03 Cheese
03 Melon

Store

location item

Istanbul Milk
Istanbul Cheese
Istanbul Melon
Izmir Milk
Antalya Milk
Antalya Cheese

Disp

dispatcher location

Adnan Istanbul
Adnan Izmir
Yasemin Istanbul
Volkan Antalya

Produce

supplier item

Guney Milk
Guney Cheese
Dikici Milk
Byzantium Melon

Serve

supplier location

Guney Antalya
Dikici Istanbul
Dikici Izmir
Dikici Antalya
Byzantium Istanbul

Figure 1: An example database for a grocery retailer.
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Figure 2: Examples of factorisation trees. From left to right: T1 and T2 for the result of query Q1; T3 and T4

for the result of Q2; T5 is obtained after joining T1 and T4 on item, and T6 is T5 after joining on location.

used for compact encoding of large provenance [18] and for
efficient query evaluation [16, 21]. Factorisations are a natu-
ral fit whenever we deal with a large space of possibilities or
choices. For instance, data models for design specifications,
such as the AND/OR trees [15], are based on incompleteness
and non-determinism and are captured by factorised repre-
sentations. The world-set decomposition formalisms for in-
complete information [4, 17] relies on factorisations of uni-
versal relations encoding very large sets of possible worlds.
Outside data management scenarios, factorised relations can
be used to compactly represent the space of feasible solutions
to configuration problems in constraint satisfaction, where
we need to connect a fixed finite set of given components
so as to meet a given objective while respecting given con-
straints [5].

Factorised representations have several key properties that
make them appealing in the above mentioned scenarios.

They can be exponentially more succinct than the rela-
tions they encode. For instance, a product of n relations
needs size exponential in n for a flat relational result, but
only linear in the size of the input relations for a factorised
result. Recent work has established tight bounds on the size
of factorised query results [19]: For any select-project-join
query Q, there is a rational number s(Q) such that for any
database D, there exists a factorised representation E of
Q(D) with size O(|D|s(Q)), and within the class of repre-
sentations whose structures are given by factorisation trees,
there is no factorisation of smaller size. The parameter s(Q)
is the fractional edge cover number of a particular subquery
of Q, and there are arbitrarily large queries Q for which
s(Q) = 1. Moreover, the exponential gap between the sizes
of E and of Q(D) also holds between the times needed to
compute E and Q(D) directly from the input database D.

Further succinctness can be achieved using dictionary-
based compression and null suppression of data values [20].
Compressing entire vertical partitions of relations as done in
c-store [10] is not considered in our factorisation approach
since it breaks the relational structure.

Notwithstanding succinctness, factorised representations
of query results allow for fast (constant-delay) enumeration
of tuples. More succinct representations are definitely pos-
sible, e.g., binary join decompositions [11] or just the pair
of the query and the database [6], but then retrieving any
tuple in the query result is already NP-hard. Factorised

representations can thus be seen as compilations of query
results that allow for efficient subsequent processing.

By construction, factorised representations reduce redun-
dancy in the data and boost query performance using a mix-
ture of vertical (product) and horizontal (union) data par-
titioning. This goal is shared with a large body of work on
normal forms [2] and columnar stores [8] that considers join
(or general vertical) decompositions, and with partitioning-
based automated physical database design [3, 14]. In the
latter case, the focus is on partitioning input data such that
the performance of a particular workload is maximised.

Finally, factorised representations are relational algebra
expressions and factorisation trees are nested join depen-
dencies. Their relational nature sets them apart from XML
documents, object-oriented databases, and nested objects,
where the goal is to avoid the rigidity of the relational model.
Moreover, in our setting, a query result can admit several
equivalent factorised representations and the goal is to find
one of small size. The Verso project [1] and earlier work on
compacted relations [7] pointed out compactness and mod-
elling benefits of non-first-normal-form relations and consid-
ered hierarchical data representations that are special cases
of factorised representations. These works did not focus on
the search for factorisations of small sizes.

A factorised database presents relations at the logical layer
but uses succinct factorised representations at the physical
layer. The FDB query engine can thus not only compute
factorised query results for input relational databases, but
can evaluate queries directly on input factorised databases.

Example 2. Consider now the query Q1 ✶location,item Q2

on factorised representations: Find possible suppliers of or-
dered items. Joining the above factorisations over the f-trees
T1 and T3 on the attributes location and item is not imme-
diate, since tuples with equal values for location and item
appear scattered in the factorisation over T3. If we restruc-
ture the factorisation of Q2’s result to follow the f-tree T4 so
that tuples are grouped by item first, we obtain

〈Milk〉 × (〈Guney〉 × 〈Antalya〉∪

〈Dikici〉 × (〈Istanbul〉 ∪ 〈Izmir〉 ∪ 〈Antalya〉))

〈Cheese〉 × 〈Guney〉 × 〈Antalya〉∪

〈Melon〉 × 〈Byzantium〉 × 〈Istanbul〉,

which can be readily joined with the factorisation over T1

on the attribute item, since both factorisations have items

1233



as topmost values. The factorisation of the join on item
follows the f-tree T5, where we simply merged the roots of
the two f-trees. An excerpt of this factorisation is

〈Milk〉 × 〈01〉 × (〈Istanbul〉 × (〈Adnan〉 ∪ 〈Yasemin〉)∪

〈Izmir〉 × 〈Adnan〉 ∪ 〈Antalya〉 × 〈Volkan〉)

× (〈Guney〉 × 〈Antalya〉∪

〈Dikici〉 × (〈Istanbul〉 ∪ 〈Izmir〉 ∪ 〈Antalya〉)) ∪ . . . ,

To perform the second join condition on location, we first
rearrange for each item the subexpression for suppliers and
locations, so that it is grouped by locations as opposed to
suppliers. This amounts to swapping supplier and location
in T5. The join on location can now be performed between
the possible locations of each item. The obtained factorisa-
tion follows the schema T6 in Figure 2. ✷

Examples 1 and 2 highlight challenges involved in com-
puting factorised representations of query results.

Firstly, a query result may have different (albeit equiv-
alent) factorised representations whose sizes can differ by
an exponential factor. We seek f-trees that define succinct
representations of query results for input (flat or factorised)
databases. Such f-trees can be statically derived from the
query and the input schema and are independent of the
database content. Query optimisation thus has to consider
two objectives: minimising the cost of computing a fac-
torised query result and minimising the size of this output
representation. In addition to the standard query operators
selection, projection, and product, the search space for a
good query and factorisation plan, or f-plan for short, needs
to consider specific operators for restructuring schemas and
factorisations. We propose two such operators: a swap op-
erator, which exchanges a given child with its parent in an
f-tree, and a push-up operator, which moves an entire sub-
tree up in the f-tree. For instance, the swap operator is used
to transform the f-tree T3 into T4 in Figure 2. The selection
operator is used to merge the item nodes in the f-trees T1 and
T4 and create the f-tree T5. The transformation of T5 into
T6, which corresponds to a join on location, needs a swap of
supplier and location and a merge of the two location nodes.

Secondly, we would like to compute the factorised result
as efficiently as possible. This means that we must avoid
the computation of intermediate results in flat form. Our
query engine has algorithms for each f-plan operator (se-
lection, projection, product, swap, push-up) that use time
quasilinear in the sizes of input and output representations.

The main contributions of this paper are as follows:

• We introduce exhaustive and heuristic optimisations
for finding f-plans that compute factorised results for
select-project-join (aka conjunctive) queries.

As cost metric, we use selectivity and cardinality esti-
mates and a compile-time parameter that defines tight
bounds on the sizes of factorised results.

• We describe efficient algorithms for the evaluation of
each f-plan operator on factorised data.

• The optimisation and evaluation algorithms have been
implemented in the FDB in-memory query engine.

• We report on an extensive experimental evaluation
showing that FDB can outperform a home-bred in-
memory and two open-source (SQLite and PostgreSQL)
relational query engines by orders of magnitude.

2. F-REPRESENTATIONS AND F-TREES
We next recall the notions of factorised representations

and factorisation trees, as well as results on tight size bounds
for factorised representations over factorisation trees [19].
Factorised representations of relations are algebraic ex-
pressions constructed using singleton relations and the rela-
tional operators union and product.

Definition 1. A factorised representation E, or f-represen-
tation for short, over a set S of attributes and domain D is
a relational algebra expression of the form

• ∅, the empty relation over schema S ;
• 〈〉, the relation consisting of the nullary tuple, if S = ∅;
• 〈A :a〉, the unary relation with a single tuple with value
a, if S = {A} and a is a value in the domain D;

• (E), where E is an f-representation over S ;
• E1 ∪ · · · ∪ En, where each Ei is an f-representation

over S ;
• E1 × · · · × En, where each Ei is an f-representation

over Si and S is the disjoint union of all Si.

An expression 〈A :a〉 is called an A-singleton and the ex-
pression 〈〉 is called the nullary singleton. The size |E| of an
f-representation E is the number of singletons in E.

Any f-representation over a set S of attributes can be in-
terpreted as a database over schema S . Example 1 gives sev-
eral f-representations, where singleton types are dropped for
compactness reasons. For instance, 〈Istanbul〉 ×(〈Adnan〉 ∪
〈Yasemin〉) represents a relation with schema {location, dis-
patcher} and tuples (Istanbul,Adnan), (Istanbul,Yasemin).

F-representations form a representation system for rela-
tional databases. It is complete in the sense that any databa-
se can be represented in this system, but not injective since
a database may have different f-representations. The space
of f-representations of a database is defined by the distribu-
tivity of product over union. Under the RAM model with
uniform cost measure, the tuples of a given f-representation
E over a set S of attributes can be enumerated with O(|S|)
additional space and delay between successive tuples.
Factorisation trees define classes of f-representations over
a set of attributes and with the same nesting structure.

Definition 2. A factorisation tree, or f-tree for short, over
a schema S of attributes is an unordered rooted forest with
each node labelled by a non-empty subset of S such that
each attribute of S labels exactly one node.

Given an f-tree T , an f-representation over T is recursively
defined as follows:

• If T is a forest of trees T1, . . . , Tk, then

E = E1 × · · · × Ek

where each Ei is an f-representation over Ti.
• If T is a single tree with a root labelled by {A1, . . . , Ak}

and a non-empty forest U of children, then

E =
⋃

a〈A1 :a〉 × · · · × 〈Ak :a〉 ×Ea

where each Ea is an f-representation over U and the
union

⋃

a is over a collection of distinct values a.
• If T is a single node labelled by {A1, . . . , Ak}, then

E =
⋃

a〈A1 :a〉 × · · · × 〈Ak :a〉.

• If T is empty, then E = ∅ or E = 〈〉.
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Attributes labelling the same node in T have equal val-
ues in the represented relation. The shape of T provides
a hierarchy of attributes by which we group the tuples of
the represented relation: we group the tuples by the values
of the attributes labelling the root, factor out the common
values, and then continue recursively on each group using
the attributes lower in the f-tree. Branching into several
subtrees denotes a product of f-representations over the in-
dividual subtrees. Examples 1 and 2 give six f-trees and
f-representations over them.

For a given f-tree T over a set S of attributes, not all
relations over S have an f-representation over T . However,
if a relation admits an f-representation over T , then it is
unique up to commutativity of union and product.

Example 3. The relation R = {〈1, 1〉, 〈1, 2〉, 〈2, 2〉} over
schema {A,B} does not admit an f-representation over the
forest of f-trees {A} and {B}, since there are no sets of
values a and b such that R is represented by (

⋃

a〈A :a〉) ×
(
⋃

b〈B :b〉). Its f-representation over the f-tree with root A
and child B is 〈A :1〉 × (〈B :1〉 ∪ 〈B :2〉) ∪ 〈A :2〉 × 〈B :2〉.✷

For any f-tree T that is a path of nodes each labelled by
one attribute of a schema S , any relation over S has an f-
representation over T . Given a flat relation R over S , it is
sufficient to sort R by its attributes following the root-to-leaf
order in T , and group its tuples by the root attribute first,
then by its child, and so on, to obtain an f-representation of
R over T in time O(|S| · |R| · log |R|). Conversely, since the
tuples of any f-representation can be enumerated with delay
O(|S|), we can retrieve R in time O(|S| · |R|). Therefore, f-
representations over f-trees allow for fast conversion to and
from flat relations.
F-trees of a query. Given a query Q = πPσϕ(R1 × · · · ×
Rn), we can derive the f-trees that define factorisations of
the query result Q(D) for any input database D, which we
call f-trees of Q. We consider f-trees where nodes are labelled
by equivalence classes of attributes in P . The equivalence
class of an attribute A is the set of A and all attributes
transitively equal to A in ϕ.

The f-trees need to satisfy a so-called path constraint: all
dependent attributes can only label nodes along a same root-
to-leaf path. The attributes of a relation are dependent,
since in general we cannot make any independence assump-
tion about the structure of a relation, cf. Example 3. At-
tributes from different relations can also be dependent: if
we join two relations, then their non-join attributes are in-
dependent conditioned on the join attributes, but if these
join attributes are not in the projection list P , then the
non-join attributes of these relations become dependent.

The path constraint is key to defining which f-trees rep-
resent valid nesting structures for factorised query results.

Proposition 1. Given a query Q, an f-tree T is an f-tree
of Q if and only if it satisfies the path constraint.

Tight size bounds for f-representations over f-trees.
Given any f-tree T , we can derive tight bounds on the size
of f-representations over T in polynomial time. We next
sketch our approach to finding such bounds; a full treatment
is given in prior work [19].

For any root-to-leaf path p in T , consider the hypergraph
whose nodes are the attributes classes of nodes in p and
whose edges are the relations containing these attributes.

The edge cover number of p is the minimum number of edges
necessary to cover all nodes in p. We can lift edge covers
to their fractional version in which the edges are assigned
non-negative rational weights so that each node is covered
by edges with total weight at least 1. The fractional edge
cover number of p is then the minimum sum of weights of
all edges necessary to cover all nodes in p [13].

For an f-tree T , we define s(T ) as the maximum such
fractional edge cover number of any root-to-leaf path in T .

Example 4. Each f-tree T except for T3 in Figure 2 has
s(T ) = 2, while s(T3) = 1. In T3, both root-to-leaf paths
supplier−item and supplier−location can be covered by assign-
ing weight 1 to relations Produce and Serve respectively. ✷

For any databaseD and f-tree T , the size of the f-represen-
tation of the query result over T is at most |P| · |D|s(T ),
and there exist arbitrarily large databases D for which the
size of the f-representation over T is at least (|D|/|Q|)s(T ).
Moreover, given D and T , the f-representation of the query

result over T can be computed in time O(|Q|·|T̂ |·|D|s(T̂ )+1),

where T̂ is an extension of T with nodes for all attributes of
the input schema and not only those in the projection list.
The parameter s(T ) thus dictates the asymptotic size of f-
representations over T , and provides an important quality
measure for f-trees. The f-trees with smallest s(T ) produce
most succinct f-representations. They can be obtained by
decreasing the length of root-to-leaf paths or equivalently by
increasing branching while preserving the path constraint.

We next define s(Q) as the minimal s(T ) over all f-trees T
of Q. Then, for any database D, there is an f-representation
of Q(D) with size at most |P|·|D|s(Q), and this is asymptoti-
cally the best upper bound for f-representations over f-trees.

Example 5. In Example 1, we have s(Q1) = 2 since Q1

admits no f-tree with s(T ) < s(T1) = 2. However, s(Q2) =
1, since T3 is an f-tree of Q2 and s(T3) = 1. ✷

The size bound |P| · |D|s(Q) can be asymptotically smaller
than the size of the query result Q(D). For such queries,
computing and representing their result in factorised form
can bring exponential time and space savings in comparison
to the traditional flat representation as a set of tuples.

3. QUERY EVALUATION
In this section we present a query evaluation technique on

f-representations. We propose a set of operators that map
between f-representations over f-trees. In addition to the re-
lational operators select, project, and Cartesian product, we
introduce new operators that can restructure f-representati-
ons and f-trees. Restructuring is sometimes needed before
projections and selections, as exemplified in the introduc-
tion. Any select-project-join query can be evaluated by a
sequential composition of operators called an f-plan.

We consider f-representations over f-trees as defined in
Section 2. F-trees conveniently represent the structure of
factorisations as well as attributes and equality conditions
on the attributes. An f-tree uniquely determines (up to com-
mutativity of ∪ and ×) the f-representation of a given rela-
tion. Therefore, the semantics of each of our operators may
be described solely by the transformation of f-trees T 7→ T ′.
We also present efficient algorithms to carry out the transfor-
mations on f-representations. These algorithms are almost
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T0 C1

T1 · · ·

· · · Ck

Tk

(a) push-up ψB (b) swap χA,B (c) merge µA,B (d) absorb αA,B (w/o full normalisation)

Figure 3: Transformations performed by f-plan operators depicted on f-trees.

optimal in the sense that they need at most quasilinear time
in the sizes of both input and output f-representations.

Proposition 2. The time complexity of each f-plan op-
erator is O(|T |2N logN), where N is the sum of sizes of the
input and output f-representations and T is the input f-tree.

We assume that for any union expression
⋃

a in the input
f-representations, the values a occur in increasing order, and
that the path constraint holds for the input f-tree. Our
algorithms preserve these two constraints.

We also introduce the notion of normalised f-trees, whose
f-representations cannot be further compacted by factoring
out subexpressions. We define an operator for normalising
f-trees, and all other operators expect normalised input f-
trees and preserve normalisation.

3.1 Restructuring Operators
The Normalisation Operator factors out expressions co-
mmon to all terms of a union. We first present a simple
one-step normalisation captured by the push-up operator
ψB, and then normalise an f-tree by repeatedly applying the
push-up operator bottom-up to each node in the f-tree.

Consider an f-tree T , a node A and its child B in T . If A
is not dependent on B nor on its descendants, the subtree
rooted at B can be brought one level up (so that B becomes
sibling of A) without violating the path constraint. Propo-
sition 1 guarantees that there is an f-representation over the
new f-tree. Lifting up a node can only reduce the length
of root-to-leaf paths in T and thus decrease the parameter
s(T ) and the size of the f-representation, cf. Section 2. The
transformation only alters the structure of the factorisation,
the represented relation remains unchanged.

Figure 3(a) shows the transformation of the relevant frag-
ment of T , where TA and TB denote the subtrees under A
and B. F-representations over this fragment have the form

Φ1 =
⋃

a

(

〈A :a〉 × (
⋃

b 〈B :b〉 × Fb)× Ea

)

and change into

Φ2 = (
⋃

b 〈B :b〉 × Fb)× (
⋃

a 〈A :a〉 × Ea),

where each Ea is over TA, each Fb is over TB, and 〈A :a〉
stands for 〈A1 :a〉 × · · · × 〈An :a〉 in case A1 to Ak are the
attributes labelling node A; the case of 〈B :b〉 is similar.
Since neither B nor any node in TB depend on A, all copies
of (

⋃

b 〈B :b〉 × Fb) in Φ1 are equal, so the transformation
amounts to factoring out subexpressions over the subtree
rooted at B. In any f-representation over T , the change

shown above occurs for all unions over A, and can be exe-
cuted in linear time in one pass over the f-representation.

Definition 3. An f-tree T is normalised if no node in T
can be pushed up without violating the path constraint.

Any f-tree T can be turned into a normalised one as fol-
lows. We traverse T bottom up and push each node B and
its subtree upwards as far as possible using the operator ηB.
In case a node A is pushed up, we mark it so that we do not
consider it again. If it is marked, so are all the nodes in its
subtree, and at least one of them is dependent on the parent
of A (or A is a root). The parent of A and the subtree of A
do not change anymore after A is marked, so A cannot be
brought upwards again. All nodes are marked after at most
|T |2 applications of the push-up operator, so the resulting f-
tree is normalised. Since the size of the f-representation over
T decreases with each push-up, the time complexity of nor-
malising an f-representation is linear in the size of the input
f-representation. This procedure defines the normalisation
operator η. In the remainder we only consider normalised
f-trees and operators that preserve normalisation.

Example 6. Let us normalise the left f-tree below with
relations over schemas {A,B}, {B′, C}, {C′, D}, {D′, E}.

B,B′

A

D,D′

C,C′

E

7→ B,B′

A

D,D′

E C,C′

7→ B,B′

D,D′

E C,C′

A

The above transformation is obtained by ψE followed by
ψ{D,D′}. We can bring up E since it is not dependent on
its parent in the left f-tree. We then mark E. We also mark
{C,C′}, since it cannot be brought upwards. The lowest
unmarked node is now {D,D′}. It can be brought upwards
next to its parent A since A is not dependent on it nor on
any of its descendants. The resulting f-tree is normalised.✷

The Swap Operator χA,B exchanges a node B with its
parent node A in T while preserving the path constraint
and normalisation of T . We promote B to be the parent
of A, and also move up its children that do not depend
on A. The effect of the swapping operator χA,B on the
relevant fragment of T is shown in Figure 3(b), where TB

and TAB denote the collections of subtrees under B that do
not depend, and respectively depend, on A, and TA denotes
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foreach expression Sin over the part of T in Figure 3(b) do

create a new union Sout

let Q be a min-priority-queue

foreach 〈A :a〉 × Ea ×
⋃

b (〈B :b〉 × Fb ×Gab) in Sin do

let Ua be the union
⋃

b (〈B :b〉 × Fb ×Gab)

let pa be the first value b in the union Ua

insert value a with key pa into Q

while Q is not empty do

let bmin be the minimum key in Q

create a new union Vbmin

foreach a in Q with key bmin do

append 〈A :a〉 ×Ea ×Gab to Vbmin

remove a from Q

if pa is not the last value in Ua then

update pa to be the next value b in the union Ua

insert value a with key pa into Q

append 〈B :bmin〉 × Fbmin
× Vbmin

to Sout

replace Sin by Sout

Figure 4: Algorithm for the swap operator χA,B.

the subtree under A. Separate treatment of the subtrees TB

and TAB is required so as to preserve the path constraint
and normalisation. The resulting f-tree has the same nodes
as T and the represented relation remains unchanged.

Any f-representation over the relevant part of the input
f-tree T in Figure 3(b) has the form

⋃

a

(

〈A :a〉 × Ea ×
⋃

b (〈B :b〉 × Fb ×Gab)
)

,

while the corresponding restructured f-representation is
⋃

b

(

〈B :b〉 × Fb ×
⋃

a (〈A :a〉 × Ea ×Gab)
)

.

The expressions Ea, Fb and Gab denote the f-representati-
ons over the subtrees TA, TB and respectively TAB.

The swap operator χA,B thus takes an f-representation
where data is grouped first by A then B, and produces an
f-representation grouped by B then A. Figure 4 gives an
algorithm for χA,B that executes this regrouping efficiently.
We use a priority queue Q to keep for each value a of at-
tributes in A the minimal values b of attributes in B. This
minimal value occurs first in the union Ua due to the order
constraint of f-representations. We then extract the values
b from the priority queue Q in increasing order to construct
the union over them, and for each of them we obtain the
pairing values a. When a value a is removed from Q, we
insert it back into Q with the next value b in its union Ua.

Except for the operations on the priority queue, the total
time taken by the algorithm in any given iteration of the out-
ermost loop is linear in the size of the input Sin plus the size
of the output Sout. For each a in Sin and b in Ua, the value
a is inserted into the queue with key b once and removed
once. There are at most |Sin| such pairs (a, b) and each of
the priority queue operations runs in time O(log |Sin|).

Example 7. The tree T1 in Figure 2 is transformed into
T2 by the operator χitem,location. The effect of the operator
on the f-representation amounts to regrouping it primarily
by location instead of item, as illustrated in Example 1. ✷

3.2 Cartesian Product Operator
Given two f-representations E1 and E2 over disjoint sets of

attributes, the product operator × yields the f-representation

E = E1 × E2 over the union of the sets of attributes of E1

and E2 in time linear in the sum of the sizes of E1 and E2.
If T1 and T2 are the input f-trees, then the resulting f-tree is
the forest of T1 and T2. It is easy to check that the relation
represented by E is indeed the product of the relations of
E1 and E2, and that this operator preserves the constraints
on order of values, path constraint, and normalisation.

3.3 Selection Operators
We next present operators for selections with equality con-

ditions of the form A = B. Since equality joins are equiva-
lent to equality selections on top of products, and the prod-
uct of f-representations is just their concatenation, we can
evaluate equality joins in the same way as equality condi-
tions on attributes of the same relation, and do not distin-
guish between these two cases in the sequel.

If both attributes A and B label the same node in T ,
then by construction of T the two attributes are in the same
equivalence class, and hence the condition A = B already
holds. If A and B are two distinct nodes labelled by A and
B respectively in an f-tree T , the condition A = B implies
that A and B should be merged into a single node labelled
by the union of the equivalence classes of A and B.

We propose two selection operators: the merge operator
µA,B, which can only be applied in case A and B are sibling
nodes in T , and the absorb operator αA,B, which can only be
applied in case A is an ancestor of B in T . For all other cases
of A and B in T , we first need to apply the swap operator
until we transform T in one of the above two cases. The
reason for supporting these selection operators only is that
they are simple, atomic, can be implemented very efficiently,
and any selection can be expressed by a sequence of swaps
and selection operators. We next discuss them in depth.

The Merge Selection Operator µA,B merges the sibling
nodes A and B of T into one node labelled by the attributes
of A and B and whose children are those of A and B, see
Figure 3(c). This operator preserves the path constraint,
since the root-to-leaf paths in T are preserved in the result-
ing f-tree. Also, normalisation is preserved: merging two
nodes of a normalised f-tree produces a normalised f-tree.
To preserve the value order constraint, node merging is im-
plemented as a sort-merge join. Any f-representation over
the relevant part of T has the form

Φ1 = (
⋃

a 〈A :a〉 × Ea)× (
⋃

b 〈B :b〉 × Fb),

and change into

Φ2 =
⋃

a:a=b 〈A :a〉 × 〈B :b〉 ×Ea × Fb,

where the union in Φ2 is over the equal values a and b of the
unions in Φ1. An algorithm for µA,B needs one pass over the
input f-representation to identify expressions like Φ1, and for
each such expression it computes a standard sort-merge join
on the sorted lists of values of these unions.

Example 8. Consider an f-tree that is the forest of T1 and
T4 from Figure 2. The two attributes with the same name
item are siblings (at the topmost level). By merging them,
we obtain the f-tree T5. Example 1 shows f-representations
over the input and output f-trees of this merge operation.✷

The Absorb Selection Operator αA,B absorbs a node B
into its ancestor A in an f-tree T , and then normalises the
resulting f-tree. The labels of B become now labels of A.
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The absorption of B into A preserves the path constraint
since all attributes in B remain on the same root-to-leaf
paths. By definition, the absorb operator finishes with a
normalisation step, thus it preserves the normalisation con-
straint. Similar to the merge selection operator, it employs
sort-merge join on the values of A and B and hence creates
f-representations that satisfy the order constraint.

In any f-representation, each union over B is inside a union
over its ancestor A, and hence inside a product with a partic-
ular value a of A. Enforcing the constraint A = B amounts
to restricting each such union over B by B = a, by which
it remains with only one or zero subexpression. This can
be executed in one pass over the f-representation, and needs
linear time in the input size. The subsequent normalisation
also takes linear time. Both the absorption and the normali-
sation only decrease the size of the resulting f-representation.

To normalise the f-tree after absorbing B into A, we use
the normalisation operator η. If the original tree was nor-
malised, it is sufficient to push up the subtrees of B as shown
in Figure 3(d), and possibly also push up some of the nodes
C1, . . . , Ck on the path between A and B.

Example 9. Consider the selection A = C on the leftmost
f-tree below with relations over schemas {A,B}, {B′, C} and
{C′, D}. Since A and C correspond to ancestor and respec-
tively descendant nodes, we can use the absorb operator to
enforce the selection. When absorbing {C,C′} into A (mid-
dle f-tree), the nodes {B,B′} and D become independent
and D can be pushed upwards (right f-tree):

A

B,B′

C,C′

D

7→ A,C,C′

B,B′

D

7→ A,C,C′

B,B′ D

✷

The Selection with Constant Operator σAθc can be
evaluated in one pass over the input f-representation E.
Whenever we encounter a union

⋃

a(〈A :a〉 × Ea) in E, we
remove all expressions 〈A :a〉 × Ea for which a¬θc. If the
union becomes empty and appears in a product with an-
other expression, we then remove that expression too and
continue until no more expressions can be removed. In case
θ is an equality comparison, then all remaining A-values are
equal to c and we can factor out the singleton 〈A :c〉.

For a comparison θ different from equality, the f-tree re-
mains unchanged. In case of equality, we can infer that all
A-values in the f-representation are equal to c and thus the
node A labelled by A is independent of the other nodes in
the f-tree and can be pushed up as the new root. When
computing the parameter s(T ), we can ignore A since the
only f-representation over it is the singleton 〈A :c〉.

3.4 Projection Operator
We define a projection operator π−A, which projects away

the attribute A, i.e., it acts as a projection πS\{A} on the
represented relation of schema S . A relational projection
πP can be evaluated by a sequence of projection operators,
one for each attribute in S \ P .

In an f-representation E, π−A replaces all A-singletons
〈A :a〉 with the nullary singleton 〈〉. Subsequently, any union
of nullary singletons is replaced by one nullary singleton and
any nullary singleton in a product with other singletons is

removed from E. This procedure can be performed in one
scan over the input f-representation E and trivially preserves
the order constraint. In the corresponding f-tree T , π−A

removes the attribute A. If there is no further attribute
labelling the node of A, we also remove that node.

We only permit the operator π−A when there are further
attributes labelling the node of A or when A labels a leaf. By
removing this node, any two attributes B and C previously
dependent on A now become dependent on each other. If A
is a leaf, such attributes lie on a path from A to root, and
the path constraint is thus preserved. If A is at an inner
node, then B and C may be on different branches under A
and the path constraint is violated. In this latter case, π−A

is therefore not permitted and the f-representation must be
first restructured using the swap operator.

4. QUERY OPTIMISATION
In this section, we discuss the problem of query optimisa-

tion for queries on f-representations. In addition to the op-
timisation objective present in the standard (flat) relational
case, namely finding a query plan with minimal cost, the
nature of factorised data calls for a new objective: from the
space of equivalent f-representations for the query result, we
would like to find a small, ideally minimal, f-representation.

The operators described in Section 3 can be composed
in f-plans that implement select-project-join queries on f-
representations over f-trees. Several f-plans may exist for
a given query. In this section we introduce different cost
measures for f-plans and algorithms for finding optimal ones.

The products and selections with constant are the cheap-
est and can be evaluated first. Projections can always be
evaluated last, but evaluating a projection earlier (if per-
mitted) may speed up subsequent operators. Most expen-
sive are the equality selection operators and the restructur-
ing operators that make selections and projections possible.
Their evaluation order is addressed in this section.

A selection A = B can only be executed on an f-representa-
tion over an f-tree T if the attributes A and B label nodes
A and respectively B that are either the same, siblings, or
along a same path in T . Otherwise, we first need to trans-
form the f-representation. If A and B are in the same tree,
we can e.g. repeatedly swap A with its parent until it be-
comes an ancestor of B. Alternatively, we can push up both
A and B until they become siblings (or both roots in sepa-
rate f-trees). To complete the evaluation, we apply a merge
or absorb selection operator on the two nodes A and B.

There are several choices involved in the search for a good
f-plan: For each selection, should we transform the input f-
tree, and consequently the f-representation, such that the
nodes A and B become siblings or one the ancestor of the
other? Is it better to push upA or B? What is the effect of a
transformation for one selection on the remaining selections?
What should the relative order of selections and projections
be? Finally, if the input is given in flat form, which initial f-
tree is best for its conversion into an f-representation? The
aim of FDB’s optimiser is to find an f-plan for the given
query such that the maximal cost of the sequence of trans-
formations is low and the query result is well-factorised.

4.1 Cost of an F-Plan
We next define two cost measures for f-plans. One mea-

sure is based on the parameter s(T ) that defines size bounds
on factorisations over f-trees for any input database. The

1238



second measure is based on cardinality estimates inferred
from the intermediate f-trees and on the database catalogue
with information on relation sizes and selectivity estimates.
Both measures can be used by the exhaustive search pro-
cedure and the greedy heuristic for query optimisation pre-
sented later in this section.
Cost Based on Asymptotic Bounds. As discussed in
Section 2, the size of any f-representation over an f-tree T
depends exponentially on the parameter s(T ), i.e., its size is

in O(|D|s(T )). Since the cost of each operator is quasilinear
in the sum of sizes of its input and output, the parameter
s(T ) dictates this cost. For an f-plan f = ω1, . . . , ωk that
performs the following sequence of transformations:

Tinitial = T0
ω17→ T1

ω27→ . . .
ωk7→ Tk = Tfinal,

the evaluation time is O(|D|s(f) · log |D|), where

s(f) = max(s(T0), s(T1), . . . , s(Tk)).

The sizes of the intermediate f-representations thus dom-
inate the execution time. Using this cost measure, a good
f-plan is one whose intermediate f-trees Ti have small s(Ti).

In defining a notion of optimality for f-plans, we would like
to optimise for two objectives, namely minimise the f-plan
cost s(f) and the cost of the final result s(Tfinal). However, it
might not be possible to optimise for both objectives <s(f)

and <s(T ) at the same time. Instead, we prioritise s(f)
over s(Tfinal) and use the lexicographic order <s(f) × <s(T )

on f-plans: given f-plans f1 and f2, we consider f1 better
than f2 and write f1 <s(f) × <s(T ) f2 if either (1) the
most expensive operator in f1 is less expensive than the
most expensive operator in f2, or (2) their most expensive
operators have the same cost but the cost of the result is
smaller for f1. An f-plan f1 for a query Q is optimal if there
is no other f-plan f2 for Q such that f2 <s(f) × <s(T ) f1.

This notion of optimality is over f-plans consisting of op-
erators defined in Section 3. Since these operators preserve
f-tree normalisation, this also means that we consider opti-
mality only over the space of possible normalised f-trees.

Example 10. Consider the following f-plan evaluating the
selection B = F on the leftmost f-tree, with dependencies
{A,B,C} and {D,E, F}.

A,D

B

C

E

F

χ{A,D},B
7→ B

A,D

C E

F

αB,F
7→ B,F

A,D

C E

The input f-tree and the output f-tree have both cost 1, as
each root-to-leaf path is covered by a single relation. How-
ever, the intermediate f-tree has cost 2 (as on the path from
B to F each of B and F must be covered by a separate re-
lation), so the cost of the f-plan is 2. An alternative f-plan
starts by swapping F with its parent to obtain an interme-
diate f-tree with cost 1, and then merges F with B.

A,D

B

C

E

F

χE,F
7→ A,D

B

C

F

E

µB,F
7→ A,D

B,F

C E

Although both f-plans result in an f-tree with cost 1, the
latter f-plan has cost 1 while the former has cost 2. ✷

Cost Based on Estimates. We can also estimate the
cost of an f-plan using cardinalities and join selectivities for
the input f-representation E. One approach is to keep car-
dinalities and selectivities for the relation RE represented
by E, in which case we fall back to relational catalogues.
A different approach would take advantage of the condi-
tional independence of attributes, as specified by the input
f-tree, to more accurately record join selectivities and cardi-
nalities (e.g., how many A-singletons are in average under a
B-singleton). This latter approach is subject to future work.

Given a query Q on the input f-representation E, we can
estimate the size of the f-representation F of the query re-
sult over an f-tree T as follows. Let RF be the relation
represented by F , i.e., RF = Q(RE). The number of A-
singletons in F is equal to the size of the relation πpath(A)RF ,
where path(A) is the set of attributes along the path from
the root to the node of A in T [19]. The cardinality of
πpath(A)RF = πpath(A)(Q(RE)) can now be computed us-
ing known techniques for relational databases, or alterna-
tively using factorisation-aware cardinalities and selectivi-
ties as mentioned above. The size of the f-representation
of Q(RE) over T is then estimated as

∑

A∈P |πpath(A)RF |,
where P is the projection list of Q, and the cost e(f) of an
f-plan f can be estimated as the sum of the size estimates
for the intermediate and final f-trees created by f .

4.2 Exhaustive Search
To find an optimal f-plan for a select-project-join query

we search the space of all possible normalised f-trees and
all possible operators between the f-trees. We represent this
space by a directed graph where f-trees are nodes and op-
erators are edges. Given a query Q on an input over an
f-tree Tin, any f-plan for Q is represented by a path from
Tin to an f-tree Tfinal of Q, i.e., such that the equivalence
classes of Tfinal are the classes of Tin extended by Q’s equal-
ity conditions and restricted to Q’s projection list. In the
case of flat input, instead of one possible initial f-tree Tin,
there is a set of possible choices for the initial f-tree of the
f-representation of the input, namely all paths of nodes la-
belled by single attributes of the input schema.

Both the asymptotic cost function and the cost estimate
for f-plans define a distance function on the space of f-trees:
the distance from T1 to T2 is the minimum possible cost of
an f-plan from T1 to T2. We are thus searching for f-trees
Tfinal of Q, which (1) are closest to Tin and (2) have the
smallest possible cost. An optimal f-plan is then a shortest
path from Tin to a Tfinal with smallest cost. We can use
Dijkstra’s algorithm to find distances from Tin to all f-trees:
we explore the space starting with Tin using all allowed op-
erators, processing the reached f-trees in order of increasing
distance to Tin. Then, among all f-trees Tfinal of Q with
the shortest distance to Tin, we pick one with smallest cost.

The complexity of the search is determined by the size of
the search space. By successively applying operators to Tin,
we rearrange its nodes (swap) or modify the nodes (merge,
absorb, projection). For each partition of attributes over
nodes, there is a cluster of f-trees with the same nodes but
different shape, among which we can move using the swap
operator. By applying a merge or absorb operator, we move
to a cluster whose f-trees have one fewer node. By applying
a projection, we move to a cluster whose f-trees have one at-
tribute less and possibly one node less. Consider a query on
an input schema of n attributes with k equality conditions
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Figure 5: Experiment 1 (left and centre): Query optimisation on flat data, K equalities on R relations with
A = 40 attributes. Experiment 2 (right): Query optimisation on factorised data, L equalities on f-tree with K
equalities, time performance of full search (slower, top series) and greedy optimiser (faster, bottom series).

and n−p attributes in the projection list. Any valid sequence
of operators contains at most k of the at most

(

k+1
2

)

≤ k2

possible merge or absorb operators, and any of the p projec-
tion operators. Since all sequences with the same operators
(though in different orders) end up in the same cluster, we
have O(k2k2p) reachable clusters. In a cluster with m nodes
there are at most mm f-trees, and since m,k, p ≤ n, the size
of the search space is O(k2k2pnn) = O(n4n).

4.3 Greedy Heuristic
Our greedy optimisation algorithm restricts the search

space for f-plans in two dimensions: (1) it only applies re-
structuring operators to nodes that participate in selections
and projections, and (2) it considers a greedy approach to
selection and projection ordering, whereby at each step it
chooses an operator with the least cost. In case of flat input,
the initial f-tree is chosen as any path of nodes labelled by
the attributes in the input schema such that the attributes
participating in selections form a prefix of the path and the
attributes that do not participate in selections and are not
in the projection list form a suffix of the path.

The algorithm constructs an f-plan f as follows. For each
selection with two attributes labelling nodes A and B, we
consider three restructuring scenarios: swapping one of the
nodes A and B until A becomes the ancestor of B or the
other way around, or bringing both A and B upwards until
they become siblings. We choose the cheapest f-plan for each
selection. We consider the projection π−A for each attribute
A not in the projection list or further selections. In case A is
the only attribute labelling its node A, we precede π−A by
repeated swaps of A with its child with the smallest subtree
until A becomes a leaf. We then order the projections and
selections by the cost of their f-plans, choose the one with
the cheapest f-plan, and append its f-plan to the overall f-
plan f . We repeat this process with the remaining selections
and projections until we finish them. The new input f-tree
is now the resulting f-tree of the f-plan obtained so far.

In contrast to the full search algorithm, this greedy algo-
rithm takes only polynomial time in the size of the input
f-tree T . For each selection and projection, there can be at
most O(|T |) swaps. Each swap requires to look at all de-
scendants of the swapped nodes to check for independence
and to find the smallest subtree in case of projections. Com-
puting the resulting f-tree thus takes time O(|T |2).

5. EXPERIMENTAL EVALUATION
We evaluate the performance of our query engine FDB

against three relational engines: one home-bred in-memory
(RDB) and two open-source engines (SQLite and Postgre-
SQL). Our main finding is that FDB clearly outperforms
relational engines for data sets with many-to-many relation-
ships. In particular, in our experiments we found that:

• The size of factorised query results is typically at most
quadratic in the input size for queries of up to eight
relations and nine join conditions (Figure 5 left).

• Finding optimal f-trees for results of queries of up to
eight relations and six join conditions takes under 0.1
seconds (Figure 5 middle). Finding optimal f-plans for
queries on factorised data is about an order of magni-
tude slower. In contrast, the greedy optimiser takes
under 5 ms (Figure 5 right) without any significant
loss in the succinctness of factorisation (Figure 6).

• For queries on flat data, factorised query results are
two to six orders of magnitude smaller than their flat
equivalents and FDB outperforms RDB by up to four
orders of magnitude (Figure 7 middle). The gap in-
creases with increasing data size (Figure 7 left). For
the same workload SQLite performed about three times
slower than RDB, and PostgreSQL performed three
times slower than SQLite; both systems have addi-
tional overhead of fully functioning engines. The gap
between RDB and SQLite increases with the number
of joins (Figure 7 bottom right) as RDB implements
an optimised multi-way merge-sort join.
This holds for uniform and Zipf data distributions.

• The evaluation of subsequent queries on input data
representing query results has the same time perfor-
mance gap, since the new input is more succinct as fac-
torised representation than as flat relation (Figure 8).

• For one-to-many relationships, the performance gap
is smaller, since even the flat result sizes for one-to-
many joins only depend linearly on the input size and
the possible gain brought by factorisation is less dra-
matic. For instance, in the TPC-H benchmark all joins
are on keys and therefore the sizes of the join results
do not exceed that of the relation with foreign keys.
Factorised query results are still more succinct than
their relational representations, but only by a factor
bounded by the query size (Figure 7 top right).
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Figure 6: Experiment 2: Comparison of full-search and greedy query optimisers.

Implementation Details. We implemented FDB and RDB
in C++ for execution in main memory. The parameter s(T )
is computed using the GLPK package v4.45 for solving lin-
ear programs. F-representations are stored as parse trees.
The current version of FDB implements the evaluation and
optimisation algorithms described in previous sections with
the following exceptions. For evaluation on flat data it com-
putes the result f-representation using a multi-way merge-
sort join algorithm with the order of joins given by an op-
timal f-tree [19]. This join algorithm is also used by RDB,
though producing a flat result this time. The FDB opti-
miser defers projections until the end (we only focus on the
impact of joins). Both FDB and RDB sort flat input rela-
tions before executing merge-sort joins; the sorting time is
included in the reported evaluation time.
Competing Engines. We also used SQLite 3.6.22 tuned
for main memory operation by turning off the journal mode
and synchronisations and by instructing it to use in-memory
temporary store. Similarly, we run PostgreSQL 9.1 with the
parameters: fsync, synchronous commit, and full page writes
are off, no background writer, shared buffers and working
memory increased to 12 GB. Both SQLite and PostgreSQL
read the data in their internal binary format, whereas FDB
and RDB use the plain text format.
Experimental Setup. All experiments were performed
on an Intel(R) Xeon(R) X5650 Quad 2.67GHz/64bit/32GB
running VMWare VM with Linux 2.6.32/gcc4.4.5. For all
engines we report wall-clock times (averaged over five runs)
to read data from disk and execute the query plans without
writing the result to disk.
Experimental Design. The flow of our experiments is as
follows. We generate random data and queries, then repeat
a number of times four optimisation and evaluation exper-
iments and report averages of optimisation time, execution
time, representation sizes, and quality of produced f-plans.

We generate a schema of R relations and distribute uni-
formly A attributes over them. Each relation has a given
number of tuples, each value is generated independently
from {1, . . . ,M} using a uniform or Zipf distribution. The
queries are equality joins over all of these relations. We first
generate an initial query Q with K non-redundant equality
conditions and then a further query Q′ with L additional
non-redundant equality conditions.

For each generated initial query Q and database D, we do
the following. In Experiment 1, we run the FDB optimiser
to find an optimal f-tree T for the query result and report
the optimisation time and the value of the parameter s(Q)
that controls the size of the f-representation of Q(D) over T .
In Experiment 3, we compute the result Q(D) using RDB,
SQLite, and PostgreSQL, and the factorised query result
using FDB. We then report on both the evaluation time and

size of the result as the number of its singletons; a singleton
holds an 8 byte integer. We also unfold the factorised result
of FDB into a flat relation for correctness check, and report
the unfolding (or tuple enumeration) time.

In Experiments 2 and 4, we evaluate the second set of
queries on top of the query results from Experiment 3. For
each new query Q′, we run the FDB optimiser to find an op-
timal f-plan to evaluate the query and the resulting f-tree of
the query result. In Experiment 2, we report the optimisa-
tion time and cost of the found f-plans for both the exhaus-
tive and greedy optimisation algorithms. Here, we consider
the cost of the f-plan defined by the parameter s(·) of the
intermediate and final f-trees; in our experiments, the alter-
native cost estimate e(·) would lead to very similar choices
of optimal f-plans since our data generator treats attributes
independently and introduces no dependencies or irregular-
ities. In Experiment 4, we execute f-plans with FDB on the
f-representations of the query results (and with RDB on the
flat query results) computed in Experiment 3.

We also repeat Experiments 1 and 3 with TPC-H data
and queries. We considered the conjunctive parts of TPC-H
queries 2, 5, 7, 10 and compare the evaluation times of FDB,
RDB, and SQLite on flat TPC-H databases of varying scale.
Experiment 1: Query optimisation on flat data.

The left and middle plots in Figure 5 show average times
for optimising a query on flat data, and average costs s(T )
for the chosen optimal f-tree T of the query result. For
schemas with A = 40 attributes over R = 1, . . . , 8 relations,
we optimised queries of K = 1, . . . , 9 equality selections.
The cost s(T ) of an optimal f-tree T is always 1 for queries
of up to two relations. For R ≥ 3 and a sufficient number
of joins we often get queries with optimal s(T ) = 2 and
in very rare cases s(T ) > 2. This means that the sizes
of f-representations for the query results are in most cases
quadratic in the size of the input database even in the case of
9 equality selections on 8 relations. The optimiser searches
a potentially exponentially large space of f-trees to find an
optimal one, but runs under 1 second for queries with less
than 8 joins on up to 8 relations.
Experiment 2: Query optimisation on factorised data.

Figure 6 shows the behaviour of query optimisation for
factorised data. It shows the costs of the computed f-plans as
well as the costs of the f-tree of the result computed by the f-
plans for our full-search and greedy optimisation algorithms.

The queries under consideration have L ≤ 6 equality con-
ditions on f-representations resulting after K ≤ 8 equality
conditions on R = 4 relations with A = 10 attributes. The
greedy optimiser gives optimal or nearly optimal results in
most cases (by comparison with the optimal outcome of full
search). The exceptions are queries joining most attributes
of an f-representation produced by a query with few joins
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(small K, large L). In all cases the average f-plan cost is
between 1 and 2, which means that the f-plans take at most
quadratic time for processing a join of up to 4 relations. The
results show that for small queries (small L) the cost of the
optimal f-plan is dominated by the cost of the final f-tree.
As the number of equalities L grows, the result f-tree has
less attribute classes and its cost is smaller than the cost
of the f-plan, which is the maximum cost of intermediate
f-trees needed to evaluate the query.

The right plot in Figure 5 shows the times for both exhaus-
tive (full search) and greedy optimisers. The search space
of possible f-trees grows exponentially with the number L of
equalities and also with the size of the input f-tree (i.e., with
decreasing K). The performance of the full-search algorithm
is proportional to the size of the search space; we process
about 1k f-trees/second. The greedy heuristic has running
time polynomial in both K and L, and in our scenario is 2-3
orders of magnitude faster than full search.
Experiment 3: Query evaluation on flat data.

We compared the performance of FDB, RDB, SQLite, and
PostgreSQL for query evaluation on flat input data. The
left column of Figure 7 shows the result sizes and evaluation
times for queries with up to four equality conditions on three
ternary relations of increasing sizes, generated using a Zipf
distribution over the range [1, 100].

The size gap between factorised and relational results is
largest for queries with fewer equality conditions, since the
results are larger yet factorisable. The plots support the
claim that the sizes are bounded by a power law, with a

smaller exponent for FDB than for the relational engines.
The middle column in Figure 7 considers queries with in-

creasing number of equality conditions over two binary re-
lations of size 82 = 64 and two ternary relations of size
512 = 83, whose values are drawn from a Zipf distribution
over [1, 20]. Each equality condition in the query decreases
the number of result tuples approximately by a factor of 20,
which is exhibited in the flat result size produced by RDB.
FDB factorises the up to 500M data values into less than 4k
singletons for all considered queries. The execution time for
all engines is approximately proportional to their result sizes
except for the millisecond region, where constant overhead
dominates. For all plots, results for uniformly distributed
data exhibit the same trends as those for Zipf-distributed
data and are not shown due to lack of space.

The bottom right plot in Figure 7 considers a similar sce-
nario, but the input size is increased with the number of
equality conditions to keep the output size constant at about
10k tuples. We show the evaluation time ratio with respect
to RDB. FDB outperforms RDB by one to two orders of
magnitude. As the number of equality conditions increases,
s(Q) increases (cf. Figure 5 left), the query result becomes
less factorisable and the size and time performance gaps de-
crease. Evaluation using FDB followed by enumerating all
tuples of the factorised result is only by a small constant fac-
tor slower than direct evaluation using RDB. In both cases,
most of the evaluation time is spent on writing the result
to memory. SQLite performs significantly worse than RDB
(and FDB) for queries with many equality conditions since

1242



10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

 1  2  3  4  5  6  7  8re
s
u

lt
 s

iz
e

 [
#

 o
f 
d

a
ta

 e
le

m
e

n
ts

]

number K of equalities in the input f-tree

RDB and FDB result sizes for queries with L equalities
 on results of K equalities on R=4 relations with A=10 attributes.

L = 1
L = 2
L = 3
L = 4
L = 5

L = 1
L = 2
L = 3
L = 4
L = 5

10
-3

10
-2

10
-1

10
0

10
1

10
2

 1  2  3  4  5  6  7  8

e
v
a

lu
a

ti
o

n
 t
im

e
 [
s
e

c
]

number K of equalities in the input f-tree

RDB and FDB performance for queries with L equalities
 on results of K equalities on R=4 relations with A=10 attributes.

L = 1
L = 2
L = 3
L = 4
L = 5

L = 1
L = 2
L = 3
L = 4
L = 5

Figure 8: Experiment 4: Performance of FDB on factorised data (solid lines, bottom series in the right plot)
and RDB on equivalent flat data (dashed lines, top series in the right plot). RDB needs one scan over the
input, whereas FDB needs to restructure the factorised input. SQLite has similar performance to RDB.

it only implements in-memory nested-loops joins while RDB
implements a multi-way merge-sort join.

For TPC-H data and queries, the compression factor for
factorised output (versus flat output) remains roughly con-
stant for each query even with increasing database size (top
right plot in Figure 7). Since all joins are key-foreign key
joins, the query result also has a primary key, and each
distinct value of this key must appear in the factorisation:
hence the factorisation cannot be asymptotically smaller
than the result itself. This behaviour is contrasted by the
query QA = Suppliers ✶Nation Customers whose join is
many-to-many and the factorised/flat size ratio decreases
inversely with database scale (reaches 1/800 for scale 1).
Experiment 4: Query evaluation on factorised data.

Figure 8 compares the performance of FDB and RDB for
query evaluation on query results computed in Experiment 3
and with f-plans computed in Experiment 2. The behaviour
of SQLite and PostgreSQL closely follows that of RDB.

FDB evaluates queries consisting of L selections on fac-
torised representations. FDB uses the optimal f-plan found
by the full-search optimiser. Additional experiments (not
reported) reveal that the f-plans found by the greedy opti-
miser are up to 50% slower than the optimal f-plans.

RDB just evaluates a selection with a conjunction of L
equality conditions on the attributes of the input relation.
This can be done in one scan over the input relation. For
FDB, the cost of the f-plan may be non-trivial: the more
the f-plan needs to unfold the f-representation, the more
expensive the evaluation becomes. Figure 8 suggests that
FDB only unfolds the f-representations to a small extent.
Similar to query evaluation on flat data, FDB shows up
to 4 orders of magnitude improvement over RDB for both
evaluation time and result size. The gap closes once the size
of the input data decreases to about 1000 tuples and both
FDB and RDB perform in under 0.1 seconds.

Experiments 2 and 4 show that using f-representations for
data processing is sustainable in the sense that the quality
of factorisations, in particular their compactness and sizes,
does not decay with the number of operations on the data.
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[14] M. Grund, J. Krüger, H. Plattner, A. Zeier, P. Cudré-
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