
Summarization and Matching of Density-Based Clusters in
Streaming Environments

∗

Di Yang
†

Oracle Corporation
1 Oracle Drive

Nashua, NH, USA

di.yang@oracle.com

Elke A. Rundensteiner
Worcester Polytechnic Institute

100 Institute Road
Worcester, MA, USA

rundenst@cs.wpi.edu

Matthew O. Ward
Worcester Polytechnic Institute

100 Institute Road
Worcester, MA, USA

matt@cs.wpi.edu

ABSTRACT

Density-based cluster mining is known to serve a broad range
of applications ranging from stock trade analysis to moving
object monitoring. Although methods for efficient extrac-
tion of density-based clusters have been studied in the lit-
erature, the problem of summarizing and matching of such
clusters with arbitrary shapes and complex cluster struc-
tures remains unsolved. Therefore, the goal of our work is
to extend the state-of-art of density-based cluster mining in
streams from cluster extraction only to now also support
analysis and management of the extracted clusters. Our
work solves three major technical challenges. First, we pro-
pose a novel multi-resolution cluster summarization method,
called Skeletal Grid Summarization (SGS), which captures
the key features of density-based clusters, covering both
their external shape and internal cluster structures. Second,
in order to summarize the extracted clusters in real-time, we
present an integrated computation strategy C-SGS, which
piggybacks the generation of cluster summarizations within
the online clustering process. Lastly, we design a mecha-
nism to efficiently execute cluster matching queries, which
identify similar clusters for given cluster of analyst’s interest
from clusters extracted earlier in the stream history. Our ex-
perimental study using real streaming data shows the clear
superiority of our proposed methods in both efficiency and
effectiveness for cluster summarization and cluster matching
queries to other potential alternatives.

1. INTRODUCTION
Motivation. Mining complex patterns such as clusters

and graphs from huge volumes of streaming data has been
recognized as critical for numerous application domains. To
facilitate such complex pattern mining process, a streaming

∗This work is supported by the NSF, under grants CCF-
0811510, IIS 0812027 and IIS 1018443
†This work is done when the author is working at WPI.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 38th International Conference on Very Large Data Bases,
August 27th - 31st 2012, Istanbul, Turkey.
Proceedings of the VLDB Endowment, Vol. 5, No. 2
Copyright 2011 VLDB Endowment 2150-8097/11/10... $ 10.00.

pattern mining system does not only need to be equipped
with highly efficient pattern extraction algorithms, but more
importantly, it must also provide effective pattern analysis
support, as motivated below:

1) Pattern feature abstraction. The key features of
detected patterns may be complex and thus may not be
easily comprehensible for human analysts without analytical
assistance. For example, in real-time traffic monitoring, a
cluster representing a congestion area in the traffic of Beijing
may be composed of 10K or even more vehicles and may
spread to over 10km2. By simply looking at the information
about individual cluster members (vehicles), such as their
positions and moving speed, an analyst may not be able to
identify the key features of this cluster in real time, such as
where is the key bottleneck causing the congestion.

2) Pattern compression. Some patterns need to be
kept for long-term analysis, yet keeping the full represen-
tation of the complex patterns tends to be impractical in
streaming environments. In the previous example, storing
the full representation of the detected traffic congestion pat-
terns (arbitrarily shaped clusters), namely the individual
cluster member tuples (tens of thousands tuples for each
cluster) would cause not only a huge burden on the storage
space but also low efficiency for pattern transmission.

3) Pattern retrieval (matching). For stream anal-
ysis, the archived patterns may need to be retrieved based
on their features. Using the above example, when a new
traffic congestion arises, the analysts may ask whether sim-
ilar congestion patterns have been detected before. If yes,
rather than figuring out a new congestion-relief plan from
scratch, the previous proven-to-work solution for such con-
gestion patterns could be directly applied.

In short, an effective pattern summarization method is
the key for complex pattern analysis and management. It
is needed for many different aspects of pattern analysis,
including feature abstraction, compression and pattern re-
trieval (as mentioned above). Also, the pattern summa-
rizations can also be used for approximated pattern repre-
sentation. For example, one can design pattern visualiza-
tion or full representation re-generation techniques based
on pattern summarizations. In this work, our goal is to
design effective summarization and matching techniques
for density-based clusters in streaming environments, which
remain open problems for database community.

Sliding Window Semantics. In this work, we focus
on density-based cluster mining in sliding stream windows
[7, 8, 16, 17]. In this query semantics, arbitrarily shaped

121



clusters are continuously detected within the most recent
portion of the stream. The traffic congestion monitoring
task discussed above is an example that requires such query
semantics. Other applications that require such query se-
mantics include detecting intensive-transaction areas (clus-
ters) in most recent stock trades, and identifying malicious
attacks (clusters) in current network traffic.

Challenges. Summarization and matching of density-
based clusters is not only an unsolved but also a challenging
problem. To serve real-time streaming applications, the pro-
posed techniques must address the following challenges: 1)
Cluster summarization must be sufficiently descriptive yet
highly compact. The cluster structure of a density-based
cluster is defined by a series of densely populated sub-regions
and as well as the connections among them (See Figure 1).
Clearly, simple statistical aggregations, such as the centroid
or minimum bounding rectangle of a cluster, are insufficient
for describing such complex pattern structure. 2) The clus-
ter summarization process has to be highly efficient. A
system conducting expensive online clustering can hardly af-
ford additional system resources for summarizing clusters in
real-time. 3) The summarized cluster representation needs
to be effectively retrievable (“matchable”). The match-
ing process between cluster summarizations ought to loyally
reflect the similarity between the original clusters, yet be
computationally efficient.

Proposed Solution. To address the above challenges,
we first analyze density-based cluster structures and iden-
tify their key characteristics, namely position, shape, connec-
tivity and density distribution. To capture these features,
we investigate two commonly-used summarization princi-
ples, namely the graph-based and the grid-based strategies,
We discover that neither of them alone is capable to pro-
vide an effective summarization for density-based clusters.
Therefore, we propose a hybrid solution, called Skeletal Grid
Summarization (SGS). For descriptive power, SGS is shown
to guarantee its fidelity to the original clusters on all key
features. For compactness, our experimental study in Sec-
tion 8 confirms that even the SGS of the highest resolution
achieves on average a 98% compression rate of the full rep-
resentation of the clusters.

Empowered by the proposed SGS summarization, we de-
sign a framework to support both continuous cluster ex-
traction and cluster matching queries. A continuous cluster
extraction query in our system does not only extract clus-
ters in their full representation (all cluster member objects)
for online monitoring purposes like the other state-of-the-art
techniques [3, 16], but it also concurrently compacts them
into the SGS summarization. The full and the summarized
(SGS) representation formats are complementary to each
other, providing a description of the clusters at the individ-
ual tuple and cluster feature level respectively. To extract
these two representation formats simultaneously and in a
highly efficient manner, we propose an integrated cluster
extraction + summarization algorithm, C-SGS. C-SGS in-
crementally maintains both the full representation and the
corresponding SGS of the extracted clusters in an integrated
manner. This results in an almost “free” cluster summariza-
tion generation by piggy-packing the summarization process
into the cluster extraction process itself. Our experimental
study in Section 8 shows that C-SGS, which returns clus-
ters in both full and summarized representation (SGS), has
a neglectable overhead, compared with state-of-the-art al-

gorithm Extra-N [16] computing the full representation of
clusters only. In all our test cases, the extra response time
of C-SGS compared with Extra-N is consistently less than
6% (Section 8.1).

For any “to-be-matched” cluster specified by the analyst,
a cluster matching query identifies similar clusters extracted
earlier in the same stream from a pattern archive. To sup-
port such queries, our framework first archives the SGS of
the extracted clusters into a pattern archive. When execut-
ing a cluster matching query, our system deploys a filter-
and-refine strategy. First, the filter-phase exploits a fea-
ture index to locate the potential matching candidates from
the pattern store. Then, the refine-phase conducts a more
detailed cluster match against these promising candidates
and returns those with similarity above a given threshold.
Our experimental study shows that, efficiency-wise, our sys-
tem takes only 3 seconds on average to answer a cluster
matching query against 10K archived clusters (Section 8.2).
Quality-wise, our user study, which invites human analysts
to visually compare the similarity between matched clus-
ters, shows that human analysts agree with a significant
larger percentage of the matched clusters found using our
proposed matching mechanism compared to those found by
alternatives (Section 8.3).

Contributions. The main contributions of this work in-
clude: 1) We propose the first summarization method specif-
ically designed for density-based clusters, namely the Skele-
tal Grid Summarization (SGS), 2) We present an integrated
cluster mining and summarization algorithm, C-SGS, which
efficiently computes the full representation and the SGS of
the extracted clusters in one shot. 3) We develop a cluster
matching mechanism based on SGS to efficiently processing
cluster matching queries in real-time. 4) Our performance
evaluation and user study using real streaming data confirm
that our proposed techniques are clearly superior to other al-
ternatives in all aspects, including summarization efficiency,
cluster matching efficiency and matching quality.

2. RELATED WORK
The concept of density-based clustering was first proposed

in [8]. It has drawn significant research attention [7, 16,
17, 12, 3, 4], because of its capability of identifying clus-
ters with arbitrary shapes and specified density. Previous
work mainly studied how to efficiently extract such clusters
in static [8, 7, 12] or streaming environments [16, 17, 3,
4]. Also, given the prevalence of real-time monitoring tasks
in stream applications, researchers have started to design
visual platforms allowing human analysts to interactively
explore such patterns in streams [14].

However, the fundamental problem of summarizing this
important pattern type has not been studied in the litera-
ture yet. Without an effective yet compact summarization
method, each density-based cluster has to be expressed by
its full representation, namely its cluster member objects.
Obviously, such full representation is neither succinct nor
does it explicitly reflect the features of each cluster. This
causes serious inconvenience for both storage and analysis
of density-based clusters.

Traditional clustering methods [10, 19], such as k-mean
style clustering, treat clusters as statistical phenomena.
Therefore, many key features of the clusters, such as their
shapes and densities, are summarized using a rather simplis-
tic description. In particular, first, these works assume clus-

122



ters are spherically shaped. Therefore, the shape of a clus-
ter is usually described using a simple “centroid + radius”
formula. Second, the previous work do not capture the in-
ternal features of the clusters, such as how its density is
distributed. For example, the density of a cluster is either
treated as uniform or varying along the radius only. Obvi-
ously, such simple formula cannot well describe the complex
cluster structure of density-based clusters. This is because
both the shapes and density distributions of density-based
clusters can be arbitrary, not to mention the complex sub-
region connectivities in each cluster. To the best of our
knowledge, no summarization method has been specifically
designed for density-based clusters.

For computing cluster summarizations in streaming envi-
ronments, if the clusters are treated as statistical phenom-
ena, they are considered to be “aggregatable” over time [1,
5]. For example, [1] used one Cluster Feature Vector (CFV)
to represent each micro-cluster detected in the stream. They
rely on the additivity property of the CFV to aggregate the
cluster features over time and compare the features of a same
cluster at different time points by subtracting its CFVs on
the corresponding time points.

However, the complex cluster structure of density-based
clusters is not simply aggregatable over the sliding windows.
The continuous expiration of old objects and arrival of new
objects at each window may cause complex cluster structural
changes, such as merge and split and connectivity changes
within the clusters. Clearly, these changes cannot be sim-
ply captured by aggregation results. Thus, these techniques
cannot effectively capture the features of density-based clus-
ters within sliding windows.

3. PRELIMINARIES

3.1 Density-Based Clustering in Windows
Density-based cluster detection [8, 7] uses a range thresh-

old θr ≥ 0 to define the neighbor relationship between ob-
jects. For two objects pi and pj , if the distance between
them is no larger than θr, pi and pj are said to be neigh-
bors. We use the function NumNeigh(pi, θ

r) to denote the
number of neighbors a object pi has, given the θr threshold.

Definition 3.1. Density-Based Cluster: Given θr and
a count threshold θc, an object pi with NumNeigh(pi, θ

r)
≥ θc is defined as a core point. Otherwise, if pi is a neighbor
of any core object, pi is an edge point. pi is a noise point if it
is neither a core object nor an edge object. Two core objects
p0 and pn are connected, if they are neighbors of each other,
or there exists a sequence of core points p0, p1, ...pn−1, pn,
where for any i with 0 ≤ i ≤ n− 1, each pair of core points
pi and pi+1 are neighbors of each other. Finally, a density-
based cluster is defined as a maximum group of “connected
core objects” and the edge objects attached to them. Any
pair of core objects within a cluster are “connected”.

Figure 1 shows an example of a density-based cluster com-
posed of 11 core objects (black) and 24 edge points (grey).

We focus on periodic sliding window semantics as pro-
posed in CQL [2] and widely used in the literature [16,
17]. These proposed semantics can be either time- or count-
based. Each query has a window with a fixed window size
win and a fixed slide size slide (either a time interval or a
tuple count). Clusters are generated for each window Wi

Figure 1: Definition of Density-Based Clusters

only based on those data points that fall into the same win-
dow Wi. Each cluster is returned as all its cluster member
objects associated with the same cluster identification. We
call this typical output format the full representation of
each cluster.

3.2 Supported Queries and System Overview
Our system support two types of analytical queries:
Continuous Clustering Queries. A Continuous Cus-

tering Query returns both full (Section 3.1) and summarized
representation of the extracted clusters (Figure 2). The de-
sign of our proposed cluster summarization format will be
introduced in Section 4.

DETECT DensityBasedClustersf+s FROM stream
USING θrange = r and θcnt = c
IN Windows WITH win = w and slide = s

Figure 2: Continuous Cluster Extraction Query Re-
turning full (f) and summarized (s) representations
of clusters

Cluster Matching Queries. Given a user specified
to-be-matched cluster Ci, a cluster matching query finds
clusters similar to Ci that reside in the historical pattern
archive. We show a template of such a query in Figure 3.

GIVEN DensityBasedClusters Ci

SELECT DensityBasedClusters Cj FROM History
WHERE Distance(Ci, Cj) ≤ sim threshold

Figure 3: Cluster Matching Query finding Clusters
Similar to To-Be-Matched Cluster Based on Cluster
Summarization

The to-be-matched cluster can be any cluster specified by
an analyst. Typically, it may be a cluster detected in the
most recent portion of the stream that represent the newest
characteristics of the stream. The matched clusters, if any,
will be found in the historical pattern store, which archives
the clusters extracted by Continuous Clustering Query ear-
lier in the stream.

3.3 System Overview
To support these two types of analytical queries, we design

a framework composed of four major components (Figure 4).
Here we give a brief overview of the functionalities of each

123



component, while in-depth technical details are discussed
later in Sections 5 to 7.

Figure 4: System Overview

ThePattern Extractor executes the Continuous Cluster
Extraction Query (Figure 2) against the input stream. It
outputs both full and summarized representations of the
extracted clusters. Both representations are returned to the
analyst for real-time monitoring. Meanwhile, the extracted
clusters are also passed to the Pattern Archiver for storage,
and to Pattern Analyzer for cluster matching.

The Pattern Archiver selectively archives the newly de-
tected clusters into the Pattern Base. These archived clus-
ters constitute the Stream History available for subsequent
Cluster Matching Queries (Figure 3). The Pattern Archiver
controls which extracted clusters should be kept in the Pat-
tern Base and at which resolution they should be archived.

The Pattern Base organizes the archived clusters. To
facilitate cluster matching against historical clusters, it em-
ploys multiple feature indices to organize the archived clus-
ters. This helps the Cluster Matching Queries to quickly
locate the potential matching candidates.

The Pattern Analyzer executes the Cluster Matching
Queries (Figure 3). If an analyst is interested in any newly
extracted cluster and would like to learn whether similar
clusters had been detected before in the Stream History,
she can submit her Cluster Matching Query to the Pattern
Analyzer to search for matches against the Pattern Base.

4. CLUSTER SUMMARIZATION

4.1 Features of Density-Based Clusters
Based on our analysis, we identify four key features that

define each density-based cluster, which can be divided into
two categories, namely external and internal features.
External Features:

Location: The location of a cluster indicates its position
in the data space. It provides basic information about each
cluster, such as where a congestion area (a cluster) arises in
the traffic, or in which price range an intensive-transaction
area, a cluster based on price, volume and transaction time,
is detected in the stock transaction stream.

Shape: Density-based clusters can have arbitrary shapes.
The shape is a key feature, because a certain shape of the
cluster may convey specific meaning for an application. For
example, for the clusters representing intensive-transaction
areas in stock transactions, a cluster having a long spread
on transaction price but short range on transaction time
conveys that a large number of transactions of a certain

stock happened in a short time period while the price of it
fluctuated dramatically within this time period.
Internal Features:

Connectivity: The connectivity of a density-based clus-
ter describes how sub-regions within the cluster are con-
nected. It is important for density-based clusters for both
definition and application reasons. First, it defines internal
structure of each cluster. The definition of the density-based
cluster (see Section 3.1) relies on the connectivities among
sub-regions to define a cluster. Second, the connectivies
among sub-regions may be relevant to applications. For ex-
ample, if two sub-regions within a single cluster representing
a group of moving troops are not directly connected, then
this may indicate the units in these two sub-regions cannot
directly communicate with each other, because there are no
connected “Head Nodes” (core objects) in these two sub-
regions of their wireless network.

Density Distribution: Although the definition of density-
based clusters imposes a minimal density requirement on ob-
jects in a cluster, the density of each cluster can be rather di-
verse across its sub-regions. The density distribution within
each cluster may be of an analyst’s interest in many applica-
tions. Using the earlier example, even in a single congestion
area, the level of congestion (density of vehicles) may vary
among sub-regions. Therefore, the density distribution in
each sub-region may be the key for working out a conges-
tion relief plan, as the super dense sub-regions may be the
areas that cause the congestion.

4.2 Initial Effort:
Graph-Based Summarization Method

Any effective summarized representation for density-based
clusters has to capture the above four key features (Section
4.1). Given that density-based clusters may vary arbitrarily
in shape, connectivity and also density distributions, us-
ing any aggregative method to represent these features will
have rather poor descriptive power. Therefore, we propose
to leverage an alternative strategy, namely the divide-and-
conquer approach. We divide each cluster into sub-regions,
and then we describe not only the features in each sub-region
but also the interrelationships among the sub-regions.

Given this divide-and-conquer strategy, we first introduce
a possible summarization method based on graph theory.
This method uses one representative object to represent each
sub-region. We call it “Skeletal Point Summation” (SkPS):

Definition 4.1. For each cluster Ci, the SkPS summa-
rization of Ci is a graph G(V,E) composed of a minimal set
of connected core objects of Ci, called Skeletal Points as ver-
tices V , whose neighborhoods together cover all the objects
in this cluster, and connections among them as edges E.

The graph composed of all core objects in Figure 1 is an ex-
ample for SkPS. SkPS captures most of the cluster features
and also has good compactness. However, it suffers from
several serious shortcomings. First, SkPS has limited de-
scriptive power for a cluster’s density distribution. Second,
such SkPS is not efficiently computable. For each cluster,
identifying its SkPS is equal to the problem of identifying
the connected dominant set in an undirected graph which
has been proven to be NP-complete [9]. Third, SkPS is not
a viable solution for matching, because a single cluster may
have multiple SkPSs with rather different graph structures.
Based on our analysis, these limitations suffered by SkPS are

124



caused by its overlapping and non-deterministic sub-region
division strategy. In conclusion, SkPS does not constitute
an ideal summarization for density-based clusters. A more
detailed discussion of SkPS method can be found in our
technical report [18].

4.3 Proposed Solution:
Skeletal Grid Summarization Method

Basics of Grid-Based Summarization. To solve the
limitations suffered by SkPS, we propose to adapt SkPS by
dividing each cluster into non-overlapping sub-regions. In
particular, we divide the whole data space into uniformly
sized grid cells. For each cluster, its sub-region division is
now determined by the grid cells into which its members fall.
Therefore, a cluster Ci can be represented by all the grid
cells containing at least one of C′

is cluster member objects.
Connectivity Preservation. However, this simplis-

tic grid-based summarization lacks one key capability of the
SkPS solution, namely it does not capture the connectivity
within clusters. In SkPS, both the inner and inter sub-region
connectivity information of each cluster is well preserved.
First, each sub-region in SkPS itself is “well connected”, as
all objects in a sub-region are neighbors of the same skeletal
point. Second, the inter connections among different sub-
regions are explicitly expressed by the “edges” in SkPS.
While this simplistic grid-based summarization preserve nei-
ther of these two types of connectivity information.

Connectivities In Grid Cells. To solve this problem,
we propose to integrate the concept of “connectivities” into
the grid-based solution. As foundation, we first introduce
the concept of status to a grid cell. We divide the grid cells
in each cluster’s summarization into two categories, namely
“core cells” and “edge cells”.

Definition 4.2. Core cells: a core cell of a cluster Ci

contains at least one core object (See Def. 3.1) of Ci.
Edge cells: an edge cell of a cluster Ci contains no core

object, but at least one edge object (See Def. 3.1) of Ci.
Noise cells: a noise cell contains neither core nor edge

objects of any cluster. 1

For inner-sub-region connections, we follow the basic
principle for the sub-region division strategy, which is to
pursue homogeneity in each sub-region. In particular, we
pick a fine grid size to guarantee that the objects that fall
into the same grid cell are neighbors of each other. More
precisely, the diagonal of each grid is set to be equal to the
range threshold θr in the given clustering query (see Section
3.1). This grid cell size selection will be relaxed later in
our discussion of the multi-resolution cluster summarization
(Section 6). Under this fine grid size selection, the core and
edge cells can be shown to have the following properties.

Lemma 4.1. All objects in a core cell belong to the same
cluster.

Proof: Since each core cell contains at least one core
object and all the objects in each core cell are now neighbors
of each other, it implies that all objects in the same core cell
are neighbors of at least one common core object. Based
on the definition of density-based cluster (see Def. 3.1), the
neighbors of a core object belong to the same cluster.

1
noise grid are are only used in cluster computation stage.

Lemma 4.2. The number of objects in an edge cell must
be less than the count threshold θc in the clustering query.

Proof: We prove this lemma by contradiction. Given
that all objects in a grid cell are neighbors of each other, if
there are at least θc objects in an edge cell, those objects
would be core objects, as they all have at least θc neighbors.
This contradicts the definition of edge grid (Def. 4.2).

Given these properties, each grid cell is “well-connected”
and constitutes a basic unit for the inter-grid connection
expression, as defined below.

For the inter-sub-region connection, we now define
the “connections” between grid cells.

Definition 4.3. Two core cells ccl1 and ccl2 are directly
connected, if there exists at least one core object pi in ccl1
and one core object pj in ccl2 that are neighbors of each
other. Two core cells ccl0 and ccln are connected, if they
are directly connected to each other, or there exists a se-
quence of core cells ccl0, ccl1, ...ccln−1 , ccln, where for any i
with 0 ≤ i ≤ n−1, each pair of core cells ccli and ccli+1 are
directly connected with each other.

An edge cell ecli is attached to a core grid cclj , if there
exists at least one object pi in ecli and one core object pj in
cclj that are neighbors of each other.

Two edge cells are neither connected nor attached.

Given the connection definition for grid cells above, all
core cells of a cluster Ci are connected to each other, and
all edge cells are attached to at least one core cell of Ci.

Skeletal Grid Summarization. Based on the status
and connections of grid cells, we now give the definition of
our proposed Skeletal Grid Summarization (SGS) method.

Definition 4.4. A Skeletal Grid Summarization
(SGS) of a density-based cluster Ci is composed of all grid
cells that contain at least one cluster member object of Ci.
We call each grid cell in a SGS, a Skeletal Grid Cell
(Sc) of Ci. SGS = {Sc0, Sc1, ...Scn}. Each Sci has five
attributes, namely SGi =
(location[], sidelength, population, status, connection[]).

1) location vector: a sequence of values, each indicating
the minimum value on one of the dimensions covered by Sci.

2) side length: the range of values on each dimension.
3) population: the number of objects contained by Sci
4) status: whether Sci is a core or edge cell.
5) connection vector: a sequence of boolean connection in-

dicators, each indicating Sci’s connection to one of its adja-
cent skeletal grid cells. For any edge or noise cell, all connec-
tion indicators are “false”. For any core grid, a connection
indicator is “true” if the corresponding adjacent skeletal grid
cell Scj is a core cell and Sci and SGj are directly connected,
or if SGj is an edge cell attached to SGi.

Figure 5 shows an example of our proposed Skeletal Grid
Summarization (SGS) for a 2D cluster. SGS achieves our
goal of preserving all four features, as shown below.

Lemma 4.3. Fidelity to Location and Shape: The
data space covered by Ci.SGS is larger than that covered
by the cluster member objects of Ci by a bounded error.
Namely, any point in the data space covered by Ci.SGS is
at most θr away from a cluster member object in Ci.

Proof: The data space covered by Ci.SGS is composed
of the union of the space covered by all its skeletal grid cells.

125



Figure 5: Example of full representation, basic SGS
and compressed SGS of a 2D cluster

Since all member objects of Ci fall into these grid cells, the
data space covered by Ci.SGS is larger than that covered by
Ci’s member objects. Since each skeletal grid cell in Ci.SGS
contains at least one member of Ci, and the diagonal of each
cell is θr, any point in the data space covered by a skeletal
grid cell is at most θr away from a member of Ci.

Lemma 4.4. Fidelity to Density Distribution: For
any sub-region in a cluster Ci, which is composed of n (n ≥
1) grid cells, Ci.SGS can accurately express its density.

Proof: Since the skeletal grid cells in Ci.SGS don’t
overlap, the population recorded by each skeletal grid cell
accurately reflects the number of objects in it. Therefore, for
any sub-region covered by the n skeletal grid cells belonging
to Ci, we can accurately calculate its density by dividing its
total population by its total volume.

Lemma 4.5. Fidelity to Connectivity: If there are two
sub-regions in Ci connected through a connected core object
path composed of n core objects, there must exist a core grid
path connecting these two sub-regions with at most n core
cells on this path.

Proof: Since any skeletal grid cell containing a core
object is a core cell, if there exists a core object path between
two sub-regions, there must exist a core cell path between
them. In the worst case, each core grid on this core grid
path contains only one core object. Thus the length of the
core grid path is at most equal to the length of the core
object path.

In conclusion, SGS effectively captures all key features of
density-based clusters using a compact description.

5. PATTERN EXTRACTOR
Next, we introduce the pattern extractor that executes

the Continuous Clustering Query (Section 3.2), outputting
clusters in both full and summarized (SGS) representations.
To provide such functionalities, a straightforward approach
would be a two-stage process, namely cluster extraction fol-
lowed by summarization. However, this strategy causes a
significant performance overhead compared to cluster ex-
traction only. An in-depth analysis of such a two-phase
strategy can be found in our technical report [18].

5.1 Proposed Solution: Integrated Process
To solve this problem, we instead propose an integrated

strategy that incorporates cluster extraction and summa-
rization into a single process. The key observation that mo-
tivates this integrated computation method is given below.

Observation 5.1. The main tasks for both density-based
cluster extraction and SGS computation are the same, namely
to first identify the connections (neighborships) among the
objects and analyze them to form the cluster structures (in
either the full or a summarized representation).

This observation reveals the key commonality among the
cluster extraction and summarization processes. Based on
it, we design an integrated extraction+summarization meth-
od to effectively share the neighborship identification and
cluster formation processes.

5.2 Incremental Computation and Challenges
To avoid conducting the prohibitively expensive clustering

process from scratch at each window, our proposed method
incrementally maintains the cluster structures across the
windows. To realize incremental computation, we need to
find an appropriate meta-data that can be maintained for
both the full and summarized cluster representations. Our
proposed solution is that, besides the raw data falling into
each window, which needs to be maintained for cluster ex-
traction in any case, we incrementally maintain the skeletal
grid cells in the data space. With updated skeletal grid
cells, we can easily output both the summarized and full
representations of detected clusters. First, based on connec-
tions among the skeletal grid cells, we can easily determine
the summarized representation SGS (a group of connected
skeletal grid cells) for each cluster. Second, given the SGS of
a cluster Ci, Ci.SGS, we can figure out the cluster member
objects of Ci based on the objects falling into the respective
skeletal grid cells belonging to Ci.SGS.

However, incrementally maintaining skeletal grid cells in
an efficient manner is a challenging task. In particular,
tracking the changes to the skeletal grid cells caused by ex-
pired objects can be extremely expensive in terms of sys-
tem resource utilization, and thus constitutes the key per-
formance bottleneck for skeletal grid cell maintenance.

When an object pexp expires, it needs the connections
at the object level, to update the connections among the
skeletal grid cells. For example, when pexp expires, we first
need to know which objects are neighbors of pexp, as their
neighborships with pexp will end from now on. This may
break the connections between the skeletal grid cell Sci in
which pnew resides and those in which pexp’s neighbors re-
side. However, considering the large amount of pair-wise
neighborships that may exist among the objects, maintain-
ing all of them has been shown to be extremely expensive in
terms of system resource utilization, analytically and exper-
imentally [16]. Therefore, the straightforward incremental
maintenance method, which updates skeletal grid cells cor-
responding to each insertion and deletion, is not practical.

5.3 “lifespan" Analysis
To solve this computation bottleneck, we present a skele-

tal grid cell maintenance method using “lifespan” analysis.
This method elegantly eliminates the need for handling the
impact of expired objects on the skeletal grid cells. The so-
lution is based on the observation that in the sliding window
semantics the lifespan of any object as well as the neighbor-
ships among objects are deterministic. Therefore, at the
insertion stage, when we handle the impact of new objects
on the skeletal grid cells, we take the lifespans of the ob-
jects into consideration. In particular, we pre-determine the
changes that will happen to the skeletal grid cells when these

126



objects expire later. Then at the expiration stage, no further
update is needed to handle the impact of expired objects.
Thus we avoid the bottleneck discussed above.

Among the five attributes of a skeletal grid cell, except
location and side length that are fixed over time, the other
three, namely population, status and connections are chang-
ing over time as the objects come and go with each window
slide. The population of each skeletal grid cell is easily track-
able with a simple object counter. Thus, we focus on the
lifespan analysis of the status and the connections.

Basics for lifespan Analysis. First, we start with an-
alyzing the lifespan of individual objects.

Observation 5.2. Given the slide size Q.slide of a query
Q and the starting time of the current window Wn.Tstart,
the lifespan of an object pi in Wn with time stamp pi.T
is pi.lifespan = ⌈ pi.T−Wn.Tstart

Q.slide
⌉, indicating that pi will

participate in windows Wn to Wn+pi.lifespan−1.

The number of windows that an object pi can survive in
is determined by after how many window slides that p′is
time stamp will still be greater than the starting time of
the window. Based on the lifespan of individual objects, we
analyze the lifespan of neighborship between two objects.

Observation 5.3. Given two objects pi and pj, the neigh-
borship between them, Neighbor(pi, pj) will hold for
Neighbor(pi, pj).lifespan = Min(pi.lifespan, pj .lifespan)
windows, namely, it will exist in all windows from Wn to
Wn+Neighbor(pi,pj).lifespan−1 until either pi or pj expires.

Based on these observations, we can further analyze the
lifespan of different stages of an object’s “career”.

Observation 5.4. Given an object pi and all its neigh-
bors objects pnb1 to pnbk, the number of windows in which
pi will be a core object pi.core lifespan = Min(pi.lifespan,
win θc nei), with win θc nei the number of windows in which
at least θc objects within pnb1 to pnbk will participate. The
number of windows in which pi will be edge object
pi.edge lifespan = Min[pi.lifespan− pi.core lifespan,
Max1≤j≤k(pnbj .core lifespan)]

Basically, an object will be a core object in all the windows
that it has at least θc neighbors. It will be an edge object
when it core object career ends (no longer has enough neigh-
bors) but at least one of its neighbors is still a core object.

lifespan at Grid Cell Level. To tackle skeletal grid
cell maintenance, now we extend the concept of lifespan
from the object level to the grid cell level. In particular, we
analyze how the lifespan of objects, their neighborships and
their career affects the lifespan of skeletal grid cells’ status
and connections. For each skeletal grid cell Sci, we main-
tain one lifespan indicator for Sci.status and one for each
Sci.connections[i]. Each lifespan indicates that, based on
the objects in the current window, in how many future win-
dows the value of this attribute will persist. These indicators
will be updated as new objects arrive.

Lemma 5.1. Status lifespan. Given a skeletal grid
cell Sci, all the objects p0 to pn in Sci , the number of win-
dows in which Sci will be a core cell SGi.core lifespan =
Max0≤i≤n(pi.core lifespan)

Lemma 5.1 can be deduced by definition of a core cell (Def.
4.2). Namely, Sci is a core cell if it contains at least one
core object.

Lemma 5.2. Connection lifespan. Given two skele-
tal grid cells Sci and Scj , and all objects in Sci, psci0 to
pscin , and all objects in Scj, p

scj
0 to p

scj
m , the number of win-

dows in which Sci and Scj will be connected is defined as
Connection(Sci, Scj).lifespan = Max[Min(psgia .core life
− span, p

sgj
b .core lifespan,Neighbor(psgia , p

sgj
b ).lifespan)],

∀a ∈ [0, n], b ∈ [0,m].

This indicates that two skeletal grid cells remain connected
if at least one pair of core objects, each from one skeletal grid
cell, are neighbors to each other.

Auxiliary Meta-Data. To insure that we only run one
range query search (rqs) for each new object and never re-
run rqs for existing objects, we maintain an auxiliary meta
information for each object in the window. In particular, we
maintain a “non-core-career neighbor list” for each object
pi to store all pi’s neighbors in its “non core career”. For
example, pi currently may have 100 neighbors. Based on the
lifespan analysis, it will be a core object for 3 windows and
then due to most of its neighbors expiring, it will become
a edge object for 2 windows before expiration. In this case,
the “non-core-career neighbor list” of pi only contains its
neighbors in the last 2 windows of its lifespan, say 5 objects.

The “non-core-career-neighbors” of each object are main-
tained in a dynamic hash table. The hash table of each
object pi is initialized to have n buckets, with n the number
of windows that pi can survive. The hash key of the table is
the number of windows that a neighbor object can survive.
For example, when a data point pi finds a “non-core-career-
neighbor” pj , pj will be added to the kth bucket of the hash
table, with k the number of windows pj can still survive (if
k is larger than the number of buckets remained on pi, pj is
put in the last bucket). At each window slide, we can simply
remove the whole first bucket of each remaining object, as
all the neighbors in this bucket must be expired after the
window slide.

The number of neighbors in such “non-core-career neigh-
bor list” is bounded by the constant θc. Namely an object
can never have more than θc neighbors in its non-core ca-
reer, otherwise it would instead be a core object in those
windows. This theoretical bound guarantees the “lightness”
of this auxiliary meta-data. Also, it provides all necessary
access to the objects’ neighbors needed in our cluster ex-
traction process. It thus guarantees that we only run the
minimum number of range query searches (one for each new
object) during the clustering.

5.4 C-SGS Algorithm
We call our proposed algorithm based on the maintenance

of skeletal grid cells and lifespan analysis C-SGS.
Initialization. For a continuous clustering query, at the

initialization stage, C-SGS builds a grid-based index whose
grid cell size is equal to the size of the finest skeletal grid size
for this query (see Section 4). We assign to each grid cell
in this index the same attributes as the skeletal grid cells,
while we set their status to be noise, density to be “0”, and
connections to be all “false” initially.

Handling Insertions. For each new object pnew in-
serted into the window, C-SGS first loads it into its corre-
sponding skeletal grid cell based on its position in the data

127



space. Then, we run a range query search for pnew to iden-
tify pnew’s neighbors. Based on the lifespan of pnew and
its neighbors (Lemma 5.2), we can determine the lifespan of
the neighborships among them (Lemma 5.3), as well as the
lifespan of different stages of p′news “career” (Lemma 5.4).
Using this information, we can now update the status and
connections of the skeletal grid cells in which pnew falls into
and in which its neighbors reside.

For status of skeletal grid cells, the insertion of a new
object may only cause two types of changes. Namely, it
may “promote” the skeletal grid cells to become core cells
or “prolong” their core cell lifespans.

status promotion: A new object pnew may promote the
skeletal grid cell Sci that it resides in to become a core cell,
if it becomes the first core object in Sci. In this case, we
set the status of Sci to core cell and set its core cell lifespan
equal to the core object lifespan of pnew. An example of this
case is shown Case 1 of status promotion in Figure 6.

pnew may also cause a status change of a skeletal grid
cell by upgrading its non-core-object neighbors, which re-
side in these affected skeletal grid cells, to core objects. In
this case, for each upgraded neighbor pupg of pnew, we first
determine the lifespan of pupg’s career by analyzing itself
and its neighbors. As every pupg was a non-core object, the
“non-core-career neighbor list” will help us to quickly access
all its neighbors without running range query search again.
Thus, we update the status of the skeletal grid cells in which
pupg resides to core cell and set its core grid lifespan equal
to the core object lifespan of pupg. Correspondingly, the
“non-core-career neighbor list” of each pupg also needs to be
updated to exclude those objects that will only be neighbor
of pupg in its core object career. An example of this case is
shown in Case 2 of status promotion in Figure 6.

status prolong: A new object pnew may prolong the core
cell lifespan of the skeletal grid cell Sci in which it resides, if
p′news core object lifespan is longer than that of any existing
object in Sci. In this case, we set Sc′is core cell lifespan equal
to the core object lifespan of pnew. An example of this case
is shown in Case 1 of status prolong in Figure 6.

pnew may also prolong the core cell lifespans of the skeletal
grid cells by extending pnew’s neighbors’ core object lifes-
pan. For each pnew’s neighbor whose core object lifespan is
extended because of pnew’s arrival, pcole, we first determine
how long its core object lifespan is extended, by analyzing
it would have at least θc neighbors in how many more win-
dows after pnew joining its neighborhood. Then, we update
the core cell lifespan of the skeletal grid cell in which each
pcole resides to the core object lifespan of the corresponding
pcole, if the later is longer. An example of this case is shown
in Case 2 of status promotion in Figure 6.

For connections of skeletal grid cells, the insertion of a
new object may only cause two types of changes. Namely, it
may build new connections between skeletal grid cells or pro-
long the lifespan of existing connections. The maintenance
process of the connections follows the same principles used
in status maintenance logics (details omitted here for space
reasons but can be found in [18]).

Handling Expirations. By using the lifespan analysis
technique introduced above, the impact to the skeletal grid
cells that could be caused by expiring objects has been pre-
handled when objects arrive. Therefore, no maintenance
effort is needed for handling cluster structure changes when
individual objects expire. After the window slides, the only

Figure 6: Examples of updating cell status. θc = 4,
grey circle=edge point, black circle=core point, num-
ber on each object= number of windows the object
can survive.

update needed for the attributes of skeletal grid cells is to
check whether the new window is out of the lifespans. If
the new window is out of its core cell lifespan, its status
needs to be set back to edge cell. If the new window is out
of the lifespan of any of its connections, the corresponding
connection needs to be set back to “false”.

Output Stage. At the output stage, the updated skele-
tal grid cells can be viewed as the vertices V in a graph
G, and the connections among them can be viewed as the
edges E among the vertices. Therefore, we simply conduct
a depth first search on all the core cells to collect different
groups of connected core cells and the edge cells attached
to them. Each connected group of skeletal grid cells con-
stitutes the SGS summarization of a cluster Ci, Ci.SGS.
Given Ci.SGS, the full representation of Ci can be easily
figured out by collecting all objects covered by core cells in
Ci.SGS and those covered by the edge cells in Ci.SGS and
connected to at least one core object in Ci.SGS′s core cells.

6. PATTERN ARCHIVER
The pattern archiver handles two major tasks, namely

pattern compression and selective pattern archival.

6.1 Multi-Resolution Cluster Summarization
Our proposed cluster summarization SGS supports mul-

tiple resolutions. In general, the SGS in different levels of
resolution follow the same design as presented in Section
4. An SGS of any resolution is composed of a sequence of
skeletal grid cells, and each skeletal grid cell has the same 5
attributes introduced before.

For any cluster Cx, the SGS of Cx formed by the Pat-
tern Extractor is based on the finest granularity, namely the
smallest skeletal grids cells. Thus it is of the finest resolu-
tion. We call such SGS the “Basic SGS” of Cx. The SGS
in coarser resolutions are built based on hierarchically com-
bining the Basic SGS. For a cluster Cx, we say that the
Basic SGS of Cx is at Level 0 of the resolution hierarchy,
noted as Cx.SGSL0 . Any SGS in a coarser resolution is at
a Level n denoted as Cx.SGSLn .

Each skeletal grid cell in Cx.SGSLn (n > 0), Cx.Sc
Ln
i is

formed by combining the skeletal grid cells within a certain
(θ) sized hypercube space in Cx.SGSLn−1 . For example, a 2-
dimensional cluster Cx has SGS in two resolutions (Figure
5). They are at Levels 0 and 1. If the compression rate

128



θ = 3, each skeletal grid cell of SGS at Level 0 is made by
combining 32 adjacent skeletal grid cells at Level 1. Both
the number of resolutions allowed and the parameter θ are
part of the configuration of our system.

Such compression process of building Cx.SGSLn can be
finished with a single scan of the skeletal grid cells in
Cx.SGSLn−1 . Given Cx.SGSLn−1 and to build Cx.SGSLn ,
we first generate a set of skeletal grid cells for Cx.SGSL

n to
cover the whole data space occupied by corresponding cells
in the Cx.SGSLn−1 . Then we set the five attributes for
Cx.Sc

Ln
i . The side length of any Cx.SG

Ln
i is simply equal

to the side length of a skeletal grid cell at Level n-1 times

θ. Any Cx.Sc
Ln
i is a core cell if at least one Cx.Sc

Ln−1

i

covered by it is a core cell. Otherwise, it is an edge cell.
The population of any Cx.Sc

Ln
i is equal to the sum of the

population of the Cx.Sc
Ln−1s covered by it. The connection

vector of a Cx.Sc
Ln
i is decided by the connections between

the “boundary” Cx.Sc
Ln−1s covered by it and those covered

by its adjacent cells at level n-1.
Budget- and Accuracy-Aware Resolution Selection.

Given the multiple resolution choices, the Pattern Archiver
can decide in which resolution to archive the patterns based
on both the system-resource budget and the accuracy re-
quired by the specific analytical tasks. In our SGS design,
for a cluster summarization at a certain resolution, both its
space consumption and conciseness are deterministic and
easily calculatable. For space consumption, given the ba-
sic SGS of a cluster extracted, we can easily determine the
number of skeletal grid cells needed in any other resolution
for the same cluster, by calculating how many grid cells
at that resolution are needed to cover the same data space.
Since the SGS at different resolutions have the same design,
the amount of information carried by each skeletal grid cell
in any resolution is fixed. Thus, one can easily determine
how much storage space is needed exactly for a given cluster
in any resolution. For accuracy, as the size of the skeletal
grid cells at all resolutions are known, the analysts would
know exactly the granularity that their analytical task will
be working on for a certain resolution.

6.2 Selective Pattern Archiving
The Pattern Archiver also selectively picks which clus-

ters to archive. Currently, our system supports several sim-
ple but useful cluster selection mechanism, including using
sampling techniques to select certain numbers of clusters to
archive in a period of time and using feature selection to
only archive clusters with certain features (e.g. only archive
the clusters reaching a certain population or volume). More
sophisticated pattern selection techniques, such as evolution
driven techniques, will be studied in our future work.

7. PATTERN STORAGE AND MATCHING

7.1 Pattern Organization in Pattern Base
Our proposed cluster summarization method SGS empow-

ers us to easily organize the extracted clusters based on their
features. In particular, we build two indices for the archived
clusters. One is based on the position of each cluster, and
the second is based on all other features of each cluster cap-
tured in SGS.

We call the first index the locational feature index. As
multi-dimensional objects, we express the position of each
cluster using its minimum bounding rectangle (MBR). In

our system, we employ one of the most widely used indices
for MBRs, namely the R-tree index to organize them. The
second index, called the non-locational feature index, orga-
nizes the clusters based on their non-locational features. We
use a four-dimensional grid index to organize the clusters’
SGS, with the four dimensions: the volume (number of skele-
tal grid cells, the status count (number of core cells), the av-
erage density and the average connectivity of each cluster.

7.2 Cluster Matching Process
The Cluster Matching Queries (see Figure 3) are executed

by the Pattern Analyzer. To execute such queries, we first
provide a distance metric (between 0-1) to measure the dis-
tance between two clusters. The metric is user-customizable
based on application semantics.

Dist(Ca, Cb) = ps ∗Distlocation +
X

wi ∗Distnlf i(Ca, Cb)

ps,Distlocation = 0‖1, ∀wi, Distnlf i = [0, 1],
X

wi = 1)

In this distance metric, Distlocation indicates that whether
two clusters overlap (1) or not (0). ps indicates whether
the matching is “position-senstive” (1) or not (0). Distnlfi

represents the distance of two clusters on a specific non-
locational feature and wi represents the analyst-specified
weight on this feature.

To use this distance metric, the analyst needs to first
specify whether the matching required by her application
is position-sensitive, namely whether the matched clusters
have to overlap in the data space. For the position-sensitive
applications, ps = 1. If two clusters are not overlapped,
Distlocation(Ca, Cb) = 1, the largest possible distance be-
tween two clusters, indicating that the two clusters are not
similar and no further comparison on other features will be
needed. For the non-position-sensitive applications, since
ps = 0, the locational distance between two clusters is con-
sidered to be 0.

The second part of the distance metric measures the dis-
tance between two clusters on the four non-locational fea-
tures, namely volume, status, population and connectivity.
The distance on these features are used in both the match
candidate search and detailed cell level cluster match.

Candidate Search. Given a to-be-matched cluster, a
customized distance metric and a distance threshold speci-
fied by the analyst, our system first searches the potential
match candidates in the Pattern Base. In the positional-
sensitive case, the Pattern Analyzer first searches the lo-
cational feature index for the candidate clusters. If any
overlapped clusters are found, it will calculate their non-
locational distance with the to-be-matched clusters, and re-
turns the similar clusters if the distances are smaller than the
threshold. In the non-position-sensitive case, the Pattern
Analyzer directly searches against the non-locational feature
index for the candidates. Given the distance metric and the
distance threshold, the Pattern Analyzer can determine the
range of the search on each dimension (feature). For exam-
ple, given the volume of the to-be-matched cluster equal to
20, the weight on size distance is 0.20, the overall distance
threshold is 0.2, the volume of the candidate clusters have
to be between 14 and 30. This is because any other number
x < 14‖x > 30 will make abs(x−20)/min(x, 20) > (0.2/0.4),
which will definitely not fulfill the search creteria. The same
principle can be used on other features to determine the

129



range of search. Given the search ranges on all dimensions,
the Pattern Analyzer can quickly narrow down the candidate
clusters to a small subset by searching the feature index.

Grid Cell Level Cluster Match. Given a to-be-
matched cluster and a match candidate cluster for it, grid
cell level cluster match compares the features of two clus-
ters in their corresponding sub-regions (skeletal grid cells).
In particular, grid cell level match uses the same customiz-
able distance metric introduced earlier, while the distance
between two clusters is now measured by aggregating the dif-
ference between all the corresponding skeletal grid cell pairs
in these two clusters. More precisely, given a certain align-
ment between two clusters Ca and Cb,

2 each skeletal grid
cell Sci in Ca may have a corresponding skeletal grid cell
in Scj , depending on whether its corresponding sub-region
is also covered by Scj . If Sci has a corresponding skele-
tal grid cell Scj in Cb, their difference can be measured by
comparing their status, density and connectivity features.
Otherwise, Sci is assigned the maximum difference with its
corresponding sub-region, which is not a part of Cb and thus
can viewed as an empty grid. When calculating the distance
between two clusters Ca and Cb. we sum the difference be-
tween each Sci in Ca and its corresponding sub-region in Cb

to form the overall distance between the two clusters.
In the position-sensitive cases, no alignment is needed,

or in other words, the alignment vector is always equal to
[0,0,...,0]. This is because such applications require any
skeletal grid cell Sci in Ca to be matched with the skele-
tal grid cell Scj in Cb that have the same absolute position
in the data space. Therefore in such cases, we only need a
single scan on the skeletal grid cells in two clusters to cal-
culate the distances between them.

In the non-position-sensitive case, one or more alignments
that minimize the distance between two clusters may exist.
When given sufficient computation time, such as in an of-
fline computation, one could apply an exhaustive search to
find such an optimal alignment. In our system, for online
computation, we use an A* style anytime search algorithm
to search for the best alignment within a certain compu-
tation time budget. In particular, we start with an align-
ment that makes two clusters well overlapped. Then we
continuously search along the direction of the most promis-
ing “nearby” alignment, which gives the smallest distance so
far. When the given computation time budget is reached,
we stop searching and return the smallest distance found so
far as the distance between the two clusters.

8. EXPERIMENTAL EVALUATION
We conducted our experiments on a Dell desktop with

an Intel Core2 2.2GHz processor and 3GB memory, running
Windows 7 professional. We implemented the algorithms in
VC++ 7.0.

Real Datasets. We used two real streaming datasets in
our experiments. The first dataset, GMTI (Ground Moving
Target Indicator) [6], records the real-time information on
moving objects gathered by 24 different ground stations or
aircraft in 6 hours from JointSTARS. It has around 100,000

2
An alignment for two Skeletal Grid Summarizations (SGS) is a loca-

tion shifting vector. For example, given two three dimensional clus-
ters Ca and Cb, an alignment equal to [1,2,1] indicates that any skele-

tal grid cell in Ca with location vector equal to [x,y,z] corresponds to
a skeletal grid cell in Cb with location vector equal to [x+1,y+2,z+1],
if any.

records regarding the information on vehicles and helicopters
(speed ranging from 0-200 mph) moving in a certain geo-
graphic region. The second real dataset we use is the Stock
Trading Traces data (STT) from [11], which has one million
transaction records throughout the trading hours of a day.

For the experiments that involve data sets larger than the
sizes of these two datasets, we append multiple rounds of
the original data varied by setting random differences on all
attributes, until it reaches the desired size.

Alternative Summarization Formats. We compare
our proposed Skeletal Grid Summarization (SGS) with three
alternative cluster summarization formats. 1) The tradi-
tional “Centroid-Radius-Density” summarization (CRD). 2)
Random Sampling Summarization (RSP). RSP for each clus-
ter is generated by sampling the cluster members at a cer-
tain sampling rate R. To compare RSP with our proposed
SGS summarization, for each specific cluster in the experi-
ment, R is always controlled to let its RSP have the same
memory consumption with the SGS for the same cluster. 3)
Skeletal Point Set (SkPS) summarization, our initial cluster
summarization design proposed in Section 4.2.

8.1 Efficiency of Cluster Extraction + Sum-
marization

In this experiment, we evaluate that how many system re-
sources are needed to generate the alternative cluster sum-
marizations respectively. Since our proposed solution, C-
SGS, incorporates cluster extraction and summarization into
a single process, we compare its performance with the follow-
ing alternatives. 1) Extra-N: Extract clusters using state-
of-the-art algorithm Extra-N [16] but do not generate any
cluster summarization. 2) Extra-N + CRD: Extract clusters
using Extra-N and then generate CRD for each extracted
cluster. 3) Extra-N + RSP: Extract clusters using Extra-N
and then generate RSP for each extracted cluster. 4) Extra-
N + SkPS: Extract clusters using Extra-N algorithm and
then generate (approximated) SkPS for each cluster using
MG algorithm proposed in [9].

We first run each alternative method against the STT
stream to extract clusters based on four dimensions, namely
the transaction type (buy/sell), price, volume and time. To
compare the performance of the alternatives when handling
clusters with different characteristics, we use three different
query parameter settings, namely case 1: (θr = 0.05, θc =
10), case 2: (θr = 0.1, θc = 8), case 3: (θr = 0.2, θc = 5).
Also, for each case, we use three different window parameter
settings, namely we fix the window size (win) for all three
settings at 10K tuples, while varying the slide size slide to
equal to 0.1K, 1K and 5K tuples respectively.

For each case, we first verify the correctness 3 of our
proposed C-SGS cluster extraction method by comparing
the clusters extracted by it in full representation with those
extracted by the state-of-the art technique Extra-N. In all
the test cases, we found that the clusters extracted by C-
SGS are identical with those extracted by Extra-N.

For efficiency, we measure two major performance met-
rics for stream processing: 1) The average response time for
each window (denoted as Response Time). For each win-
dow, we measure the average CPU time elapsed from the
time that all new data have arrived to the time that all
clusters have been output in both the full and summarized

3
All clustering algorithms following definition in [8] should produce

the same clustering results given a same input object sequence.

130



representation. The average response time for each window
shown in all cases are averaged among running for 10K win-
dows. 2) The memory footprint, namely the peak memory
utilization of each alternative, among the 10K windows.

As shown in Figure 8.1, compared to Extra-N, which ex-
tracts clusters only but does not generate any cluster sum-
marization (the baseline case), the other four alternatives,
each generating a specific type of cluster summarization,
exhibit some overheads in terms of CPU time utilization.
However, such overhead caused by C-SGS, Extra-N + CRD,
and Extra-N + RSP, is very modest, if not neglectable. The
reason for such modest overhead caused by Extra-N + CRD
and Extra-N + RSP is obvious. This is because CRD and
RSP are very simple summarization formats that can easily
be generated by at most two scans of the cluster members of
each cluster. The overhead caused by our proposed solution
C-SGS is comparable with those two simple summarization
methods. This is because the major computation needed for
generating the SGS cluster summarization, namely deter-
mining the status and connections among skeletal grid cells,
is elegantly piggy-backed by the cluster extraction process
itself. The CPU overhead of Extra-N + SkPS is signifi-
cantly higher than that of the other alternatives. This is
because generating SkPS is very expensive computationally
[9]. For different window parameter settings, C-SGS has
lower overhead for the settings with larger win/slide rates.
This is because the performance of Extra-N is affected by
the increasing number of “views” that needs to be main-
tained, which is equal to win/slide (see [16] for details),
while the meta-data maintained by C-SGS and the corre-
sponding maintenance effort is independent from this ratio.

Memory-wise, as shown in (Figure 8.1), our proposed meth-

od C-SGS also exhibits very limited overhead in all test
cases. This is because the process of generating SGS hap-
pens in place with the cluster extraction process.

Similar performances are also observed in the same exper-
iments but using GMTI data. We have also conducted an
experiment showing the superiority of our proposed method
when using time-based windows and under fluctuating in-
put rate. The details of these experiments mentioned can
be found in our technical report [18].

In conclusion, using our proposed C-SGS solution, we can
efficiently generate the Skeletal Grid Summarization (SGS)
for extracted clusters during online clustering process, with
very limited system resource overhead.

8.2 Efficiency of Cluster Matching Queries
Next, we study the performance for running the cluster

matching queries using our proposed summarization format
SGS and other alternative summarization formats. We run
three queries using the same pattern parameter settings as
used in the previous experiment but with the same window
parameter setting (Win = 10K, Slide = 1K) against the
STT data using our proposed C-SGS method. We vary the
size of the Pattern Base equal from 0.1K, 1K and 10K respec-
tively. In each test case, we run each clustering query and
archive all the clusters detected into the Pattern Base un-
til the required number of archived clusters is reached. For
each archived cluster, we also generate and keep the other
three alternative cluster summarization formats for evalu-
ating other matching methods. Once the required number
of clusters is archived, we stop archiving and randomly pick

Figure 7: CPU time and Memory comparisons for
generating alternative summarizations.

100 newly detected clusters as to-be-matched clusters. For
each to-be-matched cluster, we run four matching queries
for it against the archived clusters, each using one alterna-
tive cluster summarization method and the corresponding
distance metric. In particular, we implement a subtraction
function to measure the distance between the CRD of two
clusters, which gives equal weight to the three cluster fea-
tures captured in CRD, namely the centroid, range and den-
sity. We use the subset matching algorithm presented in [15]
to calculate the distance between the RSP of two clusters.
We use the graph edit distance algorithm presented in [13]
to calculate the distance between the SkPS of two clusters.
We give equal weight to all four features when measuring
the distance between the SGSs of two clusters.

For each Pattern Base size, we measure the average re-
sponse time for all cluster matching queries and memory
space consumed by storing cluster summarizations.

As shown in Figure 8, when matching against 0.1K clus-
ters, the average response time for each cluster matching
query using SGS is less than 0.1 second. For the 1K and
10K cases, the average response time for our solution is only
around 0.5 seconds and 3 seconds. Such high efficiency is
comparable with cluster matching using CRD, which is very
fast because of its extremely simple matching mechanism
(simply three subtraction operations). This is due to the
design of SGS, which effectively summarizes the key features
of each cluster on both cluster and grid levels. In particu-
lar, by using our proposed two-phase matching strategy, the
majority of the candidates in the pattern base are filtered
out in the summarization matching phase. Thus, the more
expensive grid level matching is only needed for a very small
portion of the candidates. In our experiment, we found that
only 6% of the candidate clusters necessitated the grid level
match on average during the cluster matching process.

Memory-wise, SGS consumes only 0.12M, 1.38M and
12.24M memory space to store 0.1K, 1K and 10K clusters
respectively (Figure 8). In particular, each 4-dimensional
skeletal grid cell only consumes 23 bytes, position: 16 bytes
(4 integers), status: 1 byte (1 boolean), density: 4 bytes (1
integer), connection: 2 bytes (24 = 16 booleans). In all test
cases, the average number of skeletal grid cells in each clus-
ter is 68. Therefore, only 1.5K memory is needed to store the
SGS of each cluster on average. Compared with the mem-
ory space needed for storing the full representation of the
clusters, which need 6.4M, 75.2M and 680.2M to store 0.1K,

131



1K and 10K clusters respectively, the average compression
rate of SGS in our experiment is around 98%.

In conclusion, our proposed solution demonstrates high
efficiency for cluster matching queries, which is significantly
better than matching SkPS or RSP. Its performance is com-
parable with matching simple CRD cluster summarization.
However, matching CRD is shown to have a much worse
cluster matching quality compared with our proposed
method of matching SGS (see next experiment below).

Figure 8: CPU time and Memory comparison for
cluster matching queries using alternative cluster
summarization methods

8.3 Quality of Cluster Matching
To measure the quality of cluster matching using alterna-

tive summarization formats, we invited 20 human analyts
(all WPI graduate students) to visually analyze the simi-
larity between the to-be-matched cluster and the matched
clusters found for them using one alternative method. The
analysis process is supported by ViStream [14], a freeware
multivariate data visualization tool, which has been shown
to be effective for helping human analysts to observe and
understand multi-dimenstional clusters in streams. For each
to-be-matched cluster, the analysts are asked to rate the top
three similar clusters found by each summarization format
into three categories, namely “very similar”, “similar”, and
“not similar”.

Figure 9: Similar rate given by users for matched
clusters found by alternative summarizations

As shown in Figure 8.3, our proposed summarization
method SGS demonstrates a high “similar rate”, which is
significantly better than all the other alternatives. This in-
dicates that the human analysts agree with most of the sim-
ilar clusters found using SGS, while disagreeing on a large
percentage of those found using other alternatives. This
shows the high effectiveness of SGS summarization in terms
of cluster matching. Due to page limit, the detailed ex-
perimental setup and result analysis of this experiment are
omitted here but can be found in our technical report [18].

We also conducted a series of experiments to confirm both
the efficiency and effectiveness of cluster matching queries
when using SGS with different resolutions. The details of
those experiments can be found in our technical report [18].

9. CONCLUSION
In this work, we present a framework to support summa-

rization and matching of density-based clusters in streaming
environments. First, our work solves several open problems
for density-based cluster analysis, namely, designing a de-
scriptive yet compact summarization method for such clus-
ters. Second, we present an efficient computation strategy
to quickly summarize the detected clusters into SGS during
the online clustering. Lastly, we design a cluster archiv-
ing and matching mechanism, which allows the analysts to
submit cluster matching queries to find similar clusters de-
tected earlier in the stream history. Our experimental study
demonstrates the clear superiority of our proposed methods
on both the efficiency and effectiveness.

10. REFERENCES
[1] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A framework

for clustering evolving data streams. In VLDB, pages 81–92,
2003.

[2] A. Arasu, S. Babu, and J. Widom. The cql continuous query
language: semantic foundations and query execution. VLDB J.,
15(2):121–142, 2006.

[3] F. Cao, M. Ester, W. Qian, and A. Zhou. Density-based
clustering over an evolving data stream with noise. In SDM,
pages 328–339, 2006.

[4] Y. Chen and L. Tu. Density-based clustering for real-time
stream data. In KDD, pages 133–142, 2007.

[5] B.-R. Dai, J.-W. Huang, M.-Y. Yeh, and M.-S. Chen. Adaptive
clustering for multiple evolving streams. IEEE Trans. Knowl.
Data Eng., 18(9):1166–1180, 2006.

[6] J. N. Entzminger, C. A. Fowler, and W. J. Kenneally.
Jointstars and gmti: Past, present and future. IEEE Trans on

Aero and Elec Sys, 35(2):748–762, 1999.

[7] M. Ester, H. Kriegel, J. Sander, M. Wimmer, and X. Xu. Inc.
clustering for mining in a data warehousing environment. In
VLDB, pages 323–333, 1998.

[8] M. Ester, H. Kriegel, J. Sander, and X. Xu. A density-based
algorithm for discovering clusters in large spatial databases
with noise. In KDD, pages 226–231, 1996.

[9] S. Guha and S. Khuller. Approx. algo. for connected
dominating sets. Algorithmica, 20:374–387, 1996.

[10] J. A. Hartigan and M. A. Wong. A k-means clustering
algorithm. Applied Statistics, 28(1), 1979.

[11] I. INETATS. Stock trade traces. http://www.inetats.com/.

[12] L. Lelis and J. Sander. Semi-supervised density-based
clustering. In ICDM, pages 842–847, 2009.

[13] M. Neuhaus, K. Riesen, and H. Bunke. H.: Fast suboptimal
algorithms for the computation of graph edit distance. In
SSSPR, pages 163–172, 2006.

[14] D. Yang, Z. Guo, Z. Xie, E. A. Rundensteiner, and M. O.
Ward. Interactive visual exploration of neighbor-based patterns
in data streams. In SIGMOD, pages 1151–1154, 2010.

[15] D. Yang, E. A. Rundensteiner, and M. O. Ward. Nugget
discovery in visual exploration by query consolidation. In
CIKM, pages 603–612, 2007.

[16] D. Yang, E. A. Rundensteiner, and M. O. Ward.
Neighbor-based pattern detection for windows over streaming
data. In EDBT, pages 529–540, 2009.

[17] D. Yang, E. A. Rundensteiner, and M. O. Ward. A shared
execution strategy for multiple pattern mining requests over
streams. PVLDB, 2(1):874–885, 2009.

[18] D. Yang, E. A. Rundensteiner, and M. O. Ward.
Summarization and matching of complex patterns in streaming
environment. WPI-CS-TR-11-04, 2011.
http://users.wpi.edu/∼diyang/WPICSTR1104.pdf.

[19] T. Zhang, R. Ramakrishnan, and M. Livny. Birch: an efficient
data clustering method for very large databases. In ACM
SIGMOD, pages 103–114, 1996.

132


