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ABSTRACT

This paper considers the problem of efficiently answering
reachability queries over views of provenance graphs, de-
rived from executions of workflows that may include re-
cursion. Such views include composite modules and model
fine-grained dependencies between module inputs and out-
puts. A novel view-adaptive dynamic labeling scheme is de-
veloped for efficient query evaluation, in which view specifi-
cations are labeled statically (i.e. as they are created) and
data items are labeled dynamically as they are produced
during a workflow execution. Although the combination of
fine-grained dependencies and recursive workflows entail, in
general, long (linear-size) data labels, we show that for a
large natural class of workflows and views, labels are com-
pact (logarithmic-size) and reachability queries can be eval-
uated in constant time. Experimental results demonstrate
the benefit of this approach over the state-of-the-art tech-
nique when applied for labeling multiple views.

1. INTRODUCTION
The ability to manage workflow provenance is increasingly

important for scientific as well as business applications. For
example, if an input to a workflow execution is discovered to
be incorrect, we may wish to determine whether a particular
workflow output depends on it and is thus also potentially
incorrect. Finding efficient techniques to answer such reach-
ability queries is thus of particular interest.

However, provenance information can be extremely large,
so we may wish to provide different views of this information.
For example, users may wish to specify abstraction views
which focus user attention on relevant provenance informa-
tion and abstract away irrelevant details, an idea proposed
in [8]. Workflow owners may also wish to specify security
views which can be used to hide private information from
certain user groups (e.g., sensitive intermediate data and
module functionality [10]). Provenance views consist of a
set of composite modules which encapsulate subworkflows.

Example 1. Figure 1 shows an abstraction of a real-life
scientific workflow collected from the myExperiment reposi-
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Figure 1: Views with Fine-Grained Dependencies

tory [19]. It generates atom signatures for individual com-
pounds given a Structural Data File (SDF) as input (ignore
for now the dashed edges inside modules M1 and M2). In a
high-level view of this workflow, users see only one compos-
ite module, indicated as the big dashed box, with two inputs
(d1 and d2) and two outputs (d4 and d5), while modules M1

and M2 and intermediate data d3 are hidden.

An important thing to keep in mind is that Workflow
provenance not only records the order of module executions
but also the dependencies between inputs and outputs of
modules. Therefore, workflow views should explicitly specify
the input-output dependencies for modules that are exposed
to users. Previous research [13, 21, 4, 5] has adopted a sim-
plified provenance model which assumes that every output
of a module depends on every input, termed black-box de-
pendencies. However, a more fine-grained provenance model
captures the fact that the output of a module may depend
on only a subset of its inputs.

To understand why fine-grained dependencies are useful,
consider the two types of views mentioned earlier. In ab-
straction views, although irrelevant workflow details are hid-
den inside composite modules, users should still be able
to see the true dependencies between inputs and outputs
of composite modules (white-box dependences). In security
views, however, one may want to hide the true dependencies
between inputs and outputs of certain composite modules in
order to preserve structural or module privacy [10]. To this
end, one may move to somewhere on the spectrum between
white-box and black-box dependencies (grey-box dependen-
cies). With grey-box dependencies, additional (false) de-
pendencies between inputs and outputs may be added.

Example 2. Returning to Figure 1, fine-grained depen-
dencies between the inputs and outputs of modules M1 and
M2 are indicated as dashed edges inside the modules. In an
abstraction view, the composite module would be associated
with white-box dependencies, in which d4 depends on d1 but
not on d2. However, in a security view, the composite mod-
ule could be associated with a grey-box dependency matrix
in which every output depends on every input. Hence, the
answer to the reachability query “Does d4 depend on d2?” is
different in the two views.
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This paper considers the problem of efficiently answering
reachability queries over views of provenance graphs, of the
types illustrated above. A common approach for processing
reachability queries is to label data items so that the reacha-
bility between any two items can be answered efficiently by
comparing their labels. Moreover, data items must be la-
beled dynamically as soon as they are produced during the
execution, since scientific workflows can take a long time to
execute and users may wish to query partial executions.

In contrast to previous work, we study effective dynamic
labeling in the context of (1) fine-grained dependencies be-
tween inputs and outputs of modules; and (2) views with
grey-box dependencies. This context introduces several new
challenges. First, none of the existing dynamic labeling
schemes applies to fine-grained dependencies, since they all
rely on a simplified provenance model with black-box depen-
dencies. Second, due to grey-box dependencies, the answer
to a reachability query may alter in different views. A brute-
force approach to handling multiple views is to label data
items for each view repeatedly and separately. This has two
drawbacks: (i) large index: for each data item, we must
maintain one label for each view; and (ii) expensive index
maintenance: when a new view is added, all existing data
items must be re-labeled. To address the challenges, more
effective labeling techniques must be developed. The main
contributions of this paper are summarized as follows.

• We propose a formal model based on graph grammars
which capture a rich class of (possibly recursive) workflows
with fine-grained dependencies between the inputs and out-
puts of modules. We then use the model to formalize the
notion of views. They are defined over the workflow specifi-
cation and then naturally projected onto its runs (Section 2).

• To get a handle on the difficulty introduced by fine-grained
dependencies to the dynamic labeling problem, we prove
that in general, long (linear-size) labels are required. We
further show that common restrictions on the workflow spec-
ification, that sufficed to reduce the label length for black-
box dependencies [5], are no longer helpful. Nevertheless,
we identify a large natural class of safe views over strictly
linear-recursive workflows for which dynamic, yet compact
(logarithmic-size) labeling is possible (Section 3).

• Based on this foundation we propose a novel labeling ap-
proach whereby view specifications are labeled statically (i.e.
as they are created), whereas data items are labeled dynam-
ically as they are produced during a workflow execution. At
query time, the labeling of the view over which the reach-
ability query is asked is used to augment the data labels
to provide the correct answer in constant time. We call
this a view-adaptive dynamic labeling scheme. It has the
great advantage that, since data labels are unrelated to any
view, views can be added/deleted/modified without having
to touch the data. It is both space-efficient and time-efficient
relative to the brute-force approach (Section 4).

• Finally, we evaluate the proposed view-adaptive labeling
scheme over both real-life and synthetic workflows. The ex-
perimental study demonstrates the superiority of our view-
adaptive labeling approach over the state-of-the-art tech-
nique [5] when applied to label multiple views (Section 5).

Related Work. Before presenting our results, we briefly re-
view related work. The problem of reachability labeling has
been studied for different classes of graphs in both static and
dynamic settings. Ideally, one would like to build compact
(logarithmic-size) labels which enable efficient (constant)
query processing. While compact and efficient labeling is

shown to be feasible for static trees [20], when labeling gen-
eral directed acyclc graphs (DAGs), any possible scheme
requires linear-size labels even if arbitrary query time is
allowed [4]. On the other hand, dynamic labeling is also
much harder than static labeling. [9] shows that even label-
ing dynamic trees requires linear-size labels. Fortunately,
although workflow runs can have arbitrarily more complex
DAG structures than trees, [4, 5] show that knowledge of
the specification can be exploited to obtain compact and
efficient labeling schemes for both static and dynamic runs
derived from a given specification. A more detailed compar-
ison between existing static and dynamic labeling schemes
for XML trees [20, 1, 9, 18, 23], for DAGs [15, 24, 22, 16,
11] and for workflow runs [13, 4, 5] is summarized in [5].
However, as mentioned above, none of the existing dynamic
labeling schemes is applicable to our problem as they neither
support fine-grained dependencies nor handle views.

2. MODEL AND PROBLEM STATEMENT
We present a fine-grained workflow model with white-box

dependencies in Section 2.1. Based on this model, we define
views with grey-box dependencies in Section 2.2. Section 2.3
formulates the view-adaptive dynamic labeling problem.

2.1 Fine-Grained Workflow Model
Our workflow model is built upon two concepts: workflow

specification, which describes the design of a workflow, and
workflow run, which describes a particular workflow execu-
tion. We model the structure of a specification as a context-
free workflow grammar whose language corresponds to ex-
actly the set of all possible runs of this specification. The
grammar that we use is similar to [5, 7]. However, previous
work [17, 13, 21, 5, 7] adopted a simplified provenance model
which implicitly assumes black-box dependencies – every out-
put of a module depends on every input. In contrast, this
paper proposes a more fine-grained provenance model which
captures the fact that an output of a module may depend
on only a subset of inputs. We call this white-box dependen-
cies. In particular, our model associates the grammar with
a dependency assignment that explicitly specifies the depen-
dencies between inputs and outputs of atomic modules.

The basic building blocks of our model are modules and
simple workflows. A module has a set of input ports and a
set of output ports; and a simple workflow is built up from a
set of modules by connecting their input and output ports.

Definition 1. (Module) A module is M = (I, O), where
I is a set of input ports and O is a set of output ports.

Definition 2. (Simple Workflow) A simple workflow is
W = (V,E), where V is a multiset of modules and E is
a set of data edges from an output port of one module to
an input port of another module. Each data edge carries a
unique data item that is produced by the former and then
consumed by the latter. Input ports with no incoming data
edges are called initial input ports; and output ports with
no outgoing data edges are called final output ports.

To simplify the presentation, we assume that (1) pairwise
non-adjacent data edges: any pair of data edges are not in-
cident to the same port; and (2) acyclic simple workflow:
data edges do not form cycles among the modules. Note
that the above two restrictions do not limit the expressive
power of our model. For (1), adjacent data edges can be
resolved by introducing dummy modules that distribute or
aggregate multiple data items. For (2), we will see that loops
can be implicitly captured by recursive productions.
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Example 3. The top left corner of Figure 2 shows a mod-
ule S with two input ports and three output ports, which
are denoted by solid and empty cycles, respectively. The top
right corner of Figure 2 shows a simple workflow W1 with six
modules and ten data edges (solid edges, ignore the dashed
edges inside modules for now). W1 has two initial input
ports and three final output ports, which are highlighted by
solid and empty thick arrows, respectively.

To build a new workflow, an existing (simple) workflow
may be reused as a composite module. This is modeled by a
workflow production.

Definition 3. (Workflow Production) A workflow pro-
duction is of form M →f W , where M is a composite mod-
ule, W is a simple workflow and f is a bijection that maps
input ports and output ports of M to initial input ports and
final output ports of W , respectively. When f is clear from
the context, we simply denote a production by M → W .

Example 4. In Figure 2, each row defines one or two
productions. For example, the first row defines S → W1, and
the second row defines A → W2 and A → W3. Note that A
also appears as a composite module in both W1 and W4. For
simplicity, we assume that for each production M → W , the
(initial) input ports and (final) output ports of M and W
are mapped by f from top to bottom as shown in the figure.

The context-free workflow grammar is a natural extension
of the well-known context-free string grammar, where mod-
ules correspond to characters, and simple workflows that
are built up from modules correspond to strings that are se-
quences of characters. In particular, atomic and composite
modules correspond to terminals and variables, respectively.
We also define a start module and a finite set of workflow
productions. By Definition 3, each production M →f W
replaces a composite module M with a simple workflow W .
The data edges adjacent to M are connected to W based
on the bijection f . The language of a context-free workflow
grammar consists of all simple workflows that can be derived
from the start module and contain only atomic modules.

Following the standard notations for string grammars,
given a finite set Σ of modules, let Σ∗ denote the set of
all simple workflows that are built up from a multiset of
modules in Σ. Given two simple workflows W1 and W2, let
W1 ⇒∗

f W2 denote that W2 can be derived from W1 by ap-
plying a sequence of zero or more productions, and f is a
bijection that maps initial input ports and final output ports
from W1 to W2. Again, f may be omitted for simplicity.

Definition 4. (Context-Free Workflow Grammar) A
context-free workflow grammar (abbr. workflow grammar) is
G = (Σ,∆, S, P ), where Σ is a finite set of modules, ∆ ⊆ Σ
is a set of composite modules (then Σ\∆ is the set of atomic
modules), S ∈ Σ is a start module, and P = {M → W | M ∈
∆,W ∈ Σ∗} is a finite set of workflow productions. The
language of G is L(G) = {R ∈ (Σ \∆)∗ | S ⇒∗ R}.

Example 5. Our running example of a workflow gram-
mar G is shown in Figure 2. Composite modules are indi-
cated by uppercase letters and atomic modules by lowercase
letters. Formally, G = (Σ,∆, S, P ), where Σ = {S, A, B,
. . ., E, a, b, . . ., f}, ∆ = {S, A, B, . . ., E}, and P =
{p1 = S → W1, p2 = A → W2, p3 = A → W3, p4 =
B → W4, p5 = C → W5, p6 = D → W6, p7 = D → W7,
p8 = E → W8}. Note that p2 and p4 form a recursion be-
tween A and B. p6 forms a self-recursion over D, and along
with p7, indicates a loop (sequential execution) over f .

S
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b

A

W1

A

B
W2

W4

C
b

D

E

c
W5

D
f

D

W6 W7 f

f
c

W8

E
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C

C

c

d

d

A

e

W3

C

e

Figure 2: Workflow Specification

One possible simple workflow run R ∈ L(G) is shown in
Figure 3, where the atomic modules in R are denoted by solid
boxes, and the composite modules that are created during the
derivation of R are denoted by dashed boxes. We create a
unique id for each atomic and composite module in R by
appending a distinct number to the module name. d1, d2,
. . . , d41 are unique ids for data items (data edges) in R.
For sake of illustration, we omit details of C : 1, C : 2 and
C : 3, and show details of C : 4 in Figure 4. Observe that R
can be derived from S by applying a sequence of productions
p1, p2, p4, p2, p4, p3, p5, p6, p6, p7, p8, . . .

So far we consider only workflow structure – the way in
which modules are connected to construct workflows. Next,
we enrich the model by defining fine-grained dependencies
between inputs and outputs of atomic modules. Naturally,
we assume that every input contributes to at least one out-
put; and every output depends on at least one input.

Definition 5. (Dependency Assignment) Given a fi-
nite set Σ of modules, a dependency assignment to Σ is a
function λ that, for each module M = (I, O) ∈ Σ, defines a
set λ(M) of dependency edges from I to O, such that ∀i ∈ I,
∃o ∈ O, (i, o) ∈ λ(M); and ∀o ∈ O, ∃i ∈ I, (i, o) ∈ λ(M).

Finally, combining all the above components, our fine-
grained workflow model is formalized as follows.

Definition 6. (Fine-Grained Workflow Model) A
workflow specification is Gλ, where G = (Σ,∆, S, P ) is a
workflow grammar and λ is a dependency assignment to
Σ \ ∆. The set of all workflow runs w.r.t. Gλ is L(Gλ) =
{Rλ | R ∈ L(G)}, where Rλ is obtained from R by adding
to each module M in R a set λ(M) of dependency edges.

Example 6. For the grammar G in Figure 2, we define
a dependency assignment λ to all atomic modules (i.e., a,
b, . . ., f). The dependency edges introduced by λ are shown
in Figure 2 as dashed edges from input ports to output ports
of atomic modules. With both data (solid) and dependency
(dashed) edges, Figures 3 and 4 represent a run Rλ ∈ L(Gλ).
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In Section 3, we will compare our fine-grained model (i.e.,
with white-box dependencies) to the existing coarse-grained
model (i.e., with black-box dependencies) [5, 7]. Both are
grammar-based, but the coarse-grained model is less expres-
sive, and captures only a subclass of fine-grained workflows.

Definition 7. (Coarse-Grained Workflows) A work-
flow specification Gλ is said to be coarse-grained if (1) λ
is defined such that for any atomic module, every output
depends on every input; and (2) every simple workflow used
by G has a single source module and a single sink module 1.

2.2 Views with Grey-Box Dependencies
A workflow view is constructed over a specification and

then projected onto its runs. Such approach is common in
workflows [8, 21, 10] (unlike typical database views that are
defined via queries), but our work is the first to be based on a
fine-grained model. Formally, a view is defined by two com-
ponents. One describes the structure of a view by restricting
the possible expansions of workflow hierarchy to a subset
of composite modules. The other specifies the “perceived”
fine-grained dependencies between inputs and outputs of all
unexpandable modules in this view. As mentioned in Sec-
tion 1, for abstraction views, the perceived dependencies al-
ways reflect the true dependencies, which we call white-box
dependencies. In contrast, for security views, false depen-
dencies may be introduced in order to hide private prove-
nance information, which we call grey-box dependencies.

Definition 8. (Workflow View) Give a workflow speci-
fication Gλ = (Σ,∆, S, P )λ, a view over Gλ is defined by a
pair (∆′, λ′) , where ∆′ ⊆ ∆ is a subset of composite mod-
ules and λ′ is a new dependency assignment for Σ \∆′. In
particular, (∆, λ) is said to be the default view over Gλ.

Remark 1. As will be seen in Section 3.1, from the input-
output dependencies of atomic modules, we can compute
those of composite modules. We thus say that a view (∆′, λ′)
has white-box dependencies, if λ′ defines the same depen-
dencies as λ does, otherwise, it has grey-box dependencies.

1(2) ensures black-box dependencies for composite modules.

S a

b
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W1

A
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C

c

d
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C

e
B

W2

C
d

Figure 5: View of Workflow Specification

A view U = (∆′, λ′) defined over a specification Gλ pro-
duces a new grammar, denoted G∆′ , by restricting G to
the subset of productions for composite modules in ∆′. To-
gether with λ′, it defines a new specification, denoted GU =

(G∆′)λ
′

, which we call a view of this specification. Similarly,
given a run Rλ ∈ L(Gλ), by restricting the derivation of R
to only productions for composite modules in ∆′ and using

λ′, we obtain a view of this run, denoted RU = (R∆′)λ
′

.

Example 7. Using the specification Gλ in Figure 2, we
define a view U = (∆′, λ′), where ∆′ = {S,A,B}. The new
grammar G∆′ is shown in Figure 5, which contains only the
productions for S, A and B. Note that C is treated as an
atomic module in this view, which makes D, E and f un-
derivable. Therefore, λ′ needs to be defined for only atomic
modules a, b, c, d, e and C. The dependency edges intro-
duced by λ′ are shown in Figure 5 as dashed edges. Com-
paring with λ defined in Figure 2, we observe that λ′(C) is
newly defined, λ′(e) is changed, and others are unchanged.
Hence, this view introduces grey-box dependencies.

We project this view onto the run Rλ in Figures 3 and 4.
Since C is treated as atomic, details of C : 1, C : 2, C : 3
and C : 4 (Figure 4) are hidden and R∆′ has exactly the
structure in Figure 3. However, all the dependency edges
for R∆′ should be given according to λ′ as in Figure 5.

In the rest of this paper, we may simply denote a specifi-
cation by G and a run by R, since the original dependency
assignment λ is irrelevant to views (i.e., overwritten by λ′).

2.3 View-Adaptive Dynamic Labeling
We start with the basic dynamic labeling problem. The

goal is to assign each data item a reachability label as soon
as it is produced (dynamically) such that using only the la-
bels of any two data items, we can quickly decide if one de-
pends on the other. Two different but related dynamic label-
ing problems were formulated in [5]. In the execution-based
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problem, atomic modules of a run are generated one-by-one
according to some topological ordering. In the derivation-
based problem, a run is derived from the start module by
applying a sequence of productions. As observed in [5], any
solution for the former also provides a solution for the latter.
We thus focus only on the derivation-based problem.

Definition 9. [5] (Dynamic Labeling) A dynamic label-
ing scheme for a given specification Gλ is (φ, π), where φ is
a labeling function and π is a binary predicate. φ takes as
input a derivation of a run Rλ ∈ L(Gλ), that is, a sequence
of productions that transform the start module S to R. Ini-
tially, φ assigns a label φ(d) to each input and output d of
S. In the ith step of the derivation, φ assigns a label φ(d)
to each new data item d introduced by the ith production.
Note that we do not know the production sequence in ad-
vance, but receive them online. The assigned labels cannot
be modified subsequently. φ and π are such that for any
derivation of a run Rλ ∈ L(Gλ) and any two data items d1
and d2 in Rλ, π(φ(d1), φ(d2)) = true iff d2 depends on d1.

In contrast to the previous work [5], this paper studies
the dynamic labeling problem in more general and useful
workflow settings. Specifically, we consider (1) fine-grained
input-output dependences and (2) views with grey-box depen-
dencies. Both ingredients entail new challenges, which will
be addressed in Sections 3 and 4, respectively.

To handle views, we propose in Section 4 a novel view-
adaptive labeling approach whereby view specifications are
labeled statically (i.e., as they are created), whereas data
items are labeled dynamically as they are produced during
a workflow execution. At query time, the label of the view
over which the query is asked is combined with the labels
of relevant data items to provide the correct answer. In
this framework, since data labels are unrelated to any view
(view-adaptive), views can be added/deleted/modified with-
out having to touch the data. It is both space-efficient and
time-efficient relative to the alternative approach where data
items are labeled repeatedly and separately for each view.

Definition 10. (View-Adaptive Dynamic Labeling)
A view-adaptive dynamic labeling scheme for a given speci-
fication G is (φr, φv, π), where φr is a labeling function for
runs, φv is a labeling function for view specifications, and π
is a ternary predicate. Given a derivation of a run R ∈ L(G),
φr as before assigns a label φr(d) (called data label) to each
data item d as soon as it is produced during the derivation
of R. Given a view U over G, φv treats U as one object and
assigns a label φv(U) (called view label). φr, φv and π are
such that for any derivation of a run R ∈ L(G), any view U
over G and any two data items d1 and d2 in RU , π(φr(d1),
φr(d2), φv(U)) = true iff d2 depends on d1 w.r.t. U .

A (view-adaptive) dynamic labeling scheme is said to be
compact if for any derivation of a run with n data items,
it creates data labels of O(log n) bits. Clearly, it provides
shortest possible data labels up to a constant factor.

3. FEASIBILITY OF DYNAMIC LABELING
To address the challenges brought by fine-grained depen-

dencies, we first consider the basic dynamic labeling problem
(see Definition 9), where there is only one default view de-
fined over the specification. Note that the labels created for
the default view also work for other views with white-box
dependencies, but not those with grey-box dependencies.

As a formal analysis, we present in this section a clas-
sification of fine-grained workflows based on the feasibility

of developing (compact) dynamic labeling schemes. In Sec-
tion 3.1, we first identify a class of safe workflows, and show
that they are the largest set of workflows that allow dy-
namic labeling schemes. In Section 3.2, we further iden-
tify a class of strictly linear-recursive workflow structures
for which dynamic, yet compact labeling schemes are possi-
ble. Polynomial-time algorithms are also given to decide if a
workflow is safe or if its structure is strictly linear-recursive.

Interestingly, our results show that the common restric-
tion on the workflow structure, which sufficed to reduce the
label length for black-box dependencies [5], are no longer
helpful. This formally proves the difficulty introduced by
fine-grained dependencies to the dynamic labeling problem.

3.1 Safe Workflows
Some workflows cannot be labeled on-the-fly even if arbi-

trary label size is allowed. We illustrate by an example.

S
d1 d2

a b

Figure 6: Unsafe Workflow

Example 8. Consider the specification in Figure 6 with
two productions S → a and S → b. d1 and d2 are an input
and an output of S, respectively. Observe that if S → a is
applied, then d2 depends on d1; otherwise (if S → b is ap-
plied), d2 does not depend on d1. Recall from Definition 9
that the labels for d1 and d2 must be assigned before we see
the production, and cannot be modified subsequently. There-
fore, no dynamic labeling schemes exist for this example.

In general, if two simple workflows with only atomic mod-
ules can be derived from the same composite module, and
they are inconsistent, in the sense that they have different
dependencies between initial inputs and final outputs, then
dynamic labeling is impossible for this specification. Such
workflows are said to be unsafe, and the others are safe.

Definition 11. (Safe Workflow) A workflow specifica-
tion Gλ = (Σ,∆, S, P )λ is said to be safe if ∀M ∈ ∆ and
W1,W2 ∈ (Σ \∆)∗ such that M ⇒∗ W1 and M ⇒∗ W2, W1

is consistent with W2 w.r.t. λ. Also, λ is said to be safe if
Gλ is safe; and a view U is said to be safe if GU is safe.

Remark 2. Safety is a natural restriction on fine-grained
workflows. It essentially says that for any module, either
atomic or composite, the dependences between inputs and
outputs are deterministic, in the sense that they can be pre-
dicted from the specification, and are consistent among all
possible executions. In particular, by Definition 7, any coarse-
grained workflow (i.e., with black-box dependencies) is al-
ways safe. Moreover, it is important to notice that from the
perspective of data provenance, the output of an aggregate
function depends on each of its inputs [3], even though the
output may take the value from only one of its inputs (e.g.,
“max” or “min” functions). Therefore, a workflow that use
those aggregate functions as modules is still safe.

Our first result shows that safety characterizes the feasi-
bility of dynamic labeling for fine-grained workflows.

Theorem 1. Given any workflow specification Gλ, there
is a dynamic labeling scheme for Gλ iff Gλ is safe.

Proof. (Sketch) By Definition 11, unsafe workflows do
not allow any dynamic labeling schemes. On the other hand,
the view-adaptive dynamic labeling scheme, which we will
present in Section 4, can be modified to label arbitrary safe
workflows, though it may create linear-size data labels.
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It is possible to test in polynomial time if a given specifica-
tion Gλ is safe. Our algorithm based on Lemma 1 is briefly
described as follows. We start by defining λ∗ = λ for each
atomic module, and then compute λ∗ for composite modules
by verifying all the productions. A production M → W is
said to be verifiable, if λ∗ is already defined for all the mod-
ules in W , so that λ∗(M) can be computed. The algorithm
reports that Gλ is safe, if λ∗ is consistently defined for all
composite modules, and outputs λ∗ as a by-product.

Lemma 1. (Full Assignment) A workflow specification
Gλ = (Σ,∆, S, P )λ is safe iff there is a unique dependency
assignment λ∗ to Σ (called the full dependency assignment)
such that (1) ∀M ∈ Σ \∆, λ∗(M) = λ(M); and (2) ∀M →
W ∈ P , M is consistent with W w.r.t. λ∗.

S A B C D E

S A B

Figure 7: Full Dependency Assignment

Example 9. We illustrate the above algorithm using the
specification Gλ in Figure 2. Initially, both p7 = D → W7

and p8 = E → W8 are verifiable. We compute λ∗(D) and
λ∗(E) by p7 and p8. Once λ∗(D) and λ∗(E) are defined,
p5 = C → W5 and p6 = D → W6 become verifiable. We
compute λ∗(C) by p6, and verify that λ∗(D) computed by
p6 is consistent with the one computed before by p7. We
continue this process until all the productions are verified.
Hence, Gλ is safe, and λ∗ is shown on the top of Figure 7.
Similarly, one can verify that the view U = (∆′, λ′) defined
in Example 7 is safe using Figure 5. The full dependency
assignment for U is shown on the bottom of Figure 7. Com-
paring the two full assignments in Figure 7, while B gets the
same dependencies, the ones for S and A are different.

3.2 Linear-Recursive Workflow Structures
For safe workflows, we further examine the feasibility of

developing compact dynamic labeling schemes. First of all,
a negative result in [5] shows that there is a coarse-grained
workflow that does not allow any compact dynamic labeling
scheme. By Definition 7 and Lemma 1, we know that any
coarse-grained workflow is safe. So the negative result also
applies to the fine-grained model: there is a safe workflow
that does not allow any compact dynamic labeling scheme.

Given this, our next goal is to identify safe workflows that
enable compact dynamic labeling. An elegant characteriza-
tion for coarse-grained workflows is proved in [5]: given any
coarse-grained workflow specification Gλ, there is a compact
dynamic labeling scheme for Gλ iff G is a linear-recursive
workflow grammar which is formally defined as follows.

Definition 12. [5] (Linear-Recursive Workflow
Grammar) A workflow grammar G = (Σ,∆, S, P ) is said
to be linear-recursive if ∀M ∈ ∆ and W ∈ Σ∗ such that
M ⇒∗ W , W has at most one instance of M .

Note that coarse-grained workflows are only a restricted
class of (fine-grained) safe workflows. We show here that, in
the fine-grained model, linear-recursiveness is not enough to
enable compact dynamic labeling for safe workflows.

Theorem 2. There is a linear-recursive grammar G and
a safe dependency assignment λ such that any dynamic la-
beling scheme for Gλ requires linear-size data labels.

S

a

S

b

S

cWbWa Wc

a b b a c

…

Figure 8: Counterexample in Proof of Theorem 2

Proof. (Sketch) Figure 8 gives a counterexampleGλ with
three produtions pa = S → Wa, pb = S → Wb and pc =
S → Wc, where G is linear-recursive and λ is safe. Observe
that a run Rλ ∈ L(Gλ) is derived from the start module S
by applying an arbitrary sequence of pa and pb, followed by
one pc. Both pa and pb produce three new data items (data
edges). We focus only on the dependency edges between the
first two data items. Observe from Figure 8 that they form
a binary tree that is created dynamically from left to right:
if pa is applied, then the first data item is expanded, oth-
erwise (if pb is applied), the second data item is expanded.
Using a similar technique to [9], we can prove that labeling
such a dynamic tree requires linear-size data labels.

Theorem 2 tells us that while fine-grained dependencies
increase the expressive power of the model, they limit the
recursive workflow structure that allows compact dynamic
labeling. We thus identify a natural class of strictly linear-
recursive workflow grammars for which dynamic, yet com-
pact labeling is feasible for any safe dependency assignment.
To define them, we introduce a production graph that de-
scribes the derivation relationship between modules.

Definition 13. (Production Graph) Given a workflow
grammar G = (Σ,∆, S, P ), the production graph of G is a
directed multigraph P(G) in which each vertex denotes a
unique module in Σ. For each production M → W in P and
each module M ′ in W , there is an edge from M to M ′ in
P(G). Note that if W has multiple instances of a module
M ′, then P(G) has multiple parallel edges from M to M ′.

Intuitively, every cycle in P(G) corresponds to a recursion
in G. G is said to be recursive if P(G) is cyclic. A module
in G is said to be recursive, if it belongs to a cycle in P(G).

Definition 14. (Strictly Linear-Recursive Workflow
Grammar) A workflow grammar G is said to be strictly
linear-recursive if all the cycles in P(G) are vertex-disjoint.

Remark 3. Strictly linear recursion is able to capture
common recursive patterns that we observed from the myEx-
periment workflow repository [19]. In particular, consider
two common forms of recursion that we encounter in real-
life scientific workflows. The first is called the loop exe-
cution for which a sub-workflow is repeated sequentially a
number of times until certain condition is met. The second
is called the fork execution for which multiple copies of a
sub-workflow are executed in parallel. In scientific workflow
systems, such as Taverna [14] and Kepler [2], fork execu-
tions are commonly used to model operations over complex
data (e.g., “maps” over sets). Both loop and fork executions
belong to a simple form of strictly linear recursion.

It is easy to show that every strictly linear-recursive work-
flow grammar is also linear-recursive, but not vice versa.
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Figure 9: Production Graphs

Example 10. Figure 9 (left) shows the production graph
P(G) for the grammar G in Figure 2 (ignore number pairs
on the edges). Observe that P(G) has two cycles: one be-
tween A and B and the other (self-loop) over D. Since they
are vertex-disjoint, G is strictly linear-recursive. Figure 9
(right) shows the production graph P(G′) for the grammar
G′ in Figure 8. Since P(G′) has two self-loops that share S,
G′ is linear-recursive but not strictly linear-recursive.

It is possible to test in polynomial time if a given gram-
mar G is strictly linear-recursive. The algorithm starts by
building the production graph P(G), then according to Def-
inition 14, checks if any two cycles in P(G) share a vertex.

The main result of this paper is to show that dynamic,
yet compact labeling is feasible for strictly linear-recursive
grammars with any safe dependency assignment.

Theorem 3. Given any strictly linear-recursive workflow
grammar G, for any safe dependency assignment λ, there is
a compact dynamic labeling scheme for Gλ.

The following section describes our labeling scheme.

4. VIEW-ADAPTIVE DYNAMIC LABELING
This section presents a compact view-adaptive dynamic

labeling scheme for strictly linear-recursive workflows with
safe views. The rationale behind our label design is ex-
plained as follows. Both data labels and view labels encode
only partial (but orthogonal) reachability information. More
precisely, a data label encodes only a subsequence of the run
derivation that creates this data item, while a view label en-
codes only the fine-grained dependencies that are defined in
this view. However, a combination of two data labels and
a view label provides the complete information to infer the
reachability between the two data items over this view.

We start with a preprocessing step in Section 4.1. Two in-
dependent tasks for labeling dynamic runs and labeling safe
views are described in Sections 4.2 and 4.3, respectively.
Section 4.4 presents how to efficiently answer queries using
a combination of data labels and view labels. Finally, Sec-
tion 4.5 analyzes the quality of our labeling scheme.

4.1 Preprocessing
As a preprocessing step, we assign a pair of numbers to

each edge in the production graph. These pairs serve as
unique ids for the edges, and will be used later to label runs
and views. Let G = (Σ,∆, S, P ) be a strictly linear-recursive
grammar and P(G) be its production graph. First of all, we
fix an arbitrary ordering among the productions in P , and
for each production M → W , fix an arbitrary topological
ordering among the modules in W . Let pk = M → W
be the kth production in P , and Mi be the ith module in
W , then we assign the edge from M to Mi in P(G) a pair
(k, i). Hereafter, we simply refer to this edge as (k, i). In

addition, we also fix an arbitrary ordering among all the
(vertex-disjoint) cycles in P(G), and for each cycle, fix an
arbitrary edge as the first edge of the cycle. We denote by
C(s) the sth cycle in P(G) containing a list of number pairs.

Example 11. For the grammar G in Figure 2, the pairs
of numbers assigned to the edges in P(G) are shown in Fig-
ure 9. Note that the productions p1, p2, . . ., p8 are simply
sorted by their subscripts. In Figure 2, all the modules in
W1 are sorted topologically as a → b → A → C → c → d.
Therefore, the edge from S to c in Figure 9 is assigned (1, 5)
because p1 = S → W1 is the first production, and c is the
fifth module in W1. Moreover, the two cycles in P(G) are
denoted by C(1) = {(2, 2), (4, 2)} and C(2) = {(6, 2)}.

4.2 Labeling Dynamic Runs
Given a derivation of a run R ∈ L(G), our goal is to assign

a data label φr(d) to each data item d in R as soon as it
is produced. The labeling is based on a tree representation
for runs, called the compressed parse tree. In contrast to the
traditional parse tree used for context-free grammars whose
depth may be proportional to the size of the run, the depth
of a compressed parse tree is always bounded by the size
of the specification. We will see later that this property is
critical to enable compact (logarithmic-size) data labels.

Definition 15. (Compressed Parse Tree) The compre-
ssed parse tree for a run R is an ordered tree T (R), where
each leaf node denotes an atomic module, and each non-leaf
node denotes either a composite module (called the compos-
ite node), or a linear recursion (called the recursive node).
The children of a composite node denote all the modules of a
simple workflow produced by a production, and are ordered
by a fixed topological ordering; and the children of a recur-
sive node denote a sequence of nested composite modules
obtained by unfolding a cycle in the production graph.

S:1

a:1 b:1 R:1 C:1 c:1 d:1

A:1 B:1 A:2 B:2 A:3

d:2 C:2

R:2

D:1 D:2 D:3

e:1 d:3 C:3 e:2 e:3

b:2 E:1 c:2

f:4 c:3

f:1 f:2 f:3

C:4

… …

… … … …

(1,1) (1,6)
(1,5)(1,2) (1,3) (1,4)

(2,1)
(2,3) (4,1)

(2,1)
(2,3) (4,1)

(3,1)

(5,1) (5,4)
(5,2)

(5,3)

(8,2)
(8,1)

(6,1) (6,1) (7,1)

(1,1,1)
(1,1,2)

(1,1,3) (1,1,4) (1,1,5)

(2,1,2) (2,1,3)(2,1,1)

(3,2)

Figure 10: Compressed Parse Tree

Example 12. The compressed parse tree T (R) for the
run R in Figures 3 and 4 is shown in Figure 10 (ignore
the edge labels), where R : 1 and R : 2 are recursive nodes.
Note that A : 1, B : 1, A : 2, B : 2, A : 3 (children of R : 1) are
obtained by unfolding the cycle between A and B in Figure 9.
In a standard parse tree, they would be connected in a path.

Lemma 2. Given a strictly linear-recursive workflow
grammar G, for any derivation of a run R ∈ L(G), the depth
of the compressed parse tree T (R) is no greater than 2∗ |∆|,
where |∆| is the number of composite modules in G.
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We now describe the dynamic labeling algorithm. Given a
derivation of a run R, we build T (R) in a top-down manner.
During this process, we label each new edge and use the edge
labels to construct labels for new data items on-the-fly. We
next explain the design of data labels step by step.

Firstly, we describe the label for an edge in T (R). Let e be
an edge from u to v in T (R). We denote by φr(e) the label
of e. (1) If u is a composite node, then e can be mapped to
an edge e′ in P(G). Recall from Section 4.1 that each edge
in P(G) is uniquely identified by a pair of numbers. Let
e′ = (k, i), then φr(e) = (k, i); and (2) otherwise (if u is a
recursive node), let u denote the sth cycle in P(G) starting
from the tth edge. This can be determined by the first child
of u. Let v be the ith child of u, then φr(e) = (s, t, i).

Secondly, we use a sequence of edge labels to construct
the label for an input port i in R. We denote by φr(i) the
label of i. Suppose i is first created as the xth input port of
a module M during the derivation of R, and M is denoted
by a node v in T (R). Let e1, e2, . . ., el be the path from the
root node to v in T (R), then φr(i) = {φr(e1), φr(e2), . . .,
φr(el), x}. For an output port o, φr(o) is defined similarly.

Finally, we use a pair of input and output port labels to
construct the label for a data item (data edge) d = (o, i)
in R. We denote by φr(d) the label of d, then φr(d) =
(φr(o), φr(i)). Since o and i must be created by the same
production, φr(o) and φr(i) differ only in the last one or two
edge labels. The size of φr(d) can be reduced almost by half
by factoring out the common prefix of φr(o) and φr(i).

Example 13. The edge labels for the compressed parse
tree T (R) are shown in Figure 10. E.g., the edge from R : 1
to A : 3 is labeled by (1, 1, 5), because R : 1 denotes the first
cycle in the production graph starting from the first edge (see
Example 11), and A : 3 is the fifth child of R : 1. Next, we
label the data items. E.g., consider d21 = (o, i) in Figure 4,
where o is the first output port of b :2, and i is first created as
the second input port of D : 1 (note that i is also the second
input port of f :1). Then, φr(d21) = (φr(o), φr(i)), where

φr(o) = {(1, 3), (1, 1, 5), (3, 2), (5, 1), 1}

φr(i) = {(1, 3), (1, 1, 5), (3, 2), (5, 2), (2, 1, 1), 2}

4.3 Labeling Safe Views
Given a safe view U = (∆, λ) over G, our goal is to create

a view label φv(U) which can be combined with above data
labels to infer reachability over U . Using the algorithm in
Section 3.1, we first compute the full dependency assignment
λ∗ by extending λ to all the composite modules in ∆.

Next, we define three functions, I, O and Z. Recall from
Section 2.2 that G∆ denotes the grammar obtained by re-
stricting G to ∆. Let P(G∆) be the production graph of
G∆, then P(G∆) is a subgraph of P(G). Recall from Sec-
tion 4.1 that each edge in P(G) is uniquely identified by a
pair of numbers (k, i). The input of I and O is an edge in
P(G∆), denoted by a pair (k, i). The input of Z is a pair of
edges in P(G∆) of form (k, i) and (k, j). For simplicity, we
also denote them by a triple (k, i, j). The output of all three
functions is a reachability matrix, which is defined next.

Functions I and O. Given an edge (k, i) in P(G∆), let
pk = M → W be the kth production in P , and Mi be the
ith module in W , then (1) I(k, i) is defined as a reachability
matrix from the inputs of M to the inputs of Mi (w.r.t. λ

∗);
and (2) O(k, i) is defined as a (reversed) reachability matrix
from the outputs of M to the outputs of Mi (w.r.t. λ

∗).

Function Z. Given a pair of edges (k, i) and (k, j) in
P(G∆), let pk = M → W be the kth production in P ,

and Mi and Mj be the ith and jth module in W , respec-
tively, then Z(k, i, j) is defined as a reachability matrix from
the outputs of Mi to the inputs of Mj (w.r.t. λ∗). Note
that Z(k, i, j) is an empty matrix (with only false values) if
i ≥ j, since Mi and Mj are sorted in topological ordering.

Finally, φv(U) consists of all the above three functions,
along with λ∗(S) for the start module S. That is,

φv(U) = {λ∗(S), I,O,Z}

Basically, the above view label encodes all the fine-grained
dependency information that is specific to this view and is
necessary for our decoding algorithm given in Section 4.4.

Example 14. For the running example, we first label the
default view U1 = (∆, λ) for which λ∗ is computed in Ex-
ample 9, and is shown on the top of Figure 7. Using λ∗,
we can compute the functions I, O and Z. E.g., consider
the edge (1, 5) from S to c in Figure 9. The first production
p1 = S → W1 is shown in Figure 2. I(1, 5) denotes the
reachability from the inputs of S (i.e., the initial inputs of
W1) to the inputs of c (i.e., the fifth module in W1); sim-
ilarly, O(1, 2) denotes the (reversed) reachability from the
outputs of S (i.e., the final outputs of W1) to the outputs of
b (i.e., the second module in W1); and Z(1, 2, 5) denotes the
reachability from the outputs of b to the inputs of c in W1.

I(1, 5) =

[

1 1
0 0

]

O(1, 2) =





0 0
1 0
0 1



Z(1, 2, 5) =

[

0 0
0 0

]

Similarly, we can label the other view U2 = (∆′, λ′) defined
in Example 7, whose full dependency assignment is shown
on the bottom of Figure 7. Using Figure 5, we have

I(1, 5) =

[

1 1
0 1

]

O(1, 2) =





1 0
1 1
1 1



Z(1, 2, 5) =

[

0 1
0 0

]

As we can see above, the functions encoded by the view la-
bels φv(U1) and φv(U2) may evaluate to different values for
the same input. Moreover, they are defined over different
domains. E.g., I(5, 1) is defined for U1 but not for U2.

Space-Efficient View Labeling. By default, we pre-
compute all the reachability matrices for I, O and Z, and
materialize them in the view label. Alternatively, one can
compute them on-the-fly by performing a graph search over
the view of a specification during the query time. In gen-
eral, more sophisticated approaches (e.g., [15, 24, 22]) can
be used to label the view, in order to find a better balance
between the overhead of labeling views and query efficiency.
We will further explore this tradeoff in the experiments.

4.4 Decoding Data Labels with View Labels
Using only two data labels φr(d1) and φr(d2) and a view

label φv(U), one can decide if d2 depends on d1 w.r.t. U
by a decoding predicate π. We first define in Section 4.4.1
two procedures used by π, namely, Inputs and Outputs, and
then describe π in Section 4.4.2. Section 4.4.3 presents fast
matrix multiplication used to achieve constant query time.

4.4.1 Precedures Inputs and Outputs
Let e be an edge from u to v in the compressed parse tree

T (R). Given the edge label φr(e) (defined in Section 4.2)
and a view label φv(U), our procedure Inputs computes a
reachability matrix Inputs(φr(e), φv(U)) by Algorithm 1.

Case 1. [Line 1 to Line 2] If φr(e) = (k, i), that is, if u
is a composite node, then Inputs computes a reachability
matrix from the inputs of the module denoted by u to the
inputs of the module denoted by v, simply given by I(k, i).
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Case 2. [Line 3 to Line 8] If φr(e) = (s, t, i), that is, if u
is a recursive node, then v is the ith child of u. Let M1,
M2, . . ., Mi be the modules denoted by the first i children
of u. They are a sequence of nested composite modules in
RU obtained by unfolding the sth cycle in P(G) starting
from the tth edge. Inputs finally computes a reachability
matrix from the inputs of M1 to the inputs of Mi in RU by
multiplying all i− 1 intermediate reachability matrices.

Algorithm 1 Procedure Inputs

Input: φr(e) = (k, i) or (s, t, i)
φv(U) = {λ∗(S), I,O,Z}

Output: Inputs(φr(e), φv(U))

1: if φr(e) = (k, i) then
2: return I(k, i)
3: else {φr(e) = (s, t, i)}
4: let C(s) = {(k1, i1), (k2, i2), . . . , (kl, il)}
5: // C(s) denotes the sth cycle in P(G) of length l
6: let ∀a ≥ 1, ka+l = ka and ia+l = ia
7: return

∏i−1

a=1
I(kt+a−1, it+a−1)

8: end if

The other procedure Outputs is defined similarly, which
computes a (reversed) reachability matrix for output ports.

Example 15. Let e be the edge from R : 1 to A : 3 in
Figure 10 and U1 be the default view. φr(e) = (1, 1, 5) and
φv(U1) are explained in Examples 13 and 14. For this pair of
labels, Algorithm 1 computes the reachability matrix from the
inputs of A :1 to the inputs of A :3 in RU1

. By Example 11,
the first cycle is C(1) = {(2, 2), (4, 2)}. Therefore,

Inputs(φr(e), φv(U1)) = I(2, 2)× I(4, 2)× I(2, 2)× I(4, 2)

4.4.2 Decoding Predicate

Given a pair of data labels φr(d1) and φr(d2) and a view
label φv(U) = {λ∗(S), I,O,Z}, our goal is to evaluate π
to true iff d2 depends on d1 w.r.t. U . Due to space con-
straints, we sketch only the main cases, where both d1 and
d2 are intermediate data items of R. The complete descrip-
tion can be found in the full version of this paper [6]. Let
φr(d1) = (φr(o1), φr(i1)) and φr(d2) = (φr(o2), φr(i2)),
then d2 depends on d1 w.r.t. U iff i2 is reachable from
o1 in RU . Let φr(o1) = {l1, x} and φr(i2) = {l2, y}, where
l1 and l2 are two lists of edge labels. Suppose during the
derivation of R, o1 is first created as the xth output port
of some module M1 and i2 is first created as the yth input
port of some module M2. Suppose M1 and M2 are denoted
by two nodes v1 and v2 in the compressed parse tree T (R).

Case 1. If l1 = l2 or one is a prefix of the other, that is,
v1 = v2 or one is an ancestor of the other in T (R), then
M1 = M2 or one is derived from the other. Thus, i2 is not
reachable from o1 in RU , and π evaluates to false.

Case 2. Otherwise, suppose l1 and l2 agree on the first l−1
edge labels, but differ on the lth edge label. Moreover, let
the length of l1 and l2 be p and q, respectively. That is,

l1 = {φr(e1), . . . , φr(el−1), φr(el), . . . , φr(ep)}

l2 = {φr(e1), . . . , φr(el−1), φr(e
′
l), . . . , φr(e

′
q)}

where φr(el) 6= φr(e
′
l). We denote by v = LCA(v1, v2) the

least common ancestor of v1 and v2 in T (R). Let el be an
edge from v to v′1 and e′l be an edge from v to v′2. Let M ′

1

and M ′
2 be the module denoted by v′1 and v′2, respectively.

v1’ / M1’

v1 / M1
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…
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Case 2a
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Figure 11: Main Cases of Decoding Predicate

Case 2a. If φr(el) = (k, i) and φr(e
′
l) = (k, j), that is,

v = LCA(v1, v2) is not a recursive node, then we compute

O = Πp
a=l+1Outputs(φr(ea), φv(U))

I = Πq
a=l+1Inputs(φr(e

′
a), φv(U))

and Z = Z(k, i, j). As illustrated by the top right corner of
Figure 11, O is the (reversed) reachability matrix from the
outputs of M ′

1 to the outputs of M1, Z is the reachability
matrix from the outputs of M ′

1 to the inputs of M ′
2, and I is

the reachability matrix from the inputs of M ′
2 to the inputs

of M2. Thus, O
T ×Z× I gives the reachability matrix from

the outputs of M1 to the inputs of M2, where OT denotes
the transpose of O. So π evaluates to (OT × Z × I)[x, y].

Case 2b. If φr(el) = (s, t, i) and φr(e
′
l) = (s, t, j), that is,

v = LCA(v1, v2) is a recursive node, we consider the case
where i < j. The other case where i > j can be handled in
a similar manner. First of all, if p = l, that is, v1 = v′1 and
M1 = M ′

1, then M2 is derived from M1. By Case 1, we know
that i2 is not reachable from o1 in RU . So π evaluates to
false. Otherwise, as illustrated by the bottom right corner
of Figure 11, using a similar decoding process to Case 2a, π
evaluates to (OT × Z × I ′ × I)[x, y] (see [6] for details).

4.4.3 Fast Matrix Multiplication

To achieve constant query time, we need to show that
Inputs and Outputs can be implemented in constant time.

Lemma 3. Given a fixed strictly linear-recursive gram-
mar G, for any edge label φr(e) and any data label φv(U),
Inputs and Outputs can be computed in constant time.

Proof. Consider Case 2 in Algorithm 1. First observe
the repeated pattern of length l in the i − 1 intermediate
reachability matrices. Let X be the multiplication of the
first l matrices. So we only need to efficiently compute
X⌊i−1/l⌋. Further observe the repeated pattern in the se-
quence X, X2, . . ., X⌊i−1/l⌋. Suppose any module has at
most c input or output ports. Note that c is a constant
for a fixed G. Since each matrix has at most 2c×c possible
boolean values, we can find in constant time a and b such
that a < b <= 2c×c + 1 and Xa = Xb. Once a and b are
found, X⌊i−1/l⌋ can be computed in constant time.

Query-Efficient View Labeling. To speed up the query
processing, one can also pre-compute a and b for each re-
cursion in the view, and materialize a and b (as well as
X1, X2, . . . , Xb) in the view label. In contrast to space-
efficient view labeling (Section 4.3), this is the other extreme
alternative that will be compared in the experiments.
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4.5 Labeling Scheme Quality Analysis
We analyze the label length and construction time for both

data labels and view labels, as well as the query time for
comparing a pair of data labels and a view label. Note that
we take the size of a specification as constant [4, 5], and
measure the complexity in terms of the size of the run. We
next show that all the above parameters, guaranteed by our
labeling scheme, are optimal up to a constant factor.

Theorem 4.Let (φr, φv, π) be our view-adaptive dynamic
labeling scheme for a strictly linear-recursive specification G.

1. logarithmic label length and linear total construction
time for data labels: for any derivation of a run R ∈
L(G) with n data items and for any data item d in
R, φr(d) has O(log n) bits, and all data labels can be
constructed dynamically in a total of O(n) time.

2. constant label length and constant construction time
for view labels: for any safe view U over G, φv(U) has
O(1) bits and can be constructed in O(1) time.

3. constant query time: for any pair of data labels φr(d1)
and φr(d2) and for any view label φv(U), π(φr(d1),
φr(d2), φv(U)) can be evaluated in O(1) time.

Proof. (Sketch) Lemma 2 ensures O(log n) data label
length. Lemmas 2 and 3 ensure O(1) query time.

User-Defined Views. Our view-adaptive labeling scheme
can be extended to handling more general types of views,
where users may create their own composite modules (rather
than using pre-defined ones) or may hide ports or data edges.
Details can be found in the full version of this paper [6].

5. EXPERIMENTAL EVALUATION
We now empirically evaluate the effectiveness of our view-

adaptive labeling approach. Section 5.2 reports the main
cost of labeling, which is labeling runs. Section 5.3 explores
the tradeoff between the overhead of labeling views and
query time by comparing three alternative implementations.
Section 5.4 demonstrates the superiority of view-adaptive la-
beling over the state-of-the-art technique [5] when applied to
label multiple views. Section 5.5 identifies important factors
that influence the performance of view-adaptive labeling.

5.1 Experimental Setup

Real-Life and Synthetic Datasets. Our real-life scien-
tific workflows were collected form the myExperiment work-
flow repository [19]. We observed that almost all of them
have fairly simple recursive patterns. For simplicity, we re-
port only the results for one representative workflow, called
BioAID. It is denoted by a strictly linear-recursive grammar
with 112 modules (16 are composite) and 23 productions (7
are recursive). Each production produces a simple workflow
with at most 19 modules, and each module has at most 4
input ports and 7 output ports. In Section 5.5, we also eval-
uate a family of synthetic workflows. Due to the absence
of real workflow executions, we simulated runs by apply-
ing a random sequence of productions, varying their sizes
(i.e., the number of data items) from 1K to 32K by a fac-
tor of 2. The derivations of runs were recorded and used
as dynamic inputs to labeling schemes. In addition, we ob-
tained safe views by enumerating all possible proper subsets
of composite modules and assigning random input-output
dependencies to atomic modules. All the data are stored as
XML files whose parsing time is omitted from the results.

Labeling Schemes. Our view-adaptive dynamic label-
ing scheme is denoted by FVL for (F)ine-grained (V)iew-
adaptive (L)abeling. We implemented three variants: (1)
Default FVL (Section 4.3) (2) Space-Efficient FVL (Sec-
tion 4.3) and (3) Query-Efficient FVL (Section 4.4.3). They
use the same dynamic algorithm to label runs, but differ in
how views are labeled, which affects query efficiency. We
also compared FVL with the state-of-the-art scheme, called
DRL [5], for (L)abeling (D)ynamic runs of (R)ecursive work-
flows. All the labeling schemes were implemented in Java.

Evaluation Methodology. To evaluate labeling overhead,
we measure both label length (space overhead) and construc-
tion time (time overhead) for data labels and view labels,
respectively. For data labels, each data point in the result is
an average over 100 sample runs. We also measure the query
time. Each data point for query time is an average over 106

sample queries. All the experiments were performed on a lo-
cal PC with Intel(R) Core(TM) i7-2600 3.40GHz CPU and
4GB memory running Windows 7 Professional.

5.2 Overhead of Labeling Runs
We first evaluate the overhead of labeling runs using FVL

and DRL. Note that FVL is view-adaptive: the data labels
created for one run can be re-used to answer queries over
all safe views. In contrast, DRL is not view-adaptive: a run
must be re-labeled for each view. Here, the comparison be-
tween them focuses on the case where only one default view
is defined over the workflow. A more meaningful comparison
for multiple views will be carried out in Section 5.4.

Figure 12 reports the maximum and average length of
data labels created by FVL and DRL. We denote them by
FVL-max, FVL-avg, DRL-max and DRL-avg, respectively.
A careful analysis of Figure 12 can show that all four lines
are nearly parallel to the asymptotic line f(x) = log x. This
implies that both FVL and DRL produce compact data la-
bels of logarithmic length with a constant factor close to
1. Surprisingly, FVL-avg (FVL-max) is even shorter than
DRL-avg (DRL-max) by about 5 bits. This small improve-
ment is due to the compact design of data labels in FVL
which encode only the structure of runs.

Figure 13 reports the construction time of data labels for
FVL and DRL. While both build all data labels in linear
time, FVL is faster than DRL by about 10% for large runs.

5.3 View Labeling Cost vs. Query Efficiency
Next, we evaluate the overhead of labeling views as well

as the query time, and explore the tradeoff between them
by comparing three variants of FVL: (1) Default FVL pre-
computes all reachability matrices for the three functions
I, O and Z, and materializes them in the view label (Sec-
tion 4.3); (2) Space-Efficient FVL pre-computes only the full
dependency assignment for each view, and thus any access
to I, O and Z will be answered by performing a graph search
over the view of a specification at query time (Section 4.3);
and (3) Query-Efficient FVL materializes, in addition to I,
O and Z, all intermediate states of fast matrix multiplica-
tion for each recursion in the view (Section 4.4.3).

In the experiments, we label three safe views, namely,
small view, medium view and large view, with varying sizes
and random dependency assignments. We estimate the size
of a view by the number of composite modules that can ex-
pand. The three views contain 2, 8 and 16 composite mod-
ules, respectively. Figure 14 shows the length of view labels
created by all three variants of FVL. As expected, Query-
Efficient FVL creates the longest labels for all three views.
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Figure 12: Space Overhead (run)
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Figure 13: Time Overhead (run)
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Figure 14: Space Overhead (view)
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Figure 15: Query Time
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Figure 16: FVL vs DRL (space)
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Figure 17: FVL vs DRL (time)
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Figure 18: FVL vs DRL (query)
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Figure 19: Nesting Depth
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Figure 20: Module Degree

However, compared with Default FVL, the extra space over-
head is small (less than 8 bytes), since views typically have
a small amount of recursions. On the other hand, Space-
Efficient FVL creates almost no index for each view (less
than 5 bytes). The results for construction time, not shown,
reveal a similar trend. While Query-Efficient FVL labels the
large view in 0.62 ms, Space-Efficient FVL needs only 0.08
ms. Comparing Figures 12 and 14 also shows that the main
overhead of FVL lies in the labeling of runs, e.g., the data
labels for a small run with 1K data items take a total of
5KB, while the view label created by Query-Efficient FVL
for the large view takes only 0.4KB. The overall difference
is even bigger, since for a given workflow, the number of
runs is typically much greater than the number of views.

After runs and views are both labeled (independently),
we generate sample queries by randomly selecting two data
items in the same run (with varying size) and randomly se-
lecting one out of the three views. The query time for the
three variants of FVL is reported in Figure 15. Compared
to Figure 14, we can see a clear tradeoff between the over-
head of labeling views and query efficiency. Query-Efficient
FVL and Default FVL are faster than Space-Efficient FVL
by almost one order of magnitude. Query-Efficient FVL is
also significantly faster than Default FVL (by about 40% for
large runs), while as shown in Figure 14, it takes only small
extra space overhead (less than 2% for the large view).

Finally, we should notice that all three variants of FVL
achieve constant view label length and constant query time,
in terms of the size of the run. In other words, there is only
a constant tradeoff between space and time for the three
approaches. Therefore, Query-Efficient FVL is preferable
to the other two variants, since it enables the fastest query
processing with little extra labeling overhead. All the above
results also validate our complexity analysis in Theorem 4.

5.4 Advantage of View-Adaptive Labeling
We now compare FVL against DRL when multiple views

are defined over the same workflow. Since DRL applies only
to the coarse-grained model with black-box dependencies,
to make a meaningful comparison we randomly generate 10
medium-size views with black-box dependencies.

First, we compare the labeling overhead of FVL and DRL.
Our focus is on the overhead of labeling runs, which is the
main cost. We fix the size of runs to be 8K (data items), and
vary the number of views from 1 to 10. Figure 16 shows the
total length of data labels assigned to one data item. Since
FVL is view-adaptive, the data label created for one data
item can be re-used to query over multiple views. Therefore,
in Figure 16, the total length for FVL remains constant. In
contrast, given a data item, DRL has to maintain one data
label for each view separately. So in Figure 16, the total
length for DRL grows linearly with the number of views.
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A similar result for the total construction time can be
observed in Figure 17. Note that DRL is faster than FVL
for one view, since DRL labels the medium-size view of a
run, which is smaller than the original run. However, when
there are more than 3 views, FVL is more time-efficient.

We next compare the query time of FVL and DRL. In
order to achieve a fair comparison, we take the most query-
efficient variant of both FVL and DRL. Since our compar-
ison can only use coarse-grained views, many of the reach-
ability matrices involved in the decoding of FVL are com-
plete matrices (i.e., with only true values). So we also im-
plemented a simplified version of FVL, called Matrix-Free
FVL, which is optimized for coarse-grained views by avoid-
ing redundant matrix multiplications in the decoding.

We evaluate the above three approaches over three coarse-
grained views with varying sizes. As shown in Figure 18,
FVL is about 4 times slower than DRL, but by removing
redundent computations for coarse-grained views, Matrix-
Free FVL achieves almost same query time as DRL.

5.5 Important Factors
Finally, we examine the effectiveness of FVL over a variety

of synthetic workflows. The goal is to identify factors that
affect FVL. In particular, we consider: (1) workflow size:
the number of modules in a simple workflow (default = 40);
(2) module degree: the number of input/output ports of a
module (default = 4); (3) nesting depth: the depth of nested
composite modules (default = 4); and (4) recursion length:
the number of composite modules in a recursion (default =
2). We created a family of synthetic workflows by varying
each of the four parameters and fixing the rest to be the de-
fault value. For each workflow, we evaluate (1) the overhead
of labeling a run R with 8K data items; (2) the overhead
of labeling a safe view U with all composite modules and
random dependency assignment; and (3) the query time for
data items in R over U . Due to space constraints. we show
only the results for two key factors that affect FVL.

One factor that has high impact on the data label length
is nesting depth. As shown in Figure 19, the (average) data
label length created by FVL grows linearly with the nesting
depth, because the nesting depth determines the depth of
the compressed parse tree which is used to build data labels.

Another factor that has high impact on the query time is
module degree. As shown in Figure 20, the query time for
Query-Efficient FVL grows almost linearly with the module
degree. This is mainly because the module degree deter-
mines the cardinality of reachability matrices, and multi-
plying large matrices at query time can be expensive.

6. CONCLUSIONS
This paper considers the problem of efficiently answer-

ing reachability queries over views of workflow provenance
graphs. For that we design a novel view-adaptive labeling
scheme that supports fine-grained dependencies between in-
puts and outputs of modules and combines static labeling
of views with dynamic labeling of data items. In partic-
ular, we identify a natural class of safe views over strictly
linear-recursive workflows for which dynamic, yet compact
labeling is feasible. The experimental results demonstrate
the advantage of our view-adaptive labeling approach over
the state-of-the-art technique [5] when applied to label mul-
tiple views. Previous work [12] considers efficient evaluation
of XPath queries over XML views. Extending our work to
similarly rich query constructs in the context of workflow
views is an interesting direction for future research.
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