
Building Wavelet Histograms on Large Data in MapReduce

Jeffrey Jestes1 Ke Yi2 Feifei Li1

1School of Computing, University of Utah
Salt Lake City, Utah, USA

{jestes,lifeifei}@cs.utah.edu

2Dept of Computer Science & Engineering
HKUST, Hong Kong, China

yike@cse.ust.hk

ABSTRACT

MapReduce is becoming the de facto framework for storing and
processing massive data, due to its excellent scalability, reliability,
and elasticity. In many MapReduce applications, obtaining a com-
pact accurate summary of data is essential. Among various data
summarization tools, histograms have proven to be particularly im-
portant and useful for summarizing data, and the wavelet histogram
is one of the most widely used histograms. In this paper, we in-
vestigate the problem of building wavelet histograms efficiently on
large datasets in MapReduce. We measure the efficiency of the al-
gorithms by both end-to-end running time and communication cost.
We demonstrate straightforward adaptations of existing exact and
approximate methods for building wavelet histograms to MapRe-
duce clusters are highly inefficient. To that end, we design new al-
gorithms for computing exact and approximate wavelet histograms
and discuss their implementation in MapReduce. We illustrate our
techniques in Hadoop, and compare to baseline solutions with ex-
tensive experiments performed in a heterogeneous Hadoop cluster
of 16 nodes, using large real and synthetic datasets, up to hundreds
of gigabytes. The results suggest significant (often orders of magni-
tude) performance improvement achieved by our new algorithms.

1. INTRODUCTION
MapReduce is becoming the de facto framework for storing and

processing massive data, due to its excellent scalability, reliabil-
ity, and elasticity [15]. Efficient data processing in MapReduce
has received lots of attention since its debut. Development for
its open-source realization, Hadoop [22], has been particularly ac-
tive, e.g., HadoopDB [1], Hadoop++ [16], MapReduce Online [11],
Pig [19,29], Hive [36] and others. Datasets stored and processed in
Hadoop or any MapReduce platform are usually enormous, rang-
ing from tens of gigabytes to terabytes [15, 31]. Hence, in many
MapReduce applications, obtaining a compact accurate summary
of a dataset is important. Such a summary captures essential statis-
tical properties of the underlying data distribution, and offers quick
insight on the gigantic dataset, provided we can compute it effi-
ciently. For example, this allows other MapReduce jobs over the
same dataset to better partition the dataset utilizing its histogram
which leads to better load-balancing in the MapReduce cluster [15].
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In traditional database systems and many modern data manage-
ment applications, an important useful summary on large datasets
is the histogram [32]. Suppose the keys of a dataset are drawn from
finite domain [u] = {1, · · · , u}. Broadly speaking, a histogram on
the dataset is any compact, possibly lossy, representation of its fre-
quency vector v = (v(1), . . . ,v(u)), where v(x) is the number of
occurrences of key x in the dataset. There are many different his-
tograms depending on the form this compact representation takes.
One popular choice is the wavelet histogram [26]. Treating v as
a signal, the wavelet histogram consists of the top-k wavelet co-
efficients of v in terms of their magnitudes (absolute values), for
a parameter k. As most real-world distributions have few large
wavelet coefficients with others close to zero, retaining only the k
largest yields a fairly accurate representation of v. Due to its sim-
plicity, good accuracy, and a variety of applications in data analysis
and query optimization, wavelet histograms have been extensively
studied. Efficient algorithms are well known for building a wavelet
histogram on offline data [26, 27] and for dynamically maintaining
it in an online or streaming [13, 20, 27] fashion.

In this work, we study how to efficiently build wavelet histograms
for large datasets in MapReduce. We utilize Hadoop to demonstrate
our ideas, which should extend to any other MapReduce imple-
mentation. We measure the efficiency of all algorithms in terms of
end-to-end running time (affected by the computation and IO costs)
and intra-cluster communication (since network bandwidth is also
scarce in large data centers running MapReduce [15], whose usage
needs to be optimized). Note that communication cost might not be
significant when running only one particular MapReduce job (this
is often the case); however, in a busy data center/cluster where nu-
merous jobs might be running simultaneously, the aggregated effect
from the total communications of these jobs is still critical.

We show straightforward adaptations of both exact and approxi-
mate wavelet histogram construction methods from traditional data
management systems and data mining fields to MapReduce clusters
are highly inefficient, mainly since data is stored in a distributed file
system, e.g., the Hadoop Distributed File System (HDFS).

Contributions. We propose novel exact and approximation algo-
rithms tailored to MapReduce clusters, in particular Hadoop, which
outperform straightforward adaptations of existing methods by sev-
eral orders of magnitude in performance. Specifically, we:

• present a straightforward adaptation of the exact method in
Hadoop, and a new exact method that can be efficiently in-
stantiated in MapReduce in Section 3;

• show how to apply existing, sketch-based approximation al-
gorithms in Hadoop, and discuss their shortcomings. We de-
sign a novel random sampling scheme to compute approxi-
mate wavelet histograms efficiently in Hadoop in Section 4;
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• conduct extensive experiments on large (up to 400GB) data-
sets in a heterogeneous Hadoop cluster with 16 nodes in Sec-
tion 5. The experimental results demonstrate convincing re-
sults that both our exact and approximation methods have
outperformed their counterparts by several orders of magni-
tude.

In addition, we introduce necessary background on MapReduce,
Hadoop, and wavelet histograms in Section 2, survey related work
in Section 6, and conclude in Section 7.

2. PRELIMINARIES

2.1 Wavelet Basics
Suppose each record in the dataset has a key drawn from domain

[u] = {1, · · · , u}, and we want to build a wavelet histogram on the
keys. Define the frequency vector as v = (v(1), . . . ,v(u)) where
v(x) is the number of occurrences of key x in the dataset. The idea
of building a histogram using wavelets is to consider v as a sig-
nal and apply a wavelet transformation. For most applications, one
usually adopts the simplest Haar wavelet basis [13, 18, 20, 26, 27],
which is defined as follows. We first average values pairwise to
obtain the average coefficients, i.e. [(v(2) + v(1))/2, (v(4) +
v(3))/2, . . . , (v(u) + v(u − 1))/2]. We also retain the aver-
age difference of the pairwise values, i.e. [(v(2) − v(1))/2, . . . ,
(v(u) − v(u − 1))/2], which are called the detail coefficients.
Clearly, given these vectors one can reconstruct the original signal
v exactly. We recursively apply this pairwise averaging and dif-
ferencing process on the average coefficients vector until we reach
the overall average for v. The Haar wavelet coefficients of v are
given by the overall average, followed by the detail coefficients in
a binary tree, as shown by example in Figure 1, where the leaf level
of the tree (level ℓ = log u) is the original signal. To preserve the
energy of the signal (v’s L2 norm), one must multiply coefficients
in level ℓ by a scaling factor

√
u/2ℓ.
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Figure 1: Wavelet coefficients.

This transformation is lossless as we can reconstruct v exactly
from all u wavelet coefficients. However, the main reason wavelets
are popular and powerful in signal processing is, for most real-
world signals v, most of its wavelet coefficients are near zero.
Thus if for a parameter k we keep only the k wavelet coefficients
of largest magnitude while assuming others are zero, we can still
reconstruct the original signal reasonably well. Since energy is
preserved under wavelet transform, i.e., ‖v‖22 =

∑u
i=1 v(i)

2 =∑u
i=1 w

2
i , keeping the k wavelet coefficients of largest magnitude

minimizes energy loss for all k-term wavelet representations of v.
The best k-term wavelet representation can be computed efficiently
in a centralized setting [26]: Assuming entries in frequency vec-
tor v are given in order, one can compute all wavelet coefficients
bottom-up inO(u) time. Then, using a priority queue of size k, we
can find the k coefficients of largest magnitude in one pass over all
u coefficients, taking time O(u log k).
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Figure 2: Coefficients by wavelet basis vectors

Another method to compute wavelet coefficients, especially in
streaming settings, is to use wavelet basis vectors. The first wavelet
basis vector is ψ1 = [1, . . . , 1]/

√
u. To define the other u − 1

basis vectors, we first introduce, for j = 1, . . . , log u and k =
0, . . . , 2j − 1, the vector φj,k(l) = 1 for k(u/2j) + 1 ≤ l ≤
k(u/2j) + u/2j , and 0 elsewhere. For j = 0, . . . , log u − 1 and
k = 0, . . . , 2j − 1, we define the i-th wavelet basis vector for
i = 2j + k+ 1 as ψi = (−φj+1,2k + φj+1,2k+1)/

√
u/2j , where√

u/2j is a scaling factor. The wavelet coefficients are the dot
products of v with these wavelet basis vectors, i.e., wi = 〈v, ψi〉,
for i = 1, . . . , u; see Figure 2 for an illustration.

Wavelets provide a compact approximation of a data distribution.
It serves a variety of data analysis tasks such as range selectivity es-
timation [26], approximating queries [9] and many other data min-
ing applications [3, 21, 33]. As we are concerned with constructing
a best k-term wavelet representation, we will not talk about its use
which has already been well studied [26].

Wavelet histograms also extend to multi-dimensional signals or
datasets. Consider the two-dimensional case where keys are drawn
from two-dimensional domain [u]2, defining a two-dimensional fre-
quency array v = (v(x, y)), 1 ≤ x, y ≤ u. A 2D wavelet trans-
form first applies a standard 1D wavelet transform to each row of v.
Then, using the 1D wavelet coefficients as inputs, we apply a sec-
ond round of 1D wavelet transforms to each column of the array.
This process can be similarly extended to d dimensions.

2.2 Hadoop Basics
For this work we assume Hadoop’s default file system HDFS.

A cluster using HDFS consists of multiple DataNodes, for storing
file system data, and a single master node designated as the Na-
meNode which oversees all file operations and maintains all file
meta-data. A file in HDFS is split into data chunks, 64MB in size
by default, which are allocated to DataNodes by the NameNode.
Chunks are typically replicated to multiple DataNodes, based on
the file replication ratio, to increase data availability and fault toler-
ance. In this work and many other studies where fault tolerance is
not the main subject of interest, the replication ratio is set to 1 and
machine failure is not considered. The MapReduce core consists of
one master JobTracker task and many TaskTracker tasks. Typical
configurations run the JobTracker and NameNode on the same ma-
chine, called the master, and run TaskTracker and DataNode tasks
on other machines, called slaves.

Typical MapReduce jobs consist of three phases: Map, Sort-and-
Shuffle, and Reduce. The user may specify m, the desired number
of Mapper tasks, and r, the number of Reducer tasks before starting
the job. Next we look at the three phases in detail.

Map phase. In the Map phase, the m Mappers run in parallel
on different TaskTrackers over different logical portions of an in-
put file, called splits. Splits typically, but not always, correspond to
physical data chunks. Hadoop allows users to specify the InputFor-
mat for a file, which determines how splits are created and defines
a RecordReader for reading data from a split.

After splits have been formed, the JobTracker assigns each avail-
able Mapper a split to process. By default, the scheduler attempts
to schedule Data-Local Mappers by assigning a Mapper a locally
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stored split. There are also cases which call for Non-Data-Local
Mappers, i.e., when a node is idle and has no local split to process.
Then, a MapRunner is started which obtains a RecordReader and
invokes the Map function for each record in the split. A Mapper
then maps input key-value pairs (k1, v1) from its split to intermedi-
ate key-value pairs (k2, v2). As a Mapper proceeds, it maintains an
in-memory buffer of the (k2, v2). When the buffer fills to thresh-
old, pairs are partitioned, sorted, and optionally processed by the
Combine function, which outputs locally aggregated (k2, v2) pairs
(aggregation on v2’s with the same key k2). Pairs are then spilled
to their corresponding logical partitions on the local disk. The par-
titions are defined by a Partition function, typically a hash function
like hash(k2) mod r, which determines the Reducer task which
will process a particular k2 later. When the Mapper ends, all emit-
ted (k2, v2) have been partitioned, sorted (w.r.t. k2), and optionally
combined. One can also define a Close interface which executes at
the end of the Mapper.

Shuffle-and-Sort phase. In the Shuffle-and-Sort Phase, each Re-
ducer copies all (k2, v2) it is responsible for (as designated by the
Partition function) from all DataNodes. It then sorts all received
(k2, v2) by k2 so all occurrences of key k2 are grouped together.
An external sort is needed if the (k2, v2) do not fit in memory.

Reduce phase. After all (k2, v2) are collected and sorted, a Re-
ducer iterates over all its (k2, v2). For each distinct key k2, the
Reducer passes all corresponding v2 values to the Reduce function.
Then the Reduce function produces a final key-value pair (k3, v3)
for every intermediate key k2. As in the Map phase, one can imple-
ment a Close interface which is executed at the end of the Reducer.

3. EXACT COMPUTATION

Baseline solutions Let n be the total number of records in the entire
dataset, where each record has a key drawn from key domain [u].
Note either n ≫ u or n ≪ u is possible. Recall in Hadoop the
n records are partitioned into m splits, processed by m Mappers,
possibly on different machines, which emit intermediate key-value
pairs for processing by Reducers. Thus, one baseline solution to
compute the wavelet representation is to compute, for each split
j = 1, . . . ,m, its local frequency vector vj , and emit a (x,vj(x))
pair for each key x in the split. The Reducer then can aggregate
the local frequencies, producing the overall frequency vector v =∑m

j=1 vj where vj(x) = 0 if key x does not appear in the jth
split. Finally, we compute the best k-term wavelet representation
of v using the centralized algorithm (e.g., [26]).

We observe that each wavelet coefficient wi = 〈v, ψi〉 can be
written as

wi =

〈
m∑

j=1

vj , ψi

〉

=
m∑

j=1

〈vj , ψi〉,

i.e., wi is the summation of the corresponding local wavelet coef-
ficients of frequency vectors for the m splits. Then, an alternate
approach to compute the exact wavelet coefficients is to compute,
for each split j = 1, . . . ,m its local frequency vector vj . The local
coefficientswi,j = 〈vj , ψi〉 are computed for each split’s local fre-
quency vector vj and a (i, wi,j) pair is emitted for each non-zero
wi,j . The Reducer can then determine the exact wi as

∑m
j=1 wi,j

where wi,j = 0 if the Reducer does not receive a wi,j from the
jth split. After computing all complete wi the Reducer selects the
best k-term wavelet representation, i.e. by selecting the top-k co-
efficients of largest absolute value.

A big drawback of the baseline solutions is they generate too
many intermediate key-value pairs, O(mu) of them to be precise.

This consumes too much network bandwidth, which is a scarce re-
source in large data clusters shared by many MapReduce jobs [15].

A new algorithm. Since wi is the summation of the corresponding
local wavelet coefficients of frequency vectors for the m splits, if
we first compute the local coefficients wi,j = 〈vj , ψi〉, the prob-
lem is essentially a distributed top-k problem. A major difference
is in the standard distributed top-k problem, all local “scores” are
non-negative, while in our case, wavelet coefficients can be positive

and negative, and we want to find the top-k aggregated coefficients
of largest absolute value (magnitude). Negative scores and finding
largest absolute values are a problem for existing top-k algorithms
such as TPUT and others [7, 17, 28], as they use a “partial sum” to
prune items which cannot be in the top-k. That is, if we have seen
(at the coordinator) t local scores for an item out of m total local
scores, we compute a partial sum for it assuming its other m − t
scores are zero. When we see k such partial sums we use the kth
largest partial sum as a threshold, denoted τ , to prune other items:
If an item’s local score is always below τ/m at all sites, it can be
pruned as it cannot get a total score larger than τ to get in the top-k.
If there are negative scores and when the goal is to find largest ab-
solute values, we cannot compute such a threshold as unseen scores
may be very negative.

We next present a distributed algorithm which handles positive
and negative scores (coefficients) and returns the top-k aggregated
scores of largest magnitude. The algorithm is based on algorithm
TPUT [7], and can be seen as interleaving two instances of TPUT.
As TPUT, Our algorithm requires three rounds. For an item x, r(x)
denotes its aggregated score and rj(x) is its score at node j.

Round 1: Each node first emits the k highest and k lowest (i.e.,
most negative) scored items. For each item x seen at the coordina-
tor, we compute a lower bound τ(x) on its total score’s magnitude
|r(x)| (i.e., |r(x)| ≥ τ(x)), as follows. We first compute an up-
per bound τ+(x) and a lower bound τ−(x) on its total score r(x)
(i.e., τ−(x) ≤ r(x) ≤ τ+(x)): If a node sends out the score of
x, we add its exact score. Otherwise, for τ+(x), we add the k-th
highest score this node sends out and for τ−(x) we add the k-th
lowest score. Then we set τ(x) = 0 if τ+(x) and τ−(x) have dif-
ferent signs and τ(x) = min{|τ+(x)|, |τ−(x)|} otherwise. Doing
so ensures τ−(x) ≤ r(x) ≤ τ+(x) and |r(x)| ≥ τ(x).

Now, we pick the k-th largest τ(x), denoted as T1. This is a
threshold for the magnitude of the top-k items.

Round 2: A node j next emits all local items x having |rj(x)| >
T1/m. This ensures an item in the true top-k in magnitude must be
sent by at least one node after this round, because if an item is not
sent, its aggregated score’s magnitude can be no higher than T1.

Now, with more scores available from each node, we refine the
upper and lower bounds τ+(x), τ−(x), hence τ(x), as previously
for each item x ∈ R, where R is the set of items ever received. If
a node did not send the score for some x, we can now use T1/m
(resp. −T1/m) for computing τ+(x) (resp. τ−(x)). This produces
a new better threshold, T2 (calculated in the same way as comput-
ing T1 with improved τ(x)’s), on the top-k items’ magnitude.

Next, we further prune items from R. For any x ∈ R we com-
pute its new threshold τ ′(x) = max{|τ+(x)|, |τ−(x)|} based on
refined upper and lower bounds τ+(x), τ−(x). We delete item x
from R if τ ′(x) < T2. The final top-k items must be in the set R.

Round 3: Finally, we ask each node for the scores of all items in
R. Then we compute the aggregated scores exactly for these items,
from which we pick the k items of largest magnitude.

A simple optimization is, in Round 2, to not send an item’s local
score if it is in the local top-k/bottom-k sets, even if |rj(x)| >
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T1/m; these scores were sent in Round 1. Also in Round 3, a
node can send an item’s local score only if it was not sent to the
coordinator in previous rounds (using simple local bookkeeping).

Multi-dimensional wavelets. It is straightforward to extend our al-
gorithms to build multi-dimensional wavelet histograms. Consider
the two-dimensional case. Recall in this case frequency vector v
is a 2D array. A 2D wavelet transform applies two rounds of 1D
wavelet transforms on the rows and then the columns of v. Since
each wavelet transform is a linear transformation, the resulting 2D
wavelet coefficients are still linear transformations of v. So if we
apply a 2D wavelet transform to each split, any 2D wavelet coef-
ficient is still a summation of corresponding 2D coefficients of all
splits. Thus, we can still run the modified TPUT algorithm to find
the top-k coefficients of largest magnitude as before.

System issues. At a high-level, for a dataset in HDFS withm splits,
we assign one Mapper task per split and each Mapper acts as a dis-
tributed node. We use one Reducer as the coordinator. We imple-
ment our three-round algorithm in three rounds of MapReduce in
Hadoop. To be consistent across rounds, we identify each split with
its unique offset in the original input file.

Two technical issues must be dealt with when implementing the
algorithm in Hadoop. First, the algorithm is designed assuming
the coordinator and distributed nodes are capable of bi-directional
communication. However, in MapReduce data normally flows in
one direction, from Mappers to Reducers. In order to have two-
way communication we utilize two Hadoop features: the Job Con-
figuration and Distributed Cache. The Job Configuration is a small
piece of information communicated to every Mapper and Reducer
task during task initialization. It contains some global configuration
variables for Mappers and Reducers. The Job Configuration is good
for communicating a small amount of information. If large amounts
of data must be communicated, we use Hadoop’s Distributed Cache
feature. A file can be submitted to the master for placement into the
Distributed Cache. Then, Distributed Cache content is replicated to
all slaves during the MapReduce job initialization.

Second, the distributed nodes and the coordinator in the algo-
rithm need to keep persistent state across three rounds. To do so, at
the end of a Mapper task handling an input split, via its Close inter-
face, we write all necessary state information to an HDFS file with
a file name identifiable by the split’s id. When this split is assigned
to a Mapper in a subsequent round, the Mapper can then restore the
state information from the file. Note Hadoop always tries to write
an HDFS file locally if possible, i.e., state information is usually
saved on the same machine holding the split, so saving state infor-
mation in an HDFS file incurs almost no extra communication cost.
For the Reducer which acts as the coordinator, since there is no split
associated to it, we choose to customize the JobTracker scheduler
so the Reducer is always executed on a designated machine. Thus,
the coordinator’s state information is saved locally on this machine.

We detail how we address these challenges in Appendix A.

4. APPROXIMATE COMPUTATION
We observe the exact computation of the best k-term wavelet

representation in Hadoop is expensive. Although our improved al-
gorithm avoids emitting all local frequency vectors, it could still
be expensive due to the following: (1) The (modified) TPUT al-
gorithm could still send out a lot of communication, though better
than sending all local frequency vectors; (2) it needs 3 rounds of
MapReduce, which incurs a lot of overhead; and (3) most impor-
tantly, every split needs to be scanned to compute local frequency
vector vj and compute local wavelet coefficients wi,j . This mo-
tivates us to explore approximation algorithms which compute a

k-term wavelet representation which may not be the best one, but
still approximates the underlying data distribution reasonably well.

There are many design choices for approximate computation of
wavelets. Here are some natural attempts: (i) We can replace TPUT
with an approximate top-k algorithm [28, 30], after appropriate
modification to handle negative scores. This resolves issue (1) but
not (2) and (3). (ii) We can approximate local wavelet coefficients
of each split using a sketch as in [13, 20], and then send out and
combine the sketches, due to the property that these sketches are
linearly combinable. This resolves issues (1) and (2), but not (3),
as computing a sketch still needs to scan the data once. (iii) Lastly,
a generic approach is random sampling, that is, we take a random
sample of the keys and construct the wavelets on the sample, as
the sample approximates the underlying data distribution well for
a sufficiently large sample size. Then a wavelet representation can
be constructed on the frequency vector of the sample.

Among the possibilities, only (iii) resolves all three issues si-
multaneously. It requires only one round, clearing issue (2). It also
avoids reading the entire data set, clearing issue (3). However, it
may result in a lot of communication, as it is well known to ap-
proximate each (global) frequency v(x) with a standard deviation
of εn (recall n is the number of records in the entire dataset), a sam-
ple of size Θ(1/ε2) is required [37]. More precisely, for a sample
probability p = 1/(ε2n) (a sample of expected size pn = 1/ε2),
one can show v̂(x) = s(x)/p is an unbiased estimator of v(x)
with standard deviation O(εn) for any x, where s is the frequency
vector of the sample. After that, we construct a wavelet represen-
tation on the estimated frequency vector v̂. As n is the size of the
entire data set, which is usually extremely large (for MapReduce
clusters), ε needs to be fairly small for v̂ to approximate v well,
usually on the order of 10−4 to 10−6. The total communication
cost of this basic sampling method is O(1/ε2), even with one-byte
keys, this corresponds to 100MB to 1TB of data being emitted to
the network!

A straightforward improvement is to summarize the sampled keys
of a split before emitting them, which is actually used as a simple
optimization for executing any MapReduce job [15]. We aggregate
the keys with the Combine function, that is, if the split is emitting c
pairs (x, 1) for the same key, they are aggregated as one pair (x, c).
This optimization indeed reduces communication cost, but its ef-
fectiveness highly depends on the data distribution, in the worst
case it may not reduce the communication at all.

A slightly better idea is to ignore those sampled keys with low
frequencies in a split, which we denote as the improved sampling

algorithm. More precisely, we only send out a sampled key x
and its sampled count sj(x) if sj(x) ≥ εtj , where tj is the to-
tal number of sampled records in split j. Thus the overall error
in the total count of a sampled key x from all splits is at most∑m

j=1 εtj = εpn = 1/ε, which translates into an (1/ε)/p =

εn error in the estimated frequency v̂(x). Thus it adds another
εn to the standard deviation, which is still O(εn). Note that the
total number of key-value pairs sent out by one split is at most
tj/(εtj) = 1/ε. Hence, the total communication of this approach
is at most O(m/ε), which improves upon sending all the samples
since usually we have m ≪ 1/ε. However, an undesired conse-
quence is that the estimator v̂(x) will not be unbiased any more:
E[v̂(x)] could be εn away from v(x), since this method ignores
all the small sample counts sj(x) < εtj .

Below we detail a new, two-level sampling idea, which produces
an unbiased estimator v̂(x) for v(x) with standard deviationO(εn)
as in the basic random sampling algorithm, while improving com-
munication cost to O(

√
m/ε). The idea is to obtain an unbiased

estimator ŝ(x) of s(x), instead of sending all sj(x)’s to compute
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Split j samples tj = nj · p records using

Basic Sampling, where p = 1/ε2n.

nj : number of records in split j

sample sj

• If sj(x) ≥ 1/(ε
√
m), emit (x , sj(x)).

• Else emit (x , null) with probability ε
√
m · sj(x). sample sj and its frequency vector sj(x)

1
ε
√
m

sample them
proportional
to frequency
relative to
1/(ε

√
m)!

emit them
with their
frequency.

Figure 3: Two-level sampling at mapper.

s(x) exactly. We then use ŝ(x) to produce v̂(x). We perform an-
other level of sampling on the local frequency vector sj of sampled
keys for each split j. Specifically, we sample each key x in the
sample with probability min{ε√m · sj(x), 1}. More precisely, for
any x with sj(x) ≥ 1/(ε

√
m), we emit the pair (x, sj(x)); for

any x with 0 < sj(x) < 1/(ε
√
m), we sample it with a probabil-

ity proportional to sj(x), i.e., ε
√
m · sj(x), and emit the pair (x,

NULL) if it is sampled (for an example please see Figure 3). Note
that in two-level sampling we do not throw away sampled items
with small frequencies completely, as what is done in the Improved

sampling method. Rather, these items are still given a chance to
survive in the second-level sample, by sampling them proportional
to their frequencies relative to the threshold 1/ε

√
m (which is es-

tablished from our analysis below).
Next, we show how to construct from the emitted pairs from all

splits, an unbiased estimator ŝ(x) of s(x) for any key x ∈ [u] with
standard deviation at most 1/ε. As s(x) =

∑m
j=1 sj(x), we add

up all sample count (x, sj(x)) pairs received for x. They do not
introduce any error, and we denote this partial sum as ρ(x). If a
split has sj(x) < 1/(ε

√
m), it will not emit sj(x), but simply

emit (x, NULL) if it is sampled. Suppose we receive M such pairs
for x. Then our estimator is

ŝ(x) = ρ(x) +M/(ε
√
m) (1)

(for an example of how we compute ŝ(x) at the reducer please see
Figure 4).

Theorem 1 ŝ(x) is an unbiased estimator of s(x) with standard

deviation at most 1/ε.

PROOF. Without loss of generality, assume in the first m′ splits

sj(x) < 1/(ε
√
m). Write M as M =

∑m′

j=1Xj where Xj = 1 if
x is sampled in split j and 0 otherwise. Each Xj is an independent
Bernoulli trial, so

E[Xj ] = ε
√
m · sj(x), and

Var[Xj ] = ε
√
m · sj(x)(1− ε

√
m · sj(x)) ≤ ε

√
m · sj(x). (2)

Thus we have

E[M ] =
m′∑

j=1

ε
√
m · sj(x) = ε

√
m(s(x)− ρ(x)), (3)

i.e., E[̂s(x)] = s(x) combining (1) and (3).
Next, from (2), we have

Var[M ] =
m′∑

j=1

Var[Xj ] = ε
√
m ·

m′∑

j=1

sj(x). (4)

Since each sj(x) ≤ 1/(ε
√
m), Var[M ] is at most m′. Thus,

the variance of ŝ(x) is Var[M/(ε
√
m)] = Var[M ]/(ε2m). So

Var[̂s(x)] ≤ m′/(ε2m) ≤ 1/ε2, namely, the standard deviation
is at most 1/ε.

Reducer

emitted pairs from s1

emitted pairs from sm

Construct

s(x)

2345
1897
1673

189
53

1762
1543
3451

237
43
1356

• If sj(x) ≥ 1/(ε
√

m), emit (x , sj(x)).

• Else emit (x , null) with probability ε
√

m · sj(x).

• initialize ρ(x) = 0, M = 0.

– If (x , sj(x)) received, ρ(x) = ρ(x) + sj(x).

– Else if (x , null) received, M = M + 1.

• s(x) = ρ(x) + M/ε
√

m.

nullnull
null

null

null

Figure 4: Two-level sampling at reducer.

From ŝ(x), we can estimate v(x) as v̂(x) = ŝ(x)/p (recall that
p = 1/(ε2n) is the sampling probability of the first level random
sample in each split). It will be an unbiased estimator of v(x) with
standard deviation (1/ε)/p = εn.

Corollary 1 v̂(x) is an unbiased estimator of v(x) with standard

deviation at most εn.

Corollary 1 gives a bound on the error of the estimated frequen-
cies. Below we also analyze the error in the computed wavelet
coefficients. Consider the coefficient wi = 〈v, ψi〉, where ψi =

(−φj+1,2k+φj+1,2k+1)/
√
u/2j is the corresponding wavelet ba-

sis vector (see discussion in Section 2.1). From the estimated fre-
quency vector v̂, we estimate wi as ŵi = 〈v̂, ψi〉. Since v̂(x) for
every x is unbiased, ŵi is also an unbiased estimator of wi. Recall
that ψi(x) = −1,+1 for x = 2ku/2j+1+1, . . . , (2k+2)u/2j+1,
so the variance of ŵi is

Var[ŵi] =
2j

u

(2k+2)u/2j+1∑

x=2ku/2j+1+1

Var[v̂(x)]

=
2j

u

(2k+2)u/2j+1∑

x=2ku/2j+1+1

Var[̂s(x)]/p2

=
2j

u

(2k+2)u/2j+1∑

x=2ku/2j+1+1

Var[M ]/(ε2mp2)

≤ 2jn

um

(2k+2)u/2j+1∑

x=2ku/2j+1+1

ε
√
ms(x) (by (4))

=
ε2jn

u
√
m

(2k+2)u/2j+1∑

x=2ku/2j+1+1

s(x). (5)

Note that
∑(2k+2)u/2j+1

x=2ku/2j+1+1
s(x) is just the total number of keys

covered by the wavelet basis vector. This discussion leads to the
next result:

Theorem 2 The two-level sampling method provides an unbiased

estimator ŵi for any wavelet coefficient wi, and the variance of ŵi

is bounded by (5).

Finally, it remains to bound its communication cost.

Theorem 3 The expected total communication cost of our two-

level sampling algorithm is O(
√
m/ε).

PROOF. The expected total sample size of first-level sampling is
pn = 1/ε2. Thus, there are at most (1/ε2)/(1/(ε

√
m)) =

√
m/ε

keys with sj(x) ≥ 1/(ε
√
m) across all splits. These keys must be

emitted for second level sampling. For any key x in any split j with
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sj(x) < 1/(ε
√
m), we emit it with probability ε

√
m · sj(x), so

the expected total number of sampled keys for this category is

∑

j

∑

x

ε
√
m · sj(x) ≤ ε

√
m · 1/ε2 =

√
m/ε.

So the total number of emitted keys is O(
√
m/ε).

Consider typical values: m = 103, ε = 10−4 and 4-byte keys.
Basic sampling emits 1/ε2 ≈ 400MB; improved sampling emits at
most m/ε ≈ 40MB; while two-level sampling emits about

√
m/ε

≈ 1.2MB of data—a 330-fold or 33-fold reduction, respectively!
Remark: In our second-level sampling, the sampling probabil-

ity depends on the frequency, so that “important” items are more
likely to be sampled. This falls into the general umbrella of “im-
portance sampling” [35], and has been used for frequency estima-
tion on distributed data [23,39]. However, its application to wavelet
histograms and the corresponding variance analysis are new.

Multi-dimensional wavelets. Our algorithm extends to building
multi-dimensional wavelet histograms naturally. In d dimensions,
frequency vector v is a d-dimensional array, and frequency array
s of a random sample of the dataset still approximates v. So the
problem boils down to how well s approximates v (note our two-
level sampling algorithm does not affect the approximation error
of the sample). However, because data is usually sparse in higher
dimensions, the quality of the sample may not be as good as in
one dimension. In fact, the standard deviation of the estimated fre-
quency for any v(x) (x is now a cell in [u]d) from a sample of
size O(1/ε2) is still O(εn), but due to the sparsity of the data,
all the v(x)’s may be small, so the relative error becomes larger.
This is, unfortunately, an inherent problem with sparse data: if all
v(x)’s are small, say 0 or 1, then random sampling, and in gen-
eral any sublinear method, cannot possibly achieve small relative
errors [14]. One remedy is to lower the granularity of the data, i.e.,
project the data to a smaller grid [u/t]d for some appropriate t so
as to increase the density of the data.

System issues. Among the three general approximation strategies
mentioned at the beginning of Section 4, implementing the approx-
imate TPUT methods (such as KLEE [28]) in Hadoop requires at
least three rounds of MapReduce, which involves too much over-
head for just approximating a wavelet histogram. Wavelet sketches
can be easily implemented in Hadoop. The idea is to run one Map-
per per split, which builds a local wavelet sketch for the split and
emits the non-zero entries in the sketch to the Reducer. The Re-
ducer then combines thesem sketches and estimates the top-k coef-
ficients from the combined sketch. There are two wavelet sketches
in the literature: the AMS sketch [4, 20] and the GCS sketch [13].
The latter was shown to have better performance, so we choose it
to implement in Hadoop. There are some technical details in opti-
mizing its implementation in Hadoop, which we omit here.

The third strategy, random sampling, clearly has better perfor-
mance as it avoids scanning the entire dataset and is also easy to
implement in Hadoop. Our two-level sampling algorithm in addi-
tion achieves very low communication cost. We detail how we ad-
dress some system issues, overcome the challenges, and implement
two-level sampling in Hadoop in Appendix B; implementation of
the other sampling algorithms is even simpler.

5. EXPERIMENTS
We implement all algorithms in Hadoop and empirically evaluate

their performance, in both end-to-end running time and communi-
cation cost. For the exact methods, we denote the baseline solution

of sending all local frequency vectors (the vj’s of all splits) in Sec-
tion 3 as Send-V, the baseline solution of sending the local wavelet
coefficients (the wi,j’s of all splits) in Section 3 as Send-Coef, and
our new algorithm as H-WTopk (meaning “Hadoop wavelet top-
k”). For the approximate algorithms, we denote the basic sampling
method as Basic-S, the improved sampling method as Improved-S,
and the two-level sampling method as TwoLevel-S. Note Improved-

S is based on the same idea as Basic-S, but offers strictly better
performance, which we derived in Section 4. Given this fact, we
choose to utilize Improved-S as the default competitor of TwoLevel-

S. We also implement the sketch-based approximation method as
discussed in Section 4. We use the GCS-sketch which is the state-
of-the-art sketching technique for wavelet approximations [13]. We
denote this method as Send-Sketch. We did not attempt to modify
the approximate TPUT methods (such as KLEE [28]) to work with
negative values and adapt them to MapReduce, since they generally
require multiple rounds and scanning the entire datasets, which will
be strictly worse than other approximation methods.

Setup and datasets. All experiments are performed on a heteroge-
neous Hadoop cluster running the latest stable version of Hadoop,
version 0.20.2. The cluster consists of 16 machines with four dif-
ferent configurations: (1) 9 machines with 2GB of RAM and one
Intel Xeon 5120 1.86GHz CPU, (2) 4 machines with 4GB of RAM
and one Intel Xeon E5405 2GHz CPU, (3) 2 machines with 6GB
of RAM and one Intel Xeon E5506 2.13GHz CPU, and (4) 1 ma-
chine with 2GB of RAM and one Intel Core 2 6300 1.86GHz CPU.
Our master runs on a machine with configuration (2) and we select
one of the machines of configuration (3) to run the (only) Reducer.
We configure Hadoop to use 300GB of hard drive space on each
slave and allocate 1GB memory per Hadoop daemon. We have one
TaskTracker and one DataNode daemon running on each slave, and
a single NameNode and JobTracker daemon on the master. All ma-
chines are directly connected to a 100Mbps switch.

For the datasets, clearly, the determining parameters are n, the
total number of records, which corresponds to the size of the in-
put file, and u, the domain size, as well as the skewness. Note it
only makes sense to use a dataset which is at least tens of gigabytes
and has a domain size on the order of 220. Otherwise a central-
ized approach would work just fine, and the overhead of running
MapReduce could actually lead to worse performance [15].

That said, for real datasets, we test all algorithms on the World-

Cup [6] dataset which is the access logs of 92 days from the 1998
World Cup servers, a total of approximately 1.35 billion records.
Each record consists of 10 4-byte integer values including month,
day, and time of access as well as the client id, object id, size,
method, status, and accessed server. We assign to each record a
4-byte identifier clientobject, which uniquely identifies a distinct
client id and object id pairing. The object id uniquely identifies a
URL referencing an object stored on the World Cup servers, such
as a page or image. The pairing of the client id and the object id
is useful to analyze the correlation between clients and resources
from the World Cup servers, under the same motivation as that in
the more common example of using the (src ip, dest ip) pairing in a
network traffic analysis scenario. There are approximately 400 mil-
lion distinct client id object id combinations, so the domain of this
key value is approximately 229, i.e. u = 229. We store WorldCup

in binary format, and in total the stored dataset is 50GB.
To model the behavior of a broad range of real large datasets,

we also generate datasets following the Zipfian distribution (since
most real datasets, e.g., the clientobject in WorldCup, are skewed
with different levels of skewness), with various degrees of skew-
ness α, as well as different u and n. We randomly permute keys
in a dataset to ensure the same keys do not appear contiguously in
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the input file. Each dataset is stored in binary format and contain
records with only a 4-byte integer key. Unless otherwise specified,
we use the Zipfian dataset as our default dataset to vigorously test
all approaches on a variety of parameters on large scale data.

We vary α in {0.8, 1.1, 1.4} and log2 u in { 8, 11, 14, 17, 20, 23,
26, 29, 32 }. We vary input file size from 10GB to 200GB resulting
in different n from 2.7 to 54 billion. We vary the size of a record
from 4-bytes to 100kB. For all algorithms, we use 4-byte integers
to represent v(x) in a Mapper and 8-byte integers in a Reducer. We
represent wavelet coefficients and sketch entries as 8-byte doubles.

For all experiments, we vary one parameter while keeping the
others fixed at their default values. Our default α is 1.1 and log2 u
is 29. The default dataset size is 50GB (so the default n is 13.4
billion). The default record size is 4-bytes. We compute the best
k-term wavelet histogram with k = 30 by default, which also
varies from 10 to 50. The default split size β is 256MB, which
varies from 64MB to 512MB. Note that the number of splits is
m = 4n/(10242β) (so the default m is 200). We also simulate a
live MapReduce cluster running in a large data center where typi-
cally multiple MapReduce jobs are running at the same time, which
share the network bandwidth. Thus, the default available network
bandwidth is set to 50% (i.e., 50Mbps) but we also vary it from
10% to 100%. Note, we omit the results for Send-Coef on all ex-
periments except for varying the domain u of the input dataset as it
performs strictly worse than Send-V for other experiments.

The exact methods have no parameters to tune. For Send-Sketch,
we use a recommended setting for the GCS-sketch from [13], where
each sketch is allocated 20KB· log2 u space. We use GCS-8 which
has the overall best per-item update cost and a reasonable query
time to obtain the final coefficients. We also did the following op-
timizations: First, for each split, we compute the local frequency
vector vj , and then insert the keys into the sketch so we update the
sketch only once for each distinct key. Second, we only send non-
zero entries in a local sketch to the Reducer. For the two sampling
methods, the default ε is 10−4, and we vary it from 10−5 to 10−1.
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Figure 5: Cost analysis: vary k.

Results on varying k. We first study the effect of k, i.e., the size
of the wavelet histogram to be computed. Figure 5 shows the effect
of varying k on the communication cost and running time of all al-
gorithms. The results show k has little impact on performance, ex-
cept for the communication cost of H-WTopk. This is expected, as
Send-V (resp. Send-Sketch) always compute and send out all local
frequency vectors (resp. their sketches). The sampling methods are
also unaffected by k as the sampling rate is solely determined bym
and ε. However, H-WTopk’s communication cost is closely related
to k, as it determines thresholds T1 and T2 for pruning items.

For the exact methods, H-WTopk outperforms Send-V by orders
of magnitude, in both communication and running time. It also out-
performs Send-Sketch, which is an approximate method. The two
sampling algorithms are clearly the overall winners. Nevertheless,
among the two, in addition to a shorter running time, TwoLevel-

S reduces communication to 10%–20% compared to Improved-

S. Recall our analysis indicates an O(
√
m)-factor reduction from
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Figure 6: SSE: vary k.
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Figure 7: SSE: vary ε.
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Figure 8: Cost analysis: vary ε.

Improved-S to TwoLevel-S; but this assumes any input data. Due
to the skewness of the Zipfian data distribution, Improved-S actu-
ally combines many keys into one key-value pair, and thus typically
does not reach its O(m/ε) upper bound on communication. Over-
all, the sampling algorithms have impressive performance: On this
50GB dataset, TwoLevel-S incurs only 1MB communication and
finishes in less than 3 minutes. In contrast, Send-Sketch takes about
10 hours (most time is spent updating local sketches), Send-V about
2 hours (mostly busy communicating data), and H-WTopk 33 min-
utes (scanning inputs plus overhead for 3 rounds of MapReduce).

We must ensure the efficiency gain of the sampling methods does
not come with a major loss of quality. Thus, we examine the sum
of squared error (SSE) between the frequency vector reconstructed
from the wavelet histogram and that of the original dataset. The
results are shown in Figure 6. Since Send-V and H-WTopk are ex-
act methods, they represent the best possible reconstruction using
any k-term wavelet representation. So their curves are identical in
Figure 6 and represent the ideal error for measuring the accuracy
of the approximation methods. Clearly, when k increases, the SSEs
of all methods decrease. Among the three approximation methods,
TwoLevel-S returns wavelet histograms which come very close to
the ideal SSE. Improved-S has the worst SSE as it is not an unbi-
ased estimator for v, and the gap from the ideal SSE widens as k
gets larger, as it is not good at capturing the details of the frequency
vector. Send-Sketch’s SSE is between TwoLevel-S and Improved-S.
Even though the SSE looks large in terms of absolute values, it is
actually quite small considering the gigantic dataset size. When
k ≥ 30, the SSE is less than 1% of the original dataset’s energy.

Varying ε. Next we explore the impact of ε on all sampling meth-
ods, by varying it from 10−5 to 10−1 in Figure 7. In all cases,
TwoLevel-S consistently achieves significantly better accuracy than
Improved-S, as the first is an unbiased estimator of v while the lat-
ter is not. Both methods have larger SSEs when ε increases, with
ε = 10−4 achieving a reasonable balance between the SSE and ef-
ficiency (to be shown next), hence it is chosen as the default. Figure
8 shows all sampling methods have higher costs when ε decreases
(from right to left). In all cases, TwoLevel-S has significantly lower
communication cost than Improved-S as seen in Figure 8(a). It
also has a lower running time compared to Improved-S as shown
in Figure 8(b). In a busy data center where network bandwidth is
shared by many concurrent jobs, the savings in communication by
TwoLevel-S will prove to be critical and the gap for the running
time will widen even more.

115



In what follows, we omit the results on SSEs when we vary the
other parameters, as they have less impact on the SSEs of various
methods, and the relative trends on SSEs for all methods are always
similar to those reported in Figures 6 and 7.
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Figure 9: Communication and running time versus SSE.

Comparing SSE. For the next experiment we analyze the com-
munication and computation overheads of all approximation algo-
rithms to achieve a similar SSE in Figure 9, where the defaults
of all algorithms are circled. In Figure 9(a) we see that the com-
munication cost increases as the SSE decreases for all algorithms.
TwoLevel-S achieves the best SSE to communication cost, and com-
municates at least an order of magnitude less than Improved-S and
two orders of magnitude less than Send-Sketch to achieve a simi-
lar SSE. Among the algorithms, TwoLevel-S is the most efficient
in terms of running time, achieving a similar SSE to Send-Sketch

in orders of magnitude less time and approximately 2-3 times less
time than Improved-S, as shown in Figure 9(b). These results also
indicate the sketch size selected at 20kB * log2(u) is most compet-
itive against the sampling based algorithms, justifying our choice
for using it as the default value for the GCS-sketch.
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Figure 10: Cost analysis: vary n.

Varying dataset size n. Next, we analyze the scalability of all
methods by varying n, or equivalently the dataset size. Note as n
increases, so does m, the number of splits. This explains the gen-
eral trends in Figure 10 for both communication and running times.
There are two points worth pointing out. First, TwoLevel-S outper-
forms Improved-S by a larger margin in terms of communication
cost for larger datasets due to the O(

√
m)-factor difference, which

becomes more than one order of magnitude when the data becomes
200GB. Second, the increase in m leads to longer running times
of all methods, but the two sampling algorithms are much less af-
fected. The reason is the sampling algorithms mainly have two
kinds of running time costs: overheads associated with process-
ing each split (i.e., Mapper initialization), which linearly depends
on m, and sampling overheads where the sample size is always
Θ(1/ε2), which is independent of n. The net effect of these costs
is a slow growth in running time. Overall, H-WTopk and TwoLevel-

S are clearly the best exact and approximate methods, respectively.

Varying record size. In Figure 11 we analyze the effect varying
the record size has on the performance of all algorithms. We fix the
number of records as 4,194,304 (which is the number of records
when the total dataset reaches 400GB with 100kB per record), for
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Figure 11: Cost analysis: vary record size.

the default Zipfian dataset, and vary the size of a record from 4
bytes (key only) to 100kB, which corresponds to a dataset size of
16MB to 400GB consisting of 1 and 1600 splits respectively. We
see the communication cost increases for all methods as the record
size increases. This makes sense since increasing the number of
splits has a negative impact to all of their communication costs.
Nevertheless, even with 1600 splits when the record size is 100kB
H-WTopk still communicates less than Send-V; and TwoLevel-S still
outperforms the other algorithms by orders of magnitude with re-
spect to communication.

The running time of all algorithms also increases as the record
size increases, while the total number of records is fixed. This is
not surprising due to several factors when the record size increases:
1) all algorithms communicate more data; 2) there are much more
splits than the number of slaves in our cluster; 3) the IO cost be-
comes higher. Note that regardless of the record size H-WTopk

still performs better than Send-V. We also note that the clear win-
ner is TwoLevel-S with a running time roughly an order of mag-
nitude better than Send-V. Finally, the performance gap between
H-WTopk and Send-V, as well as the gap between TwoLevel-S and
Improved-S, are not as significant as in other experiments. This is
mostly due to the small number of records (only 4 million, in con-
trast to 13.4 billion in the default zipfian dataset and 1.35 billion
in the WorldCup dataset) we have to use in this study, which is
constrained by the number of records we can accommodate for the
maximum record size (100kB), while still keeping the total file size
under control (400GB when each record becomes 100kB).
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Figure 12: Cost analysis: vary u.

Varying domain size u. We next examine how u affects all algo-
rithms. Note as we increase u while keeping n fixed, the tail of the
data distribution gets longer while frequent elements get slightly
less frequent. Figure 12(a) shows this affects Send-V, which is ob-
vious as each local frequency vector vj gets more entries. We note
that Send-V performs better than Send-Coef for all tested domains.
Send-Coef reduces the computational burden at the reducer by per-
forming the wavelet transform in parallel over the local frequency
vectors. However, the results indicate that the potential savings
from computing the wavelet transform in parallel is canceled out
by the increase in communication and computation cost of Send-

Coef over Send-V. The overheads in Send-Coef are caused by the
fact that the number of local wavelet coefficients grows linearly to
the domain size, regardless of the size of each split and how many
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records a local split contains. Thus, with the increasing domain
size, the communication cost and the overall running time of this
approach quickly degrade. Indeed, the total non-zero local wavelet
coefficients are almost always much greater than the total number
of keys in the local frequency vector with a non-zero frequency.
Since Send-V always results in less communication and computa-
tion overheads than Send-Coef, we use Send-V as our default base-
line algorithm for all other experiments. In terms of running time,
larger u makes all methods slower except the sampling-based al-
gorithms. Send-V, Send-Coef, H-WTopk and Send-Sketch all more
or less linearly depend on u: Send-V and Send-Coef are obvious;
H-WTopk needs O(u) time to compute the wavelet transformation
for each vj ; while Send-Sketch needs to make O(u) updates to the
sketch. The two sampling algorithms are not affected as their sam-
ple size is independent of u.
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Figure 13: Cost analysis: vary split size β.

Varying split size β. Figure 13 shows the effect of varying the split
size β from 64MB to 512MB while keeping n fixed. The number of
splitsm drops for larger split sizes (varying from 800 to 100 for the
50GB dataset). Hence, the communication cost of all algorithms
drop with a larger split size. This is essentially the opposite of
Figure 10(a) where we increase n (hence m) for a fixed split size.
The difference is, for Send-V, the communication is not reduced as
much, since as the split gets larger, there are more distinct keys in
each split, which cancels some benefit of a smaller m.

The running times of all methods reduce slightly as well for
larger split size, because Send-V has less communication overhead,
H-WTopk has to perform less local wavelet transformations, and
Send-Sketch has less updates to the local sketches. For the two sam-
pling algorithms, although their sample size does not depend onm,
the communication (hence the cost of the Reducer who needs to
process all the incoming messages) reduces as m gets smaller.

All these seem to suggest we should use a split size as large as
possible. However, there is a limit on the split size, constrained
by the available local disk space (so that a split does not span over
multiple machines, which would incur significant communication
cost when processing such a split). In addition, larger split sizes
reduce the granularity of scheduling and increase the overhead of
failure recovery. On our cluster with 16 machines, these issues do
not manifest. But on large clusters with thousands of machines, the
split size should not be set too large. So the typical split size as
recommended by most works in the literature (e.g. [2, 25, 38]) is
either 128MB or 256MB.

Varying data skewness α. We also study the effect of data skew-
ness α, with α as 0.8, 1.1, 1.4 and show results in Figure 14 and
15. When data is less skewed, each split has more distinct key
values. As a result, the communication cost of Send-V is higher,
leading to higher running time. The running time of Send-Sketch

becomes more expensive as more local sketch updates are neces-
sary. The communication and running time of other methods have
little changes. The SSE is analyzed in Figure 15. All methods’ SSE
seem to improve on less skewed data. Nevertheless, TwoLevel-S

consistently performs the best among all approximation methods.
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Figure 14: Cost analysis: vary skewness α.
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Varying bandwidth B. Finally, Figure 16 shows the effect the
bandwidth B has on the running time of all methods, by vary-
ing it from 10% to 100% of the full network bandwidth which
is 100Mbps. The communication cost of all algorithms are unaf-
fected by B. Send-V enjoys an almost linear reduction in running
time when B increases as transmitting data dominates its running
time. Other methods see a slight reduction in their respective run-
ning times.
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Figure 17: Cost analysis: WorldCup dataset.

WorldCup Dataset. Figure 17 analyzes the performance of all al-
gorithms on WorldCup using default k, ε, β, andB values, in which
we attempt to compute the best k-term wavelet representation over
the clientobject attribute. Notice in Figure 17(a) the communica-
tion trends for all algorithms are similar to our previous observa-
tions. We note the WorldCup dataset is approximately 50GB with
almost 229 distinct clientobject values, which are the defaults used
for the Zipfian datasets. Send-V’s communication cost is dependent
on two primary factors: The skewness of the data and the total num-
ber of distinct values. As the data becomes more skewed, Send-V

can leverage on the Combine function to reduce communication.
However, as we see in Figure 17(a) Send-V requires roughly the
same amount of communication as for the Zipfian datasets. This
indicates by varying α, u and n for the Zipfian datasets we can
approximate the distribution of real large datasets fairly well.

In Figure 17(b) we observe the running times of all approaches
on WorldCup. Send-V’s running time is mainly dependent on its
communication cost. The data communicated is about the same
as the default Zipfian dataset so it is not surprising Send-V pre-
forms similarly on the WorldCup dataset. We would like to note
TwoLevel-S saves almost 2 orders of magnitude and H-WTopk saves
about 0.5-1 order of magnitude over Send-V indicating our algo-
rithms are effective on large real datasets.
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Figure 18: SSE on WorldCup.
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Figure 19: Comm. & running time vs SSE on WorldCup.

We observe the SSE on WorldCup in Figure 18. The relative
performance of various algorithms are similar to the previously ob-
served trends for Zipfian datasets in Figure 15. We also analyze
the communication and running time of all algorithms versus the
SSE on WorldCup in Figure 19. The trends are again similar to that
in Figure 9 for Zipfian datasets. Notice the Send-Sketch method
achieves a similar SSE, with at least an order of magnitude more
communication and orders of magnitude more computation over-
heads than other methods. We observe that TwoLevel-S achieves the
best overall SSE to communication cost, requiring approximately
an order of magnitude less communication than other methods. In
addition, TwoLevel-S is also 2-3 times or orders of magnitude faster
than other methods to achieve a similar SSE.

Experimental conclusion. These extensive results reach the clear
conclusion H-WTopk is the choice if we wish to find exact top-
k wavelet coefficients, outperforming the baseline exact method
Send-V by several orders of magnitude in communication, and 0.5-
1 order of magnitude in running time; when approximation is al-
lowed, TwoLevel-S is the best method. Not only does it offer the
cleanest solution, but it also achieves an SSE nearly as good as
exact methods for a tiny fraction of their communication cost and
running time. In addition, it achieves the best overall communica-
tion and running time to achieve an SSE similar to other sampling
and sketching techniques. It produces an approximate wavelet his-
togram of high approximation quality for 200GB data of domain
size of 229 in less than 10 minutes with only 2MB communication!

6. RELATED WORK
The wavelet histogram and wavelet analysis, introduced to data

management for selectivity estimation by Matias et al. [26], has
quickly emerged as a widely used tool in databases, data mining,
and data analysis [3, 9, 21, 33]. Matias et al. have also studied
how to dynamically maintain the wavelet histograms under updates
[27]. Gilbert et al. [20] extended the construction of the wavelet
histogram to streaming data, using the AMS sketch [4]. Cormode et
al. [13] then improved the efficiency of the sketch with the Group-
Count Sketch (GCS).

Many types of histograms exist. Poosala et al. [32] presented
an excellent discussion on the properties of various histograms.
How to efficiently build other types of histograms for large data in
MapReduce is an intriguing open problem we plan to investigate.

Since its introduction [15], MapReduce has quickly become a
primary framework for processing massive data. It represents the

trend of going towards parallel and distributed processing on shared-
nothing commodity clusters [8, 10, 31]. Significant effort has been
devoted to improving the efficiency, the functionality and query
processing in MapReduce, e.g., Amazon EC2 [5], HadoopDB [1],
Hadoop++ [16], Hadoop [22], MapReduce Online [11], and many
others [12]. To the best of our knowledge, efficient construction of
wavelet histograms in MapReduce has not been studied.

Our work is also related to finding distributed top-k and frequent
items. The best exact method for distributed top-k is TPUT [7].
However, it (and other methods, e.g., [28]) does not support find-
ing the aggregates with the largest absolute values over positive
and negative value sets. Our exact algorithm shares the basic prin-
ciple in distributed query processing, however, comes with novel
designs in order to work for wavelets in MapReduce. The approx-
imate distributed top-k query has been studied in [28] and many
others. However, they also only support non-negative scores and
require multiple rounds, which introduce considerable overhead in
the MapReduce framework. As such, we did not attempt to adapt
them as approximation methods. Instead, for approximation meth-
ods, we focus on algorithms that require only one round of MapRe-
duce. The most related works are methods for finding heavy hitters
from distributed datasets [39]. But they are not tailored for the
MapReduce environment, and use complicated heuristics that are
hard to implement efficiently in Hadoop. There is also a study on
finding the top-k largest valued items in MapReduce [34], where
each item has a single total score, which is clearly different from
(and does not help) our case.

7. CLOSING REMARKS
Massive data is increasingly being stored and processed in Map-

Reduce clusters, and this paper studies how to summarize this mas-
sive data using wavelet histograms. We designed both exact and
approximation methods in MapReduce, which significantly outper-
form the straightforward adaptations of existing methods to MapRe-
duce. Our methods are also easy to implement, in particular the
two-level sampling method, making them appealing in practice.

Data summarization is an important technique for analyzing large
datasets. The wavelet histogram is merely one representative, and
there are many other types of summaries we may consider in the
MapReduce model, such as other kinds of histograms (e.g., the
V-optimal histogram [24]), various sketches and synopses, geo-
metric summaries like ε-approximations and coresets, and graph
summaries like distance oracles. Another open problem is how to
incrementally maintain the summary when the data stored in the
MapReduce cluster is being updated. Finally, data summarization
in MapReduce is also an intellectually challenging problem, requir-
ing a good blend of algorithmic techniques and system building.

8. ACKNOWLEDGEMENT
Jeffrey Jestes and Feifei Li were supported in part by NSF Grants

IIS-0916488 and IIS-1053979. Ke Yi was supported by a Google
Faculty Research Award.

9. REFERENCES
[1] A. Abouzeid, K. Bajda-Pawlikowski, D. J. Abadi, A. Rasin, and

A. Silberschatz. HadoopDB: An architectural hybrid of MapReduce
and DBMS technologies for analytical workloads. PVLDB,
2(1):922–933, 2009.

[2] F. N. Afrati and J. D. Ullman. Optimizing joins in a map-reduce
environment. In EDBT, pages 99–110, 2010.

[3] C. C. Aggarwal. On effective classification of strings with wavelets.
In SIGKDD, pages 163–172, 2002.

118



[4] N. Alon, Y. Matias, and M. Szegedy. The space complexity of
approximating the frequency moments. In STOC, pages 20–29, 1996.

[5] Amazon EC2. http://aws.amazon.com/ec2/.

[6] M. Arlitt and T. Jin. Workload characterization of the 1998 world cup
web site. Technical report, IEEE Network, 1999.

[7] P. Cao and Z. Wang. Efficient top-k query calculations in distributed
networks. In PODC, pages 206–215, 2004.

[8] R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey, D. Shakib,
S. Weaver, and J. Zhou. SCOPE: easy and efficient parallel
processing of massive data sets. PVLDB, 1(2):1265–1276, 2008.

[9] K. Chakrabarti, M. Garofalakis, R. Rastogi, and K. Shim.
Approximate query processing using wavelets. VLDBJ,
10(2-3):199–223, 2001.

[10] J. Cohen, B. Dolan, M. Dunlap, J. M. Hellerstein, and C. Welton.
MAD skills: New analysis practices for big data. PVLDB,
2(2):1481–1492, 2009.

[11] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy,
and R. Sears. MapReduce online. In NSDI, pages 21–21, 2010.

[12] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, J. Gerth,
J. Talbot, K. Elmeleegy, and R. Sears. Online aggregation and
continuous query support in MapReduce. In SIGMOD, pages
1115–1118, 2010.

[13] G. Cormode, M. Garofalakis, and D. Sacharidis. Fast approximate
wavelet tracking on streams. In EDBT, pages 26–30, 2006.

[14] G. Cormode and M. Hadjieleftheriou. Finding frequent items in data
streams. In VLDB, pages 1530–1541, 2008.

[15] J. Dean and S. Ghemawat. MapReduce: simplified data processing
on large clusters. In OSDI, pages 137–150, 2004.
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APPENDIX

A. SYSTEM ISSUES OF HWTOPK

MapReduce Round 1: In Round 1, a Mapper first computes local
frequency vector vj for split j by using a hashmap to aggregate the
total count for each key encountered as the records in the split are
scanned. After vj is constructed, we compute its wavelet coeffi-
cients in the Close interface of the Mapper. Since the number of
nonzero entries in vj , denoted as |vj |, is typically much smaller
than u, instead of running the O(u)-time algorithm of [26], we use
the O(|vj | log u)-time and O(log u)-memory algorithm of [20].
During the computation we also keep two priority queues to store
the top-k and bottom-k wavelet coefficients.

After all coefficients for split j have been computed, the Mapper
emits an intermediate key-value pair (i, (j, wi,j)) for each of the
top-k and bottom-k wavelet coefficients wi,j of the split. In the
emitted pairs, the Mapper marks the k-th highest and the k-th low-
est coefficients using (i, (j+m,wi,j)) and (i, (j+2m,wi,j)), re-
spectively. Finally, the Mapper saves all the unemitted coefficients
as state information to an HDFS file associated with split j.

After the Map phase, the Reducer receives the top-k and bottom-
k wavelet coefficients from all the splits, 2km of them in total.
We denote by R the set of distinct indices of the received coeffi-
cients. For each index i ∈ R, The Reducer passes the correspond-
ing (j, wi,j)’s received to a Reduce function, which adds up these
wi,j’s, forming a partial sum ŵi for wi. Meanwhile we construct
a bit vector Fi of size m such that Fi(j) = 0 if wi,j has been re-
ceived and Fi(j) = 1 if not. While examining the (j, wi,j)’s in the
Reduce function, if we encounter a marked pair, we remember it so
the k-th highest and the k-th lowest coefficient from each split j,
denoted as w̃+

j and w̃−
j , can be obtained.

After we have all partial sums ŵi for all i ∈ R, and w̃+
j , w̃

−
j

for all j, we compute upper bound τ+i (resp. lower bound τ−i ) on
wi, by adding

∑m
j=1 Fi(j)w̃

+
j (resp.

∑m
j=1 Fi(j)w̃

−
j ) to ŵi. Then

we obtain a lower bound τi on |wi|, hence T1, as described in Sec-
tion 3. Finally, we save tuple (i, ŵi, Fi) for all i ∈ R, and T1 as
state information in a local file on the Reducer machine.

MapReduce Round 2: To start Round 2, T1/m is first set as a
variable in the Job Configuration. In this round, for the Map phase
we define an alternate InputFormat so a Mapper does not read an
input split at all. Instead, a Mapper simply reads state informa-
tion, i.e., all wavelet coefficients not sent in Round 1, one by one.
For any wi,j such that |wi,j | > T1/m, a Mapper emits the pair
(i, (j, wi,j)).
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The Reducer first reads tuple (i, ŵi, Fi) for all i ∈ R from the
local file written in Round 1. For each i, it passes all corresponding
(j, wi,j)’s received in this round to a Reduce function. Now we
update partial sum ŵi by adding these new coefficients, and update
Fi correspondingly. We also refine upper bound τ+i (resp. lower
bound τ−i ) as τ+i = ŵi + ‖Fi‖1 ·T1/m (resp. τ−i = ŵi −‖Fi‖1 ·
T1/m), where ‖Fi‖1 denotes the number of 1’s in Fi.

With the updated τ+i , τ
−
i , we obtain a new T2, which can be

used to prune indices from R as described in Section 3. Lastly, the
Reducer writes updated ŵi for all i ∈ R in a local file, and the set
of candidate indices R in an HDFS file.

MapReduce Round 3: In Round 3, the master readsR from HDFS
and adds it to the Distributed Cache. Like in Round 2, the Mappers
still do not read the input splits. During initialization, each Mapper
reads R from the distributed cache. Then, it reads from the state
file storing the wavelet coefficients. For any wi,j it checks if i ∈ R
and |wi,j | ≤ T1/m. If so, it means it has not been communicated
to the Reducer yet, and thus we emit (i, (j, wi,j)).

On the Reducer side, similar to Round 2, the Reducer first reads
R and ŵi for all i ∈ R’s from the local file. Then for each i,
the Reduce function adds all newly received wi,j’s to ŵi, yielding
accurate wi. Finally, we return the top-k coefficients wi of largest
magnitude for i ∈ R as the best k-term representation for v.

B. SYSTEM ISSUES OF TWOLEVELS
As before, we will have m Mappers, one per input split, and 1

Reducer. The first issue is how to randomly read records from an
input split. The default Hadoop RecordReader in InputFile format
is designed to sequentially scan an input split. Hence, we define
our own InputFile format RandomInputFile, assuming each record
in the input files has a fixed size. The RandomInputFile defines
a custom RecordReader, called RandomRecordReader, which can
randomly sample records from an input split. A straightforward im-
plementation is to simply seek to a random offset in the split when
the Mapper requests the next record, but this requires seeking offset
locations in both directions. Instead, we implement it as follows.

When the RandomRecordReader is first initialized, it determines
nj , the number of records in the split. Next, it randomly selects pnj

offsets in the split, where p = 1/(ε2n) is the sample probability
of the first-level sampling, and stores them in a priority queue Q
sorted in ascending order. Afterwords, every time the Random-
RecordReader is invoked by the Mapper to retrieve the next record
from the split, it seeks to the record indicated by the next offset, and
retrieves the record there. We continue this process iteratively until
all pnj random records have been obtained. Note in Section 4, we
assume coin-flip sampling for sake of simpler analysis; here we use
sampling without replacement. It has been observed coin-flip sam-
pling and sampling without replacement behave almost the same
for most sampling-based methods [37], and we observe this is also
true for our sampling-based approaches.

Using RandomInputFile as the InputFile format, two-level sam-
pling can be implemented in one round of MapReduce, as follows.

Map phase. During initialization of the Map phase we specify n
and ε in the Job Configuration. With the RandomRecordReader, the
MapRunner reads the pnj random records one at a time and invokes
the Map function for each record, which simply maintains aggre-
gated counts for keys of the sampled records. After the MapRun-
ner has processed all sampled records, the Mapper’s Close routine
is called. It iterates over all sampled keys and checks their aggre-

gate counts. If sj(x) ≥ 1/(ε
√
m), we emit the pair (x, sj(x)).

Otherwise, we emit (x, 0) with probability ε
√
m · sj(x).

Reduce phase. For each key x, the Reducer passes all correspond-
ing (x, sj(x)) or (x, 0) pairs to the Reduce function, which com-
putes the estimated v̂(x) as described in Section 4. After all keys
are processed by the Reducer, its Close method is invoked, where
approximate wavelet coefficients are computed from approximate
global frequency vector v̂. In the end, we emit (i, wi) pairs for the
top-k approximate coefficients (with the k largest magnitudes).

Remarks. In our discussion so far, our RandomRecordReader as-
sumes fixed length records. However, it is easy to extend it to sup-
port variable length records as well. Instead, assume records of
variable length end with a 4-byte record length followed by a de-
limiter character or byte sequence (e.g., a new line character). The
RandomRecordReader initially generates pnj random offsets and
inserts them in a priority queue Q. It then processes offsets from
Q one at a time. It seeks to an offset and scans forward until it
finds the record length r and delimiter (this is easy to achieve with
a few-bytes look-ahead buffer). The RandomRecordReader deter-
mines the start offset o of the record, using r and the end offset of
the record, and records an (o, r) pair in a Heap H sorted by o. It
is possible some of the pnj randomly selected offsets may point to
the contents of the same record. Note RandomRecordReader pro-
cesses sampled offset locations in (ascending) sorted order. Hence,
whenever the RandomRecordReader processes an offset o, it deter-
mines if its current split position is larger than o. If it is, o points
to the contents of the same record as the last processed offset. In
this case, RandomRecordReader randomly generates a new offset
o′ (to replace o) which does not point to locations covered by any
(o, r) pairs in H; this is easy to ensure using the information in H .
If o′ appears before the current split location of the RandomRecor-
dReader, the end split offset is added to o′. Then, the Random-
RecordReader pushes o′ onto the priority queue Q (which contains
yet to be processed offsets) and continues with the next offset. If the
end of the split is reached, and Q is not empty, the RandomRecor-
dReader goes back to the head of the split to continue processing
offsets in Q; first subtracting the end split offset from offsets in Q.
The process is repeated until enough records are sampled (Q be-
comes empty). At this point H contains sorted offsets of all sam-
pled pnj records (and their lengths). The RandomRecordReader
seeks to and reads all records at offsets in H by ascending order.

Another issue which must be addressed is how the Random-
RecordReader should determine the number of records in the jth
split nj when records are variable length, so that it may determine
the number of records which should be sampled. We can either
assume that this information is made available when the datasets
were initially loaded into the MapReduce cluster, or statistics such
as the average, median, or minimum record sizes can be used to
determine an appropriate nj depending on the application. Addi-
tionally, in order to decrease the likeliness that any two of the pnj

randomly selected offsets point to the contents of the same record,
it can be enforced that the offsets do not appear within the average,
median, or minimum record size of each other.

In the implementation of our exact and sampling methods, we
choose to do the final processing in the close method, instead of
using the combiner. This is a technicality due to the default be-
havior of Hadoop, which runs the COMBINE function continuously
while keys are being processed to save memory buffer space (leads
to fewer disk writes). On the other hand, the close method is guar-
anteed to run only once when all keys have been processed.
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