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ABSTRACT
The suffix tree is a data structure for indexing strings. It
is used in a variety of applications such as bioinformatics,
time series analysis, clustering, text editing and data com-
pression. However, when the string and the resulting suffix
tree are too large to fit into the main memory, most existing
construction algorithms become very inefficient.

This paper presents a disk-based suffix tree construction
method, called Elastic Range (ERa), which works efficiently
with very long strings that are much larger than the available
memory. ERa partitions the tree construction process hor-
izontally and vertically and minimizes I/Os by dynamically
adjusting the horizontal partitions independently for each
vertical partition, based on the evolving shape of the tree
and the available memory. Where appropriate, ERa also
groups vertical partitions together to amortize the I/O cost.
We developed a serial version; a parallel version for shared-
memory and shared-disk multi-core systems; and a parallel
version for shared-nothing architectures. ERa indexes the
entire human genome in 19 minutes on an ordinary desk-
top computer. For comparison, the fastest existing method
needs 15 minutes using 1024 CPUs on an IBM BlueGene
supercomputer.

1. INTRODUCTION
The suffix tree [12] is a trie that indexes all possible suf-

fixes of a string S (see Figure 1 for an example). It is used
to accelerate many string operations. For instance, finding
a substring P inside S without an index takes O(|S|+ |P |)
time [3]. With a suffix tree the same operation is done in
O(|P |) time, which is a significant gain given that typically
S is several orders of magnitude longer than P . Other opera-
tions that can benefit from a suffix tree include approximate
string matching, finding the longest common substring of
two strings and finding all common substrings in a database
of strings. Such queries are essential for many applications
such as bioinformatics [8], time series analysis [15], docu-
ment clustering [4], text editing [1] and compression [5].
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Figure 1: Suffix tree for S = banana$ ($ denotes end-
of-string). Edge labels on a path from the root to
a leaf correspond to a suffix in S. Leaf labels show
the offset of each suffix in S

Fast suffix tree construction is critical, given the rate of
data generation by the aforementioned applications [9]. For
example, modern DNA sequencers can process multiple sam-
ples per hour, whereas financial applications generate con-
tinuous streams of time series data. If the string S and the
resulting suffix tree can fit in the main memory, there are
efficient solutions such as Ukkonen’s algorithm [19], which
constructs the tree in O(|S|) time but becomes very ineffi-
cient if it runs out of memory. However, the suffix tree for
S is more than an order of magnitude larger than S. The
human genome, for instance, has roughly 2.6G symbols; the
resulting suffix tree occupies around 67GB and challenges
the main memory limits of many systems. Other algorithms,
such as TRELLIS [13], work well if at least S fits in main
memory, but are very inefficient otherwise.

In practice S alone can be much larger than the main
memory. For example, operations that involve a database
of strings [8] require a generalized suffix tree, which is simply
the suffix tree of the concatenation of all input strings. For
such cases, recently two methods have been proposed: B2ST
[2] and WaveFront [7]. Both access S in sequential order
which is much faster than random I/Os in modern disks.
The serial version of WaveFront is slower than B2ST, but
WaveFront is easily parallelizable; this is very important
given the size of the targeted problems. Nevertheless, the
performance of both algorithms deteriorates as the length of
S or the size of the alphabet (i.e., set of symbols appearing
in S) increase.

In this paper we present ERa1, a suffix tree construction
algorithm that (a) supports very long strings and large al-
phabets; (b) is much faster than the existing ones even if
memory is very limited; and (c) is easily parallelizable. In a
nutshell, ERa optimizes dynamically the use of memory and
amortizes the I/O cost. Specifically, it divides the problem

1ERa stands for Elastic Range, for adjusting dynamically the
range of the horizontal partitions.
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vertically into construction of independent sub-trees, ensur-
ing that each sub-tree can fit into the available memory.
Sub-trees are further divided horizontally into partitions,
such that each partition can be processed in memory with
a single sequential scan of the input string S. At each step,
horizontal partitions are readjusted based on the evolving
shape of the tree, in order to maximize memory utilization.
Also, vertical partitions may be grouped together in order
to share the I/O cost. The entire plan can be executed in a
serial or parallel system.

Our contributions include:

• A serial version of ERa that is at least 50% faster than
existing serial algorithms. Performance gain is more dra-
matic for very long strings and large alphabets.

• A parallel version for shared-memory and shared-disk ar-
chitectures that include ordinary multicore desktop sys-
tems.

• A parallel version for shared-nothing systems, such as
clusters or cloud computing infrastructures.

• Extensive experimental evaluation with real datasets of
very long strings. ERa indexes the entire human genome
in 19 minutes on an ordinary 8-core desktop computer
with 16GB of RAM. For comparison, the fastest existing
method (i.e., the parallel version of WaveFront [6]) needs
15 minutes on an IBM BlueGene/L supercomputer using
1024 CPUs and 512GB of RAM.

The rest of this paper is organized as follows. Section 2
furnishes the preliminaries of suffix trees, whereas Section 3
discusses the related work. Section 4 introduces the serial
version of ERa and Section 5 presents the parallel versions.
Section 6 discusses our experimental results. Section 7 con-
cludes the paper.

2. BACKGROUND: SUFFIX TREE
Let Σ denote an alphabet (i.e., set of symbols). An input

string S of length n + 1 is a sequence S = s0s1 · · · sn−1$,
where si ∈ Σ, 0 ≤ i ≤ n−1 and $ 6∈ Σ; $ is the end-of-string
symbol. A prefix of S is sequence s0 · · · si and a suffix of
S, denoted by Si, is si · · · $ (0 ≤ i ≤ n). In this paper,
we will consider prefixes of S and prefixes of suffixes of S.
To avoid confusion, we will refer to the latter by S-prefixes.
The unique terminal symbol $ ensures that no suffix Si is a
proper S-prefix of any other suffix Sj (i 6= j).

A suffix tree T is a trie that indexes all suffixes of S. In
the rest of the paper, we will use the example string and
corresponding tree of Figure 2; the alphabet consists of four
symbols {A,C,G, T} which is typical in bioinformatics. The
main properties of the suffix tree are:

• There exist exactly n + 1 leaves with node labels from 0
to n. For any leaf vi, the concatenation of the edge labels
on the path from the root to vi spells out suffix Si. For
example v20 corresponds to S20 = TGC$.

• Each internal node other than the root, has at least two
children and each edge is labeled with a S-prefix of S. If,
during construction, a node appears with only one child,
then the node and its child are merged and the edge la-
bels are concatenated (this explains edge labels with more
than one symbol in the example).

• No two edges out of a node can have edge labels beginning
with the same symbol.

Figure 2: Input string S, where Σ = {A,C,G, T}, and
corresponding suffix tree T . For simplicity, TG (i.e.,
the sub-tree under G) is not shown

i Si Suffix
0 S0 TGGTGGTGGTGCGGTGATGGTGC$
3 S3 TGGTGGTGCGGTGATGGTGC$
6 S6 TGGTGCGGTGATGGTGC$
9 S9 TGCGGTGATGGTGC$
14 S14 TGATGGTGC$
17 S17 TGGTGC$
20 S20 TGC$

Table 1: Suffixes sharing the S-prefix TG. i refers to
the offset of the suffix in the string of Figure 2

The suffix tree can be divided into a set of sub-trees; Tp
denotes the sub-tree that indexes suffixes sharing a S-prefix
p. In the example, T is divided into TA, TC , TG, TTG, and
T$. Table 1 shows all suffixes with S-prefix TG; these suffixes
will be indexed in TTG. The frequency fp of a S-prefix p is
the number of suffixes in Tp. For example, fTG = 7, whereas
fA = 1. As we will see later, the frequency is proportional
to the amount of memory needed for the construction of the
sub-tree. Given the available memory, we can bound the
maximum frequency of all p below a threshold by using vari-
able length S-prefixes [7]. For example, each of the S-prefixes
in the set {A,C,TGA,TGC ,TGGTGC ,TGGTGGTG} has
frequency at most 2. Note that, reducing the maximum fre-
quency increases the number of sub-trees.

Storing S-prefixes in the edge labels requires O(n2) space
for the tree. Typically, a suffix tree edge stores only two
integers representing the starting and the ending index of
the S-prefix in S. Using this representation space complexity
drops to O(n). The figures throughout the paper show S-
prefixes for clarity. Also, we sort the edges that emanate
from a node according to the lexicographical order of their
labels. Thus, a depth first search traversal will result in
suffixes in lexicographical order.

3. RELATED WORK
This section presents the most important suffix tree con-

struction algorithms classified into three main categories:
in-memory, semi-disk-based, and out-of-core. Table 2 sum-
marizes the comparison. It is worth to note that even though
suffix trees are useful in a wide range of applications, there
also exist specialized index structures for particular applica-
tions like genome data [11] and time series analysis [16].

In-memory approaches perform very well as long as the
input string and the resulting suffix tree fit in main mem-
ory. This category includes algorithms, such as McCreight’s
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In-memory Semi-disk-based Out-of-core

Criteria Ukkonen Hunt TDD ST-Merge TRELLIS WaveFront B2ST

Complexity O(n) O(n2) O(n2) O(n2) O(n2) O(n2) O(n2)
Memory locality Poor Good Good Good Good Good Good
String access Random Random Random Random Random Sequential Sequential
Parallel No No No No No Yes No

Table 2: Comparison of the most important algorithms for suffix tree construction

[12] and Ukkonen’s [19]. For a string S of size n, the time
complexity of the latter is O(n), which is optimal. How-
ever, this category suffers from poor locality of reference
[18]. Once the suffix tree cannot fit in the main memory,
the algorithms of this category require on average O(n) ex-
pensive random disk I/Os. Recall that the suffix tree is an
order of magnitude larger than the input string. Therefore,
in practice in-memory methods are prohibitively expensive
even for moderately long strings.

Semi-disk-based methods solve the locality of reference
problem by decomposing the suffix tree into smaller sub-
trees stored on the disk. This category includes Hunt’s al-
gorithm [10], TDD [17], ST-Merge [18] and TRELLIS [13].
The latter partitions the input string into several substrings,
and constructs the corresponding sub-tree independently for
each substring. The resulting sub-trees are stored on the
disk. In a second phase, the sub-trees are merged into the
final suffix tree. The time complexity is O(n2), but as long
as the string S fits into memory, the algorithms in this cate-
gory perform few random I/Os so in practice they are faster
than Ukkonen’s algorithm. However, if S is larger than the
memory, the merging phase generates a lot of random disk
I/Os rendering these algorithms very inefficient [2, 7]. It is
worth noting that the sub-tree construction phase can be
parallelizable but the merging phase is expected to require
a lot of communication among processors. We are not aware
of any parallel version of semi-disk-based algorithms.

Out-of-core category contains two recent methods that
support strings larger than the main memory with reason-
able efficiency by avoiding random I/Os. The first method,
B2ST [2] is based on suffix arrays [14]. A suffix array is a
vector that contains all suffixes of the input string S sorted
in lexicographical order. A longest common prefix array is a
vector that stores the length of the common prefix between
each two consecutive entries in the suffix array. B2ST di-
vides the input string S into several partitions and builds
the corresponding suffix array and longest common prefix
array for each partition. Then, it merges the suffix arrays
of all partitions and generates suffix sub-trees. Note that
the tree is constructed in batch at the final phase. This is
an advantage of the algorithm because by avoiding the tree
traversal for the insertion of each new node, it is more cache
friendly. The time complexity is O(cn), where c = (2n/M)
and M is the size of the main memory. If M is comparable
to n then c is considered constant and the algorithm per-
forms very well. However, as we mention in Section 1, in
practice n is expected to be much larger than M ; in such a
case the complexity becomes O(n2). A drawback of B2ST
is the large size of temporary results. The human genome
for example is roughly 2.6G symbols whereas the temporary
results are around 343GB. Furthermore, a parallel version of
the algorithm would incur high communication cost among
the processors during the merging phase; we are not aware
of any parallel implementation.

WaveFront [7] is the second out-of-core algorithm. In con-
trast to B2ST, which partitions the input string S, Wave-
Front works with the entire S on independent partitions of
the resulting tree T . Tree partitioning is done using vari-
able length S-prefixes (see example in Table 1), making sure
that each sub-tree fits in main memory. Since S may not
fit in memory the algorithm may need to read S multiple
times. To minimize the I/O cost, WaveFront accesses S
strictly in sequential order. Each sub-tree is processed in-
dependently without a merging phase, so the algorithm is
easily parallelizable. The parallel version has been imple-
mented on an IBM BlueGene/L supercomputer; in absolute
time it is the fastest existing method (it can index the hu-
man genome in 15 minutes [6]). Nevertheless, the algorithm
cannot scale indefinitely, because more sub-trees increase
the so-called tiling overhead [7]. Internally, WaveFront re-
sembles the block nested loop join algorithm and requires
two buffers. For optimum performance, these buffers occupy
roughly 50% of the available memory, leaving the rest for the
sub-tree. This is a drawback of the algorithm, because less
memory leads to smaller and more trees that increase the
tiling overhead. Moreover, even though the algorithm ex-
pands the sub-tree in layers, it needs to traverse the tree
top-down for every new node, increasing the CPU cost.

Our approach, Elastic Range (ERa) is closer to Wave-
Front, therefore there is no merging phase and it is eas-
ily parallelizable. However, ERa is significantly faster than
WaveFront since it is based on properties that allow a level
by level construction mechanism that performs clever mem-
ory management and minimizes the tiling overhead. Also,
ERa amortizes the I/O cost by grouping together sub-trees
where appropriate. Finally, ERa avoids multiple traverses
of the sub-tree, achieving much lower CPU cost.

4. ELASTIC RANGE (ERa)
Elastic Range (ERa) is a novel approach that divides the

problem vertically and horizontally (see Figure 3). Vertical
partitioning splits the tree into sub-trees Tp1 . . . Tpn that fit
into the available memory using variable length S-prefixes
similarly to [7, 10]. ERa goes a step further by grouping
together sub-trees to share the I/O cost of accessing the
input string S. Horizontal partitioning is applied indepen-
dently in each sub-tree in a top-down fashion. The width
of the horizontal partitions is adjusted dynamically (hence
the name elastic range) based on how many paths in the
sub-tree are still being processed. This allows ERa to use
only a small part of the memory for buffers, rendering the
algorithm cache-friendly and minimizing the tiling overhead.
Each group represents an independent unit; groups can be
processed serially or in parallel. The resulting sub-trees are
assembled in the final suffix tree by a trie on the top. The
trie is constructed with the S-prefixes used for vertical parti-
tioning and is very small (e.g., the trie for the human genome
is in the order of KB). The rest of this section describes the

51



Figure 3: Problem decomposition in ERa

serial version of ERa. The parallel versions are discussed in
Section 5.

4.1 Vertical Partitioning
Let p be a S-prefix and Tp be the sub-tree that corre-

sponds to p. Recall from Section 2 that fp is the number
of suffixes with S-prefix p (see example in Table 1). Each
suffix corresponds to a leaf node in Tp and it is shown [10]
that the number of internal nodes is equal to the number of
leaves. The size in bytes of Tp is 2fp · sizeof (tree node). Let
MTS be the size of the memory reserved for the sub-tree.
Tp can fit in the memory only if fp ≤ FM , where

FM =
MTS

2 · sizeof (tree node)
(1)

To partition T into sub-trees that fit in MTS, we employ
the idea of variable length S-prefixes [7, 10]. The algorithm
starts by creating a working set containing one S-prefix for
every symbol in the alphabet Σ. Then the entire input string
S is scanned to calculate the frequencies of each S-prefix in
the working set. At the end of this step, each S-prefix whose
frequency is at most FM is removed from the working set.
The remaining S-prefixes are extended by one symbol and
the process is repeated until the working set is empty. In
the example of Table 1, assume FM = 5. Since fTG = 7,
we extend TG by one symbol and get fTGA = 1, fTGC = 2
and fTGG = 4 that are all at most 5 and are removed from
the working set; note that fTGT = 0 since there is no TGT
substring in S. The worst case complexity is O(n2) time,
where n is the size of S. In practice, for typical values of
MTS the algorithm runs in O(n). The human genome, for
instance, requires 5 to 6 iterations when MTS is 1 to 2GB.

However, the algorithm from [7] has a serious drawback:
it generates unbalanced sub-trees that waste a lot of mem-
ory. In the previous example, the available memory can sup-
port frequencies up to FM = 5 but the frequencies of the
resulting sub-trees are much smaller. Each small sub-tree
is processed independently and accesses S multiple times;
therefore there are a lot of redundant I/Os. Also, a paral-
lel implementation would waste resources because the CPUs
that process the smaller sub-trees will be idle for long time.
To avoid these problems, we propose a grouping phase after
the initial partitioning.

We use a simple heuristic for grouping: The set of S-
prefixes from the previous phase are put in a linked list
sorted in descending frequency order. The head of the list
(i.e., the S-prefix with the highest frequency) is added in a
new group. Then, the list is traversed and S-prefixes are
added to the group as long as the sum of the frequencies in
the group is at most FM . The process is repeated until all S-

Algorithm: VerticalPartitioning
Input: String S, alphabet Σ, FM (see Equation 1)
Output: Set of V irtualTrees

1 V irtualTrees := ∅
2 P := ∅ // linked list of S-prefixes

3 P ′ := { for every symbol s ∈ Σ do generate a S-prefix pi = s }
4 repeat
5 scan input string S

6 count in S the appearances fpi of every S-prefix pi ∈ P ′

7 for every pi ∈ P ′ do
8 if 0 < fpi ≤ FM then add pi to P

9 else for every symbol s ∈ Σ do add pis to P ′

10 remove pi from P ′

11 until P ′ = ∅;
12 sort P in descending fpi order

13 repeat
14 G := ∅ // group of S-prefixes in a virtual tree
15 add P.head to G and remove the item from P
16 curr := next item in P
17 while NOT end of P do
18 if fcurr + SUMgi∈G

(
fgi

)
≤ FM then

19 add curr to G and remove the item from P

20 curr := next item in P

21 add G to V irtualTrees

22 until P = ∅;
23 return V irtualTrees

prefixes are processed (see Algorithm VerticalPartition-
ing). In the previous example, this heuristic groups TGG
and TGA together, whereas TGC is in a different group.
TGG and TGA share a common S-prefix TG but this is a
coincidence. The algorithm works with all S-prefixes gener-
ated from S and may group together two or more completely
unrelated S-prefixes.

A group of S-prefixes defines a virtual sub-tree that is
processed as a single unit. When the input string S is read
from the disk, it is used by the entire group, therefore the
I/O cost is amortized. Also, in a parallel environment, the
utilization of resources is much better. Obviously, when
MTS is large, more sub-trees can be grouped together and
the gain is larger.

4.2 Horizontal Partitioning
During this step ERa constructs the suffix sub-tree Tp for

a S-prefix p where Tp fits in the available main memory bud-
get (Section 4.1). We base our method on properties of the
suffix-tree (Proposition 1) that have not be exploited by pre-
vious approaches. Initially, in Section 4.2.1, we devise Algo-
rithm ComputeSuffixSubTree that exploits these prop-
erties to optimize access to the input string S. Then, Section
4.2.2 further extends the idea to also optimize main memory
access (Algorithm SubTreePrepare).

4.2.1 Optimizing String Access
To illustrate the key idea of our method, we will need the

following notation. Let e be an edge of Tp. We denote by
(i) label(e) the label of e, (ii) parent(e) the unique parent
of e, and (iii) pathlabel(e) the concatenation of edge labels
on the path from the root to e. We consider nodes u1, u2

and u3 of the suffix-tree illustrated in Figure 2 and make
the following observations:

1. If an edge e connects to a leaf then pathlabel(e) appears
only once in S. For instance, edge e = (u1, 14) that con-
nects to leaf 14 has pathlabel(e) = TGA · · · $ that appears
only once in S.

2. If an edge e has a label of more than one symbols, say
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Algorithm: ComputeSuffixSubTree
Input: String S, S-prefix p
Output: The suffix sub-tree Tp(Nodes,Edges)

1 root := new Node(root)

2 u′ := new Node

3 e′ := new Edge(root, u′)

4 Label e′ with S-prefix p

5 BranchEdge(S, Tp(Nodes,Edges), e′)
6 return Tp(Nodes,Edges)

Algorithm: BranchEdge
Input: String S, suffix sub-tree Tp(Nodes,Edges), edge

e(u1, u2)

1 Y is a set containing the symbols that follow pathlabel(e) in S

2 if pathlabel(e) appears once in S then // Leaf node
3 Label e with label(e) · · · $

4 else if |Y | = 1 then // Same symbol s1 after pathlabel(e) in S
5 Extend the label of e to include symbol s1
6 BranchEdge(S, Tp(Nodes,Edges), e)

7 else for each si do
8 u′ := new Node

9 e′ := new Edge(u2, u
′)

10 Label e′ with si
11 BranchEdge(S, Tp(Nodes,Edges), e′)

s1s2s3 · · · , then pathlabel(parent(e)) ·s1 is always followed
by s2 in S, pathlabel(parent(e)) · s1s2 is always followed
by s3 in S and so on. For instance, for edge e = (u1, u3)
having label GTG, TGG is always followed by T in S
where TG = pathlabel(parent(e)).

3. If an edge e is branched into another edge e′ then pathlabel(e)·
s, where s is the first symbol of label(e′), appears (at least
once) in S. For instance, edge e = (u1, u2) is branched
into edge e′ = (u2, 9) and TGCG appears in S, where
(i) TGC = pathlabel(e) and (ii) G is the first symbol of
label(e′).

Interestingly, the above observations are general proper-
ties of the suffix-tree that are captured formally by the fol-
lowing proposition.

Proposition 1. Let S be a string and e an edge of its
suffix-tree.

1. Edge e is connected to a leaf node iff pathlabel(e) appears
only once in S.

2. If label(e) = s1 · · · sk, then substring pathlabel(parent(e)) ·
s1 · · · si−1 is always followed by si in S (1 < i ≤ k).

3. Edge e is branched into edges e1, . . . , ej iff pathlabel(e) ·si
(1 ≤ i ≤ j) appears at least once in S where s1, . . . , sj are
distinct symbols formed by the first symbols of label(e1),
. . . , label(ej) respectively.

Contrary to previous suffix-tree construction approaches,
Proposition 1 provides us with a method to build the suf-
fix sub-tree Tp of a S-prefix p level by level in a breadth-
first fashion. This is achieved using Algorithms Compute-
SuffixSubTree and BranchEdge. In more detail, Algo-
rithm ComputeSuffixSubTree creates an edge e′ labeled
with p. Then, BranchEdge is executed; it computes set Y
that stores all symbols appearing after p in S. Following,
the algorithm considers the 3 cases identified by Proposition
1. An example is shown below:

Figure 4: Constructing the suffix sub-tree of TG
(Example 1). Thin edges are finalized while thick
edges need further processing.

Example 1. Let us construct, using Algorithm Compute-
SuffixSubTree, the suffix sub-tree TTG of S-prefix TG for
the string S presented in Figure 2. In each step of the algo-
rithm, we illustrate in Figure 4 the constructed suffix-tree.

Initially, Algorithm ComputeSuffixSubTree creates an
edge labeled with TG and executes Algorithm BranchEdge
(Figure 4(a)). Since Y = {A,C,G}, Algorithm Branch-
Edge branches the current edge into 3 new edges labeled
with A, C and G (Figure 4(b)) and is recursively executed for
these new edges. While processing these edges, the algorithm
determines that (a) the edge labeled with A connects to a leaf
with label 14 (i.e., the offset of S-prefix TGA . . . $ in S), (b)
the edge labeled with C should be branched into two new edges
labeled with G and $ respectively and (c) the edge labeled
with G should be extended to include symbol T (Figure 4(c)).
Algorithm BranchEdge proceeds in a similar manner until
sub-tree Tp is created.

The heart of the suffix sub-tree construction mechanism
lies in Algorithm BranchEdge. For the clarity of presen-
tation, this algorithm is illustrated in its simplest form (i.e.,
recursive) and without any optimization. The most costly
operation of Algorithm BranchEdge is the construction of
set Y since it requires a complete scan of the input string
S. Such a scan is required for every modified edge. For
instance, in Figure 4(b) BranchEdge scans S three times,
one for each thick edge (labeled with A, C and G). Also,
for each scan the algorithm reads and stores in Y only one
symbol after each occurrence of pathlabel(e) in S.

The actual implementation of BranchEdge is iterative
(non recursive) and has three major optimizations:

1. The cost of scanning S is amortized for all the edges of
a level. For Figure 4(b), a single scan of S is needed to
process all thick edges A, C and G.

2. For each scan of S, the algorithm reads a range of symbols.
This means that Y is now a set of strings (instead of a
set of symbols). The exact size of the range depends on
the available main memory (see Section 4.4). In total, by
reading l symbols, we reduce the scans of S by a factor l.

3. The algorithm constructs the sub-tree Tp for a S-prefix p.
If more sub-trees are grouped in the same virtual tree (see
Section 4.1), then each scan of S updates the edges of all
sub-trees in the virtual tree.

From this point onwards, we consider that the Compute-
SuffixSubTree algorithm uses the above described opti-
mized version of BranchEdge.

4.2.2 Optimizing Memory Access
The experimental evaluation and profiling of the Algo-

rithm ComputeSuffixSubTree showed that a significant
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amount of time is spent on updating the constructed (in
main memory) suffix sub-tree Tp. This is mainly due to the
fact that the construction process requires memory accesses
that may not be sequential nor local. To address this issue,
we propose a novel two step approach formed by a prepara-
tion and a construction step.

The preparation step is executed by Algorithm Sub-
TreePrepare. It extends the optimized version of Branch-
Edge and employs Proposition 1 to construct not the sub-
tree but a novel intermediate data structure.

The construction step is performed by Algorithm Build-
SubTree that utilizes the data structure produced by the
preparation step to construct the suffix sub-tree in batch.
By decoupling the sub-tree construction from the prepara-
tion, we localize memory accesses and avoid costly traversals
of the partial sub-tree for each new node.

The crux of the proposed method is the intermediate data
structure. It consists of array L that stores the leaves and
array B that stores branching information. More precisely,
array L stores the positions of the input S-prefix p in S,
i.e., the leaves of the sub-tree. The order of the leaves in L
is such that the corresponding suffixes are lexicographically
sorted, i.e., SL[i] ≤ SL[i+1]. Array B is more involved and
consists of triplets of the form (c1, c2, offset) where c1 and
c2 are symbols and offset is an integer. Intuitively, B[i]
describes the relation between the branch Bri−1 that leads
to L[i − 1] and the branch Bri that leads to L[i] (1 ≤ i).
Specifically, offset is the number of symbols in the common
path of Bri−1 and Bri (this corresponds to the size of the
common longest S-prefix of SL[i−1] and SL[i]). Symbol c1
(respectively c2) is the first symbol of the branch to L[i− 1]
(respectively L[i]) after their separation. For instance, using
L and B we can represent TTG (Figure 2) as follows:

0 1 2 3 4 5 6
L 14 9 20 6 17 3 0

B (A,C, 2) (G, $, 3) (C,G, 2) (G, $, 6) (C,G, 5) (C,G, 8)

For example, (a) L[0] = 14 since the lexicographically small-
est suffix is S14 (Table 1), and (b) B[5] = (C,G, 5) since the
branch leading to L[4] = 17 separates after 5 symbols (i.e.,
TGGTG) from the branch leading to L[5] = 3 and C, G are
the first symbols after the separation (Figure 2).

To compute arrays L and B that correspond to the sub-
tree Tp of a S-prefix p, we employ Algorithm SubTree-
Prepare (recall that L stores the leaves and B the branch-
ing information of Tp). The algorithm uses 4 auxiliary data
structures of size |L|, namely I, A, R and P. During the
process the order of the elements in A, R, P and L may
change. Intuitively:

Array R is the main memory buffer of the input string S.
Specifically, R[i] stores symbols required to construct the
branch leading to leaf L[i].

Array I is an index that holds information that restores the
original order of leaves in the string S. More precisely, the
position of the ith leaf in S may be accessed using L

[
I[i−1]

]
.

If I[i] = done then the corresponding branch is completed.
In other words, leaves L

[
I[0]

]
, . . . ,L

[
I[|L| − 1]

]
appear in

that order in S. Thus, to fill R, S is sequentially read until
the symbols pertaining to leaves L

[
I[0]

]
, . . . ,L

[
I[|L|−1]

]
are

found and stored in R
[
I[0]

]
, . . . ,R

[
I[|L|−1]

]
, respectively

(Lines 10-12 of SubTreePrepare). Overall, array I is of
paramount importance since it allows us to fill the buffers

Algorithm: SubTreePrepare
Input: Input string S, S-prefix p
Output: Arrays L and B corresponding suffix sub-tree Tp

1 L contains the locations of S-prefix p in string S
2 B := ()
3 I := (0, 1, . . . , |L| − 1)
4 A := (0, 0, . . . , 0)
5 R := ()
6 P := (0, 1, . . . , |L| − 1)
7 start := |p| // Start after S-prefix p
8 while there exist an undefined B[i], 1 ≤ i ≤ |L| − 1 do
9 range := GetRangeOfSymbols // Elastic range

10 for i := 0 to |L| − 1 do
11 if I[i] 6= done then
12 R

[
I[i]

]
:= ReadRange(S,L

[
I[i]

]
+ start, range)

// ReadRange(S, a, b) reads b symbols of S
starting at position a

13 for every active area AA do
14 Reorder the elements of R, P and L in AA so that R is

lexicographically sorted. In the process maintain the
index I

15 If two or more elements {a1, . . . , at} ∈ AA, 2 ≤ t, exist
such that R[a1] = · · · = R[at] introduce for them a new
active area

16 for all i such that B[i] is not defined, 1 ≤ i ≤ |L| − 1 do
17 cs is the common S-prefix of R[i− 1] and R[i]
18 if |cs| < range then
19 B[i] := (R[i− 1][|cs|],R[i][|cs|], start + |cs|)
20 if B[i− 1] is defined or i = 1 then
21 Mark I

[
P[i− 1]

]
and A[i− 1] as done

22 if B[i + 1] is defined or i = |L| − 1 then
23 Mark I

[
P[i]

]
and A[i] as done // Last element

of an active area

24 start := start + range

25 return (L,B)

of R in a single sequential scan of S (and thus retain the
properties of Algorithm BranchEdge).

Array A identifies the active areas of the process. Elements
i and i+ 1 belong to the same active area if A[i] = A[i+ 1].
If A[i] = done then element i is completed.

Array P stores the order of appearance in the string S of
the leaves in L. If P[i] = x then leaf L[i] corresponds to the
x + 1 appearance of S-prefix p in S. P is used in Lines 21
and 23.

We will illustrate Algorithm SubTreePrepare using the
following example.

Example 2. We will construct arrays L and B of the
suffix sub-tree TTG of S-prefix TG for the string S presented
in Figure 2. The algorithm starts by initializing all necessary
structures (I,A,R,L and B). Then, the algorithm decides
to read ranges of 4 symbols2 from the input string S (range =
4) to fill the buffers of R (Lines 9-12). The values of the
variables up to this point are as follows:

Trace 1
0 1 2 3 4 5 6

I 0 1 2 3 4 5 6

A 0 0 0 0 0 0 0

R GTGG GTGG GTGC CGGT ATGG GTGC C$

P 0 1 2 3 4 5 6

L 0 3 6 9 14 17 20

For instance, if i = 3 the algorithm considers position
I[3] = 3 and reads from S symbols CGGT that correspond

2We will discuss how the range is determined in Section 4.4
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to the range = 4 symbols after position L
[

I[i]
]

+ start =
9 + 2 = 11.

Following (Lines 13-15), the algorithm considers all ele-
ments (since they belong to the same active area marked with
0) and reorders R, P and L so that R is lexicographically
sorted, while maintaining array I. The algorithm continues
executing Lines 16-23 which compute array B. The results
of this iteration are illustrated below:

Trace 2
0 1 2 3 4 5 6

I 5 6 3 done done 4 done

A done done done 1 1 2 2

R ATGG CGGT C$ GTGC GTGC GTGG GTGG

P 4 3 6 2 5 0 1

L 14 9 20 6 17 0 3

B (A,C, 2) (G, $, 3) (C,G, 2) (C,G, 5)

Note that Lines 13-15 place at the fourth position (i = 3)
leaf L[3] = 6 that corresponds to the lexicographically fourth
suffix of TG (i.e., S6). The fact that the current position
(3) was moved from position 2 of the initial order is marked
by I[2] = 3. Also, Line 15 identifies two more active areas
denoted by 1 and 2 in A.

Also note that, for i = 1, Lines 16-23 focus on R[0] =
ATGG and R[1] = CGGT , which do not have a common
S-prefix (i.e, |cs| = 0). Thus, the algorithm sets (a) B[1] =
(R[0][0],R[i][0], 2 + 0) = (A,C, 2) and (b) I[P[0]] = I[4] =
done and A[0] = done. The equation in (a) illustrates that
sub-tree branches after start + |cs| = 2 symbols (i.e., TG)
and follows from Proposition 1, Case 3. The equations in
(b) show that suffix SL[0] = TGATGG · · · $, that appears
only once in S, does not need any further processing (follows
from Proposition 1, Case 1).

In each iteration, the construction of B involves sequential
access of array R and can be performed very efficiently by
a single memory scan. The next (and final) iteration of the
while loop (Lines 8-24) considers only i ∈ {0, 1, 2, 5} for
which I[i] 6= done and fills only the appropriate elements of
R (5, 6, 3, 4 respectively). After the execution of Lines 13-23,
the structures are update as follows:

Trace 3
0 1 2 3 4 5 6

I done done done done done done done

A done done done done done done done

R GGTG $ TGCG TGGT

P 4 3 6 2 5 0 1

L 14 9 20 6 17 3 0

B (A,C, 2) (G, $, 3) (C,G, 2) (G, $, 6) (C,G, 5) (C,G, 8)

Note the reorder of the elements of R, P and L for i ∈ {5, 6}
that correspond to the lexicographical sorting of active area
tagged with 2.

Summarizing, Algorithm SubTreePrepare retains the
sequential access of the input string S (using array I) but
also constructs I and B using sequential main memory ac-
cess. Algorithm BuildSubTree takes these structures and
builds the corresponding suffix sub-tree using also sequential
memory access.

Example 3. We continue Example 2. Algorithm Build-
SubTree creates an edge that links the root with the lexico-
graphically first leaf L[0] = 14. This edge is labeled with

Algorithm: BuildSubTree
Input: Arrays L and B
Output: The corresponding suffix sub-tree Tp

1 root := new Node(root)

2 u′ := new Node

3 e′ := new Edge(root, u′)

4 Label e′ with SL[0] // The suffix that corresponds L[0]

5 Label u′ with L[0] // First (lexicographically) leaf

6 Push e′ to Stack

7 depth := |label(e′)|
8 for i := 1 to |B| − 1 do
9 (c1, c2, offset) := B[i]

10 repeat
11 Pop an edge se(v1, v2) from the Stack

depth := depth − |label(se)|
12 until depth ≤ offset;
13 if depth = offset then
14 u := v1

15 else
16 Break edge se(v1, v2) into edges se1(v1, vt) and

se1(vt, v2)
17 Label se1 with the first offset symbols of label(se)
18 Label se2 with the remaining symbols
19 u := vt
20 Push se1 to Stack
21 depth := depth + |label(se1)|
22 u′ := new Node

23 ne := new Edge(u, u′)
24 Label ne with SL[i] // The suffix that corresponds L[i]

25 Label u′ with L[i] // Next (lexicographically) leaf
26 Push ne to Stack
27 depth := depth + |label(ne)|
28 return Tp

Figure 5: Trace of the BuildSubTree algorithm for
the first four entries of Trace 3. The stack is de-
picted in gray next to each sub-tree

TGAT · · · $, which is the suffix that corresponds to L[0].
Also this edge is pushed to the stack and variable depth is
initialized to 10 (i.e., the size of the label). All the above are
illustrated in Figure 5(a). Then, the algorithm goes through
the following iterations:

The 1st iteration considers B[1] = (c1, c2, offset) = (A,C, 2).
Edge TGAT · · · $ is popped. Since offset = 2, this edge
breaks into two edges labeled with TG and AT · · · $ (Lines
15-21). Moreover, a new edge is created that (a) links edge
TG and the second leaf L[1] = 9 and (b) is labeled with
CG · · · $. Also, edges TG and CG · · · $ are pushed to Stack
and depth = |label(TG)| + |label(CG · · · $)| = 2 + 13 = 15.
This iteration is depicted in Figure 5(b).

The 2nd iteration considers B[2] = (G, $, 3) and proceeds
in a similar manner. It is depicted in Figure 5(c).

The remaining iterations are similar and are omitted.

4.3 Complexity Analysis
Let S be the input string, n = |S| be its length, LP be the

longest path label in the suffix tree of S and L be the largest
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list that stores the offset of each occurrence of a S-prefix p.
In the worst case, |LP | = O(n) and |L| = O(n). To see
this, consider S = aaaa$ for which n = 4, |LP | = 3 (since
S-prefix aaa appears at positions 0 and 1) and |L| = 4 (since
S-prefix a appears 4 times).

Algorithm SubTreePrepare in each iteration of the while
loop (Lines 8-24) retrieves range symbols for each entry of
L and sorts them lexicographically. Thus, each iteration
takes |L| log |L| time. Moreover, each iteration is performed
|LP|
range

times. Therefore, the overall worst case complexity of

SubTreePrepare is |L| · log |L| · |LP|
range

which is O(n2 logn)
time. Algorithm BuildSubTree generates one leaf node
for each entry of L. To this end, it accesses the stack up to
|LP | times. Therefore, its worst case complexity is |L| · |LP |
which is O(n2).

However, in practice and in all application scenarios L�
n and |LP | � n hold. In fact it is reasonable to expect that
L and |LP | are orders of magnitude smaller than n. Thus,
the overall expected complexity bound of ERa is much bet-
ter than the worst case bound. This is also verified by the ex-
perimental evaluation, which demonstrated that ERa scales
almost linearly to n.

4.4 Memory Allocation and Disk Access
Efficient allocation of the available memory is critical be-

cause, if more memory is available for the sub-tree, vertical
partitioning will generate fewer virtual trees, hence the I/O
cost will be lower. Let MTS be the maximum tree size and
fp = |L| be the frequency of the sub-tree Tp of S-prefix p.
Recall from Section 4.1 that |L| ≤ FM . ERa divides the
available memory into three parts (see Figure 6):

Retrieved data area. It contains the input buffer BS and
the array R of next symbols. It also contains a small area
(less than 1MB) for the trie that connects sub-trees.

Processing area. It contains data structures that are used
during construction. These include arrays I, L, P, A and
B. The size of all of these arrays is of factor |L|. L together
with B consume almost 40% of the available memory.

Suffix tree area. Its size (i.e., MTS) is roughly 60% of
the total available memory.

The size of BS is relatively small and should be a mul-
tiple of the block size of the underlying I/O subsystem; in
our environment 1MB was adequate. The size of R affects
the range of symbols to be fetched in each scan (Line 5,
Algorithm SubTreePrepare). A large R minimizes the
number of string scans while a small R avoids unnecessary
reads and frequent cache misses. These occur when algo-
rithm reads range symbols from S but only few of them are
needed to determine that it corresponds to a leaf and does
not need further processing. The proper size of R mainly
depends on the alphabet size, which determines the branch-
ing factor of the tree. Intuitively, to build suffix trees with
a larger branching factor, we require more concurrent active
areas and thus a larger size of R. In our experiments, we
found that a good size for small alphabets (e.g, DNA data)
is 32MB whereas for large alphabets (e.g., Protein data) it
should be 256MB (Figure 8).

Observe that the processing and the suffix tree areas in
Figure 6 overlap. SubTreePrepare uses part of the suffix
tree area to store arrays I, A and P. Recall that the sub-
tree is constructed in batch by Algorithm BuildSubTree

Figure 6: Allocation of the available memory. The
processing and sub-tree area overlap

which only needs arrays L and B; therefore, I, A and P can
be safely overwritten.

ERa implements dynamic memory management to reduce
significantly the I/O cost. Recall that Algorithm SubTree-

Prepare scans the string |LP|
range

times. While the size of R is
constant, the number of active areas in L are reduced after
each iteration if new leaves are discovered; inactive areas do
not need space in R. Let |L′| ≤ |L| be the number of L
entries that belong to active areas at the current iteration.
Line 9 in SubTreePrepare calculates the range of next

symbols to prefetch as range = |R|
|L′| . In practice, after a

few scans of S a lot of areas become inactive and range
becomes large, leading to a dramatic improvement in I/O
cost. The gain becomes more significant as the size of the
input increases. Our experiments revealed that, for very
long strings, the performance of the algorithm is doubled.

ERa also optimizes the disk access pattern. Previous
methods (e.g., WaveFront) at each scan read the entire string
in sequential order. The intuition is that (a) sequential or-
der avoids the seek time, therefore it is roughly an order of
magnitude faster than random I/Os in modern disks; and
(b) since the probability of finding at least one required sym-
bol within each disk block is high, only a few blocks will be
unnecessarily fetched if the entire S is read. While (b) is
true for the initial iterations of ERa, we observed that, as
more leaves are discovered and areas become inactive, the
probability of fetching a block that does not contain any
required symbol increases significantly. For this reason, we
implemented a simple heuristic: If a block (or a continuous
range of blocks) is not expected to contain any necessary
symbol, we skip these blocks by performing a random seek.
Whether next block(s) contain at least one necessary sym-
bol can be determined by the information in I and range.
Note that, even though a random seek is performed, the seek
time is expected to be very small because the next block is
physically very close to the current disk head position. The
experiments show a gain of up to 10%.

5. PARALLEL CONSTRUCTION
Indexing very long strings can use parallel computing re-

sources and aggregated CPU power to achieve better per-
formance. Most existing suffix tree construction algorithms
(including the recent B2ST) are not easily parallelizable be-
cause each thread processes a small portion of the string
S and there is a costly phase that merges thread results.
To the best of our knowledge, the most successful parallel
construction algorithm is PWaveFront [6].

Horizontal partitioning of ERa is easily parallelizable be-
cause each process is independent and there is no merging
phase (Section 4.2.2). We developed two parallel versions of
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ERa: one for shared-memory and shared-disk systems (e.g.,
typical multicore desktops) and a second one for shared-
nothing architectures (e.g., computer clusters or cloud com-
puting infrastructure). We did not parallelize the vertical
partitioning phase since its cost is low.

Shared-memory and shared-disk. This category con-
tains multicore systems where cores share the main system’s
RAM and disk. A master thread at one of the cores gen-
erates groups of variable length prefixes and divides these
groups equally among the available cores including itself.
The main advantage of this architecture is that the input
string is available to all cores. A significant drawback is
the bottleneck at the memory bus and I/O subsystem when
multiple cores attempt to access the string. Therefore, scal-
ability is expected to be limited.

Shared-nothing architecture. In this architecture, each
node has its own disk and memory; thus the aggregated I/O
and memory bandwidth scale with the number of nodes.
Again, a master node generates groups of variable length
prefixes and divides them equally among the available nodes
including itself. Since each node works independently, this
architecture has the potential to scale-up very well. Note,
however, that during initialization the input string should be
transmitted to each node; this is the main drawback of this
architecture. We expect that the problem can be minimized
by using an appropriate parallel file system.

6. EXPERIMENTAL EVALUATION
This section presents the performance evaluation for the

serial and parallel versions of ERa. We compare our work
against the two existing out-of-core approaches, B2ST and
WaveFront, and a semi-disk-based approach: Trellis. For
B2ST [2] and Trellis [13], we downloaded the serial imple-
mentation from the authors’ sites. There is no parallel ver-
sion and the existing implementations support only strings
with 4 symbols. WaveFront was not available, so we imple-
mented our own serial version following [7] and a parallel
version following PWaveFront [6].

We used large real datasets: (a) The Human Genome3

with size roughly 2.6GBps4 and alphabet of 4 symbols; (b)
DNA5, containing 4GBps from an alphabet of 4 symbols,
which is the concatenation of horse, zebra-fish and human
DNA sequences; (c) the Protein6 dataset containing 4GBps
from an alphabet of 20 symbols, and (d) the English text
from Wikipedia7 containing 5G characters from an alphabet
of 26 symbols.

6.1 Serial Version
All serial methods were implemented in C, except Trel-

lis that was implemented in C++, and compiled with gcc
version 4.4.1 in Linux. The experiments were executed on
a machine with two quad-core Intel CPUs at 2.67GHz and
24GB RAM. As the main focus is on out-of-core approaches,
our experiments used a ratio of memory budget to input
string size that is up to 1:5. We limited the available mem-

3
http://webhome.cs.uvic.ca/~thomo/HG18.fasta.tar.gz

4GBps: Giga Base pairs - equivalent to 109 symbols
5
http://www.ensembl.org/info/data/ftp/index.html

6
http://www.uniprot.org/uniprot/?query=&format=*

7
http://en.wikipedia.org/wiki/Wikipedia:Database_
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Figure 7: Serial execution time of horizontal parti-
tioning methods; DNA dataset. (a) 512MB RAM;
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Figure 8: Tuning the size of R: 32MB for DNA
(|Σ| = 4); 256MB for Protein (|Σ| = 20)

ory using ulimit -v, and turned off the virtual memory
(swapoff -a).

Horizontal partitioning. In this experiment, we compare
the two horizontal partitioning methods proposed in Sec-
tion 4.2 for ERa. The 1st approach (ERa-str) uses Algo-
rithms ComputeSuffixSubTree and BranchEdge that
tune string access (Section 4.2.1), while the 2nd approach
(ERa-str+mem) uses Algorithms SubTreePrepare and
BuildSubTree that tune string and memory access (Sec-
tion 4.2.2). We varied the size of the input string from
256MBps to 2048MBps (DNA dataset) while setting the
memory size to 512MB, as shown in Figure 7(a). Moreover,
Figure 7(b) compares the construction time for a 2GBps
DNA sequence with memory size varying from 0.5 to 4GB.
These experiments demonstrate that ERa-str+mem (Sec-
tion 4.2.2) offers significant improvements.

ERa tuning. Here we tune the size of R (i.e., read-ahead
buffer for next symbols) that significantly affects the perfor-
mance of ERa (see also Section 4.4). Larger R means less
scans of the string while smaller R avoids unnecessary reads.
Since the size of R depends on the size of the alphabet, we
seek the proper size of R for a small alphabet (DNA dataset
of 4 symbols) and a large alphabet (Protein dataset of 20
symbols). To this end, we fix the memory to 1GB and gen-
erate inputs with 2.5 to 4GBps from the prefixes of DNA
and Protein datasets. Figure 8(a) shows that 32MB is a
good value for the DNA dataset, whereas Figure 8(b) shows
that 256MB is appropriate for the Protein dataset, which
has larger alphabet. The results for English were similar
to Protein, since both datasets need 5 bits to encode each
symbol; therefore, we used |R|=256MB for English, too.

Unless otherwise mentioned, the following experiments
use the disk seek optimization, described in Section 4.4. This
optimization improved the performance of the serial version
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Figure 9: Effect of virtual trees and elastic range.
DNA dataset; 1GB RAM; serial execution

by roughly 10% (see Section 6.2 for more details).

Vertical partitioning. Recall from Section 4.1 that verti-
cal partitioning in ERa extends WaveFront by grouping the
sub-trees into virtual trees to amortize the I/O cost. Fig-
ure 9(a) compares the effect of using the virtual trees versus
no tree grouping, for the DNA dataset and 1GB RAM. Vir-
tual trees achieve at least 23% better overall performance.

Elastic range. The next experiment shows the effect of
the elastic range approach. Recall from Section 4.4 that
as more areas become inactive, ERa uses the space that
becomes available in R (whose size is constant) to prefetch
more symbols for the active areas. Figure 9(b) compares the
performance of elastic range against two alternatives that
use static ranges of 16 and 32 prefetched symbols; elastic
range is 46% to 240% faster and the gain increases for very
long strings. Note that using a larger static range is not
a good alternative to the elastic range. For example, 32
symbols is 22% faster than 16 symbols for string size equal
to 4GBps, but it is 13% slower than 16 symbols for |S| =
1.5GBps.

Comparison against WaveFront, B2ST and Trellis.
The following experiments compare ERa against WaveFront
and B2ST. We have allotted to all algorithms the same
amount of memory. B2ST allocates the memory to the input
and output buffers and the intermediate data, such as suf-
fix arrays. For WaveFront, the best setting according to [7]
divides the memory equally between the processing space,
the input buffers and the sub-tree. In contrast, ERa first
allocates memory for R (according to Figure 8), 1MB for
the input buffer and 3MB for the trie index. 60% of the
remaining memory is allocated to the sub-tree and the rest
is used for processing space (i.e., arrays B and L). A, P
and I are located temporally in the area of the sub-tree, as
discussed in Section 4.4. Because of the better allocation,
ERa can construct larger sub-trees than WaveFront using
the same amount of memory.

Figure 10(a) compares the construction time for the Hu-
man Genome dataset with memory size ranging from 0.5 to
16GB. ERa is consistently twice as fast compared to the
best competitor, where string size is larger than the mem-
ory budget (out-of-core construction). It is worth noting
that, while WaveFront is slightly faster than B2ST for large
memory size, it is dramatically slower when the memory is
limited. Note that, the available implementation of B2ST
does not support large memory; this is why B2ST plot stops
at 2GB.

We also compared the performance of ERa against the
performance of WaveFront and Trellis using large memory
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budget. Note that Trellis needs to accomodate the entire
input string in memory. Since the human genome cannot fit
in 2GB memory, the plots for Trellis start at 4GB. Recall
that both ERa and WaveFront access the string sequentially
from disk during construction. As shown in Figure 10(a),
both ERa and WaveFront outperform Trellis. Although
Trellis does not pay the I/O cost of accessing the string,
it has to access in random fashion the large sub-trees (total
size is roughly 26 times larger than the input string) from
the disk during the merging phase. Our results agree with
those from [2, 7].

Furthermore, we varied the size of the input string from
2.5 to 4GBPs (DNA dataset) while setting the memory size
to 1GB. The total execution time is shown in Figure 10(b).
ERa is at least twice as fast as its competitors. The perfor-
mance gap from WaveFront is increasing for longer strings.

Finally, we evaluated the performance of ERa and Wave-
Front for different alphabet sizes. Figure 11 shows the re-
sults of both methods for DNA (|Σ| = 4), Protein (|Σ| = 20),
and English (|Σ| = 26) datasets. For ERa, since DNA has
only 4 symbols, each symbol is encoded in 2 bits, in contrast
to Protein and English that need 5 bits per symbol. There-
fore, a larger part of the DNA string can fit in the memory.
Also fewer symbols mean smaller branch factor, therefore
less CPU cost. For these reasons using ERa, the process-
ing of DNA is around 20% times faster than Protein and
English. Moreover, the longest sequence that is repeated
in the English dataset is shorter than the longest repeated
sequence in the Protein dataset. The longest repeated se-
quence affects the depth of the tree. Therefore, ERa indexes
the English dataset faster than the Protein.

WaveFront inserts the suffixes (leaf nodes) ordered as they
appear in the string from left to right. Since the leaves of
the suffix tree are sorted lexicographically, nodes that are
logically connected, are not physically nearby in the suf-
fix tree built by WaveFront. The more symbols, the larger
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the branch factor, which leads to more random memory ac-
cesses. Consequently, WaveFront spends a lot of time navi-
gating the tree in order to insert a new leaf node. In contrast,
since ERa sorts first the leaves lexicographically, it is not
affected significantly by the branch factor.

6.2 Parallel Version
We developed parallel versions of ERa and WaveFront

using MPI8. For WaveFront we followed [6]. There is no
existing parallel version of B2ST. Moreover, such an im-
plementation would probably be inefficient because of the
costly merging phase at the end of the construction. We
focus on two architectures: (a) shared-memory and shared-
disk, which represents the modern multi-core desktop sys-
tems; and (b) shared-nothing architecture, such as computer
clusters or cloud computing environments.

We use two metrics common to high performance comput-
ing: (a) Strong scalability (also known as speed-up): shows
the performance for constant input size and increasing num-
ber of processors; and (b) Weak scalability (also known as
scale-up): shows the performance when the ratio of the in-
put size to the number of processors remains constant (e.g.,
when the length of the string doubles, the number of pro-
cessors also doubles).

Shared-memory and -disk architecture. The scalabil-
ity of the shared-memory and shared-disk architecture suf-
fers from the interference at the memory bus and the I/O
system. Here, we investigate this interference. We used the
same machine as the previous section (i.e., Linux with two
quad-core Intel CPUs at 2.67GHz and 24GB RAM), but we
employed 1 to 8 cores and used 16GB RAM. The memory is
divided equally among cores (1 core with 16GB, or 2 cores
with 8GB RAM each, etc.).

For the next experiment we turn off the disk seek op-
timization (Section 4.4); the reason will become evident
in the next paragraph. Figure 12(a) illustrates the execu-
tion time of ERa-No Seek and WaveFront for the Human
Genome (i.e., strong scalability) with 16GB RAM. With 4
cores ERa-No Seek indexes the entire Human Genome in
19 minutes. ERa-No Seek scales well up to 4 cores (4GB
RAM per core). In fact ERa is at least 1.5 times faster than
WaveFront for up to 4 cores. However, ERa does not scale
well to 8 cores. We believe the reason is that each of the 8
cores accesses only 2GB RAM, meaning that a smaller part
of the tree is processed in one iteration. Therefore, each core
requests data more frequently, leading to bottlenecks due to
interference. In contrast, we believe WaveFront scales bet-
ter to 8 cores (although in absolute time is still worse than
ERa), because the CPU cost of the algorithm is higher.
Therefore, it requests less frequently data from the disk,
causing less interference.

To confirm our justification we run the same experiment
with the larger DNA dataset (i.e., 4GBps). Now each core
has more workload. Figure 12(b) illustrates that ERa-No
Seek scales better to 8 cores. The same graph also shows
the performance of ERa with the disk seek optimization
turned on. With few cores, ERa-With Seek performs bet-
ter, because it skips the parts of the input string that do not
contain relevant input (see Section 4.4). For 8 cores, how-
ever, ERa-No Seek becomes better. This is due to the fact
that each of the 8 cores work asynchronously on different

8
http://www.mcs.anl.gov/research/projects/mpi
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Figure 12: Shared-memory, shared-disk; strong scal-
ability; 16GB RAM divided equally among cores

CPU WaveFront ERa Gain ERa ERa all
(min) (min) speedup speedup

1 285.2 93.4 305% − −
2 142.2 46.4 306% 1 0.94
4 71.2 23.4 304% 0.99 0.87
8 36.2 12.4 292% 0.94 0.73
16 19.2 7.4 259% 0.78 0.53

Table 3: Shared-nothing; strong scalability; human
genome; 1GB RAM per CPU. The last column
shows the speedup for the entire process. The other
columns exclude the string transfer (2.3min) and the
vertical partitioning phase (1.6min)

parts of the string. The disk seek optimization is applied in-
dependently by each core and causes the disk head to swing
back and forth, creating significant delays.

Shared-nothing architecture. For the shared-nothing
architecture experiments, we used a Linux cluster consist-
ing of 16 machines connected through a switch, each with
one dual-core Intel CPU at 3.33GHz and 8GB RAM. In each
machine we used only one core and limited the memory to
1GB; therefore, if all 16 nodes are used, the total memory is
16GB. Note that the results in this paragraph are not com-
parable with those in the Share-memory and disk paragraph
for two reasons: (a) the cluster machines have faster indi-
vidual CPUs and (b) the total memory of the cluster varies
from 1GB to 16GB depending on the number of machines
used, whereas in the previous section the memory was fixed
to 16GB irrespectively of the number of cores.

Table 3 shows the strong scalability results for the Hu-
man Genome. ERa is 3 times faster than WaveFront. Also
the speed-up (refer to column titled ERa speedup) is very
close to the theoretical optimal (i.e., 1.0), indicating very
good load balancing. Note that all, but the last, columns
in the table show only the time for tree construction. In
the measurements, we have not included: (i) The time for
the initial transfer of the input string to all nodes (roughly
2.3min). The bottleneck of string transfer is the slow switch;
the performance can be improved with better network equip-
ment that supports broadcast. (b) The vertical partitioning
phase that takes around 1.6min since that phase has not
been parallelized. The last column (titled ERa-all) shows
the speedup considering these overheads; the speed-up is
still very good, although not as close to the optimal. If ev-
erything is added, ERa indexes the entire Human Genome
in roughly 11.3 minutes on a cluster with 16 commodity
machines.

Since more memory was available in our machines, we run
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Figure 13: Shared-nothing; weak scalability; DNA
dataset; size varies from 256MBps to 4096MBps

an experiment using 4GB per node. ERa indexed the Hu-
man Genome in 8.3 minutes. To the best of our knowledge
in absolute time this is the fastest measurement reported so
far. Note that we achieved this speed on a cluster whose to-
tal cost is roughly US$ 20,000 (February, 2011), low enough
to be within the reach of many individuals.

The last experiment investigates the weak scalability (re-
call that in weak scalability the ratio between the size of the
input S and the number of nodes is constant). We used the
DNA dataset and varied the size from 256MBps for 1 node
to 4096MBps for 16 nodes, with 1GB memory per node.
According to the definition of weak scalability, in the opti-
mal case the construction time should remain constant. In
our case, since the size of S increases proportionally to the
number of nodes, the number of sub-trees to be constructed
by each node is indeed constant. However, the average con-
struction time of each sub-tree increases proportionally to
|S|, because each node still needs to scan S the same num-
ber of times. Therefore, optimal weak scalability cannot be
achieved. Figure 13 illustrates that the construction time
indeed increases linearly to the number of processors for
ERa and WaveFront (note that the overheads for the string
transfer is excluded). However, the rate of increase of ERa
is much smaller than that of WaveFront. Therefore, as the
string size increases, the performance gap widens; for ex-
ample, when the string size is 4096MBps, ERa is 2.5 times
faster than WaveFront. This is an important advantage of
ERa, since in practice strings are expected to be very long.

7. CONCLUSIONS
Suffix trees are essential for many practical applications

that include bioinformatics, processing of financial data (e.g.,
time series of stock market data), document clustering, etc.
The volume of such data increases rapidly; therefore it is es-
sential to have fast suffix tree construction methods. In this
paper we proposed ERa, a method that supports very long
strings, large alphabets, works efficiently even if memory
is very limited and is easily parallelizable. Extensive ex-
perimental evaluation with very large real datasets revealed
that our method is much more efficient than existing ones in
terms of speed and computational resources. ERa indexes
the entire human genome in 19 minutes on an ordinary 8-
core desktop computer with 16GB RAM; and in 8.3min on
a low-end cluster with 16 commodity computers with 4GB
RAM each. To the best of our knowledge the fastest existing
method (i.e., PWaveFront) needs 15min on an IBM Blue-
Gene/L supercomputer with 1024 CPUs and 512GB RAM.

This work is part of a large project that aims to develop
an engine for storing and processing of massive strings. We
are currently working on scaling our method to thousands
of CPUs. We are also focusing on the parallel processing of

various types of queries using the suffix tree.
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