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ABSTRACT
To comply with emerging privacy laws and regulations, it has be-
come common for applications like electronic health records sys-
tems (EHRs) to collect access logs, which record each time a user
(e.g., a hospital employee) accesses a piece of sensitive data (e.g.,
a patient record). Using the access log, it is easy to answer sim-
ple queries (e.g., Who accessed Alice’s medical record?), but this
often does not provide enough information. In addition to learn-
ing who accessed their medical records, patients will likely want to
understand why each access occurred.

In this paper, we introduce the problem of generating explana-
tions for individual records in an access log. The problem is mo-
tivated by user-centric auditing applications, and it also provides a
novel approach to misuse detection. We develop a framework for
modeling explanations which is based on a fundamental observa-
tion: For certain classes of databases, including EHRs, the reason
for most data accesses can be inferred from data stored elsewhere
in the database. For example, if Alice has an appointment with Dr.
Dave, this information is stored in the database, and it explains why
Dr. Dave looked at Alice’s record. Large numbers of data accesses
can be explained using general forms called explanation templates.

Rather than requiring an administrator to manually specify ex-
planation templates, we propose a set of algorithms for automati-
cally discovering frequent templates from the database (i.e., those
that explain a large number of accesses). We also propose tech-
niques for inferring collaborative user groups, which can be used
to enhance the quality of the discovered explanations. Finally, we
have evaluated our proposed techniques using an access log and
data from the University of Michigan Health System. Our results
demonstrate that in practice we can provide explanations for over
94% of data accesses in the log.

1. INTRODUCTION
In recent years, laws and regulations have imposed a number of

new requirements governing the responsible management of per-
sonal and private data. For example, in the United States, the
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Lid Date User Patient 
L100 Mon Jan 03 10:16:57 2010 Nurse Nick Alice 

L116 Mon Jan 03 11:22:43 2010 Dr. Dave Alice 

L127 Mon Jan 03 17:09:03 2010 Radiologist Ron Alice 

L900 Mon Apr 28 14:29:08 2010 Surgeon Sam Alice 

Alice had an appointment with 
Dr. Dave on Jan 3, 2010. 

Figure 1: Sample access log and explanation

Health Insurance Portability and Accountability Act (HIPAA) stip-
ulates that individuals have the right to request an accounting of
the disclosures of their protected health information (PHI) by hos-
pitals and other healthcare providers (so-called “covered entities”).
Recently, the U.S. Department of Health and Human Services pro-
posed an expansion of this rule, which would require covered en-
tities to provide individuals with detailed access reports, including
the names of all people who have accessed their electronic PHI.1

Most modern electronic health records systems (EHRs) collect
access logs automatically. For example, the University of Michi-
gan Health System has built and deployed a web-based clinical
EHR system called CareWeb2. To support regulatory compliance,
each time an employee accesses a medical record via CareWeb, a
record is added to the access log. While the precise format can vary
among EHR systems, it is typically quite simple. CareWeb access
logs contain four main attributes: Timestamp, User ID, Patient ID,
and a coded description of the Action performed (e.g., viewed lab
reports, or updated history).

One promising approach to providing access reports, and im-
proving overall transparency, is the idea of user-centric auditing.
Basically, the idea is to construct a portal where individual patients
can login and view a list of all accesses to their medical records.
When the underlying access logs are of the form described above,
this is relatively straightforward. Unfortunately, the resulting ac-
cess histories are often long and hard to analyze. Worse, the list of
accesses often includes accesses by many people the patient does
not know. (For example, the patient probably knows the name of
his primary care physician, but he is not likely to recognize the
name of the intake nurse or the radiologist who read his x-ray.)

In this paper, we observe that in addition to asking who has ac-
cessed their medical records, patients will want to understand why
these people accessed their records.

EXAMPLE 1.1. Consider a patient Alice who is using a user-
centric auditing system. She logs into the patient portal and re-
quests a log of all accesses to her medical record. The resulting
log is shown in Figure 1, and includes accesses by four different
hospital employees.
1HHS Press Release, May 31, 2011.
http://www.hhs.gov/news/press/2011pres/05/20110531c.html
2http://www.med.umich.edu/mcit/carewebwe/help/overview.html
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Looking at this log, Alice would like to understand the reason
for each of these accesses. Ideally, we would like to provide an
explanation for each access; if Alice clicks on a log record, she
should be presented with a short snippet of text:

• L100 Nurse Nick works with Dr. Dave, and Alice had an
appointment with Dr. Dave.

• L116 Alice had an appointment with Dr. Dave.

• L127 Radiologist Ron reviewed Alice’s x-rays for Dr. Dave.

• L900 Surgeon Sam performed a surgery for Alice after Dr.
Dave referred Alice to Sam.

One approach to providing explanations would require the user
(e.g., the doctor) to enter a reason each time he accesses a medical
record. While some systems may require this (e.g., [3]), it places a
large burden on users.

Another approach would identify the access control rule(s) that
allowed access to the medical record. (For example, users with
a clinical appointment may be granted access to patient records.)
Unfortunately, in environments like hospitals, it is very difficult to
specify and maintain detailed access control policies [2]. (For ex-
ample, residents and medical students change departments as often
as once per week.) Further, overly restrictive policies can have dis-
astrous consequences, interfering with patient care. As a result, it
is typical for many more users to be granted access to a particular
medical record than have a legitimate clinical or operational reason
for accessing the record.

Instead, we would like to develop a technique to automatically
produce informative explanations. Of course, there may be ac-
cesses for which we are not able to generate explanations. In these
cases, if the access appears suspicious, the patient has the right to
report the access to the hospital compliance office, and to request
an investigation. However, developing a system to generate expla-
nations automatically is useful both for the purpose of informing
patients how their medical records are being used and for reducing
the burden on the compliance office in handling complaints.

Interestingly, this also suggests a secondary application of expla-
nations for the purpose of automated misuse detection. Because of
the difficulties in expressing and maintaining access control poli-
cies up-front, rather than preventing data access, hospitals often
err on the side of maintaining an access log in hopes of detecting
misuse after the fact. Unfortunately, there are few technical tools
for proactively detecting misuse from the access log. Common ap-
proaches often involve manual analysis in response to a complaint,
or monitoring accesses to the medical records of VIPs (high-profile
people).3 Of course, manual analysis does not scale to the access
logs collected by modern hospitals. (For example, in just one week,
the University of Michigan Health System collected over 4 million
access log records via CareWeb.) On the other hand, if we are able
to automatically construct explanations for why accesses occurred,
we can conceivably use this information to reduce the set of ac-
cesses that must be examined to those that are unexplained. While
we are not likely to be able to explain every access, this process sig-
nificantly reduces the set of records that are potentially suspicious.

1.1 Contributions
In this paper, we study the novel problem of automatically ex-

plaining individual log records (accesses) in an access log. Our
work is inspired by a fundamental observation: For certain classes
3For example, in 2008, hospital employees inappropriately ac-
cessed Britney Spears’ medical record [22]. Also, in 2008, U.S.
State Department employees were fired for inappropriately access-
ing President Obama’s passport file [16].

of databases, including those used to store EHR data, there is typi-
cally a clear reason for each access. Further, this reason can often
be gleaned from information stored elsewhere in the database. We
provide an extensive empirical study in Section 5 using a large ac-
cess log and EHR data from the Michigan Health System (CareWeb),
which validates our hypothesis. Based in part on this observation,
we make the following important contributions:
• In Section 2 we define a novel approach to modeling explana-

tions. Intuitively, an explanation can be viewed as a connection
from the data accessed (e.g., the Patient), through the database,
and back to the user who accessed the data (e.g., the User).
• Before explanations can be used, they must be generated or spec-

ified. Our empirical study indicates that most accesses can actu-
ally be explained using a limited number of explanation types,
or templates. For example, the fact that a patient had an appoint-
ment with the user who accessed his record is a general explana-
tion type that can explain many different accesses.
• Nonetheless, we would like to remove some of the burden from

the administrator in specifying explanation templates. Thus, in
Section 3 we propose algorithms for automatically discovering
templates that occur frequently in a given database (i.e., that ex-
plain a large number of accesses).
• We observe that databases such as CareWeb are often missing

information that is useful for the purpose of constructing expla-
nations. For example, Dr. Dave and Nurse Nick work together,
but this information is not recorded anywhere. In Section 4 we
describe techniques to infer some of this missing data so that
more accesses can be explained.
• Finally, in Section 5, we describe an extensive empirical study

and experimental evaluation using data from CareWeb, which
contains over 4.5 million accesses as well as records of appoint-
ments, visits, documents produced, and other information. Our
experiments confirm the hypothesis that there is a reason for
most accesses in our log, and that these accesses can be ex-
plained using data located elsewhere in the database. Further,
the experiments indicate that (i) common explanation templates
can be mined automatically, (ii) missing data can be added to
the database to improve the rate at which accesses are explained
without producing a significant number of false positives, and
(iii) the explanations discovered can explain over 94% of ac-
cesses in the log.

2. EXPLAINING ACCESSES
Given an entry in an access log, which describes both the data

that was accessed (e.g., the patient’s medical record) and the user
who accessed the data, our goal is to construct a simple explanation
describing the reason for the access. In addition, an explanation
should satisfy the following basic properties:
• Human Interpretable: The reason why the access occurred

should be easily understood. Among other things, we argue that
an explanation should be logical and boolean (either it explains
the access or not). In contrast, systems that provide probability
distributions or other ambiguity are difficult to interpret.
• General: Explanations should take on a general form whereby

a single explanation type or template explains many accesses by
many users. For example, a patient having an appointment with
the doctor who accesses his medical record is a common expla-
nation template that can be used to explain many different ac-
cesses in the log.
• Concise: The explanation should be represented concisely.
• Easy to produce/calculate: Given a particular access, it should

be easy to compute the explanation(s) for the access.
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2.1 Explanation Templates
We begin by formalizing the structure of explanations, which can

be used to describe why individual accesses occurred. We model an
explanation based on the hypothesis that for every legitimate data
access, there is a reason for the access, and in most cases the reason
can be gleaned from information stored elsewhere in the database.

EXAMPLE 2.1. Consider the patients Alice and Bob, who log
into the patient portal of their healthcare provider’s electronic med-
ical records system. To support transparency, the portal allows the
patients to view a log of hospital employees who have accessed
their records. Among others, the patients observe that an employee
named Dr. Dave accessed their medical records. While this infor-
mation may itself be useful, oftentimes it is important to provide
further details, explaining why Dr. Dave accessed the record. Con-
sider the following possible explanations:

A. Dr. Dave accessed Alice’s medical record because Alice had
an appointment with Dr. Dave on 1/1/2010.

B. Dr. Dave accessed Bob’s medical record because Bob had
an appointment with Dr. Mike on 2/2/10, and Dr. Dave and
Dr. Mike work together in the Pediatrics department.

C. Dr. Dave accessed Alice’s medical record because Dr. Dave
previously accessed Alice’s record.

D. Dr. Dave accessed Alice’s medical record because Alice had
an appointment with someone else.

Intuitively, an explanation should connect the user who accessed
the data with the data itself (i.e., the patient’s medical record). In
examples (A-C), notice that there is a connection from the user who
accessed the data (Dr. Dave), through the data in the database (ap-
pointment and department information), back to the data that was
accessed (Alice or Bob’s medical record). In contrast, the final ex-
planation does not provide a connection between the user and the
data. Consequently, the final explanation does not provide a mean-
ingful description of why Dr. Dave in particular accessed Alice’s
record.

To capture this intuition more formally, we can model the ex-
planation as a path through the database, beginning and ending
in the log. We assume that the database stores a log of accesses,
which records the time of the access, the user who accessed the
data (Log.User) and a reference to the data that was accessed
(Log.Patient). An explanation template is a tool that can be used to
explain many individual accesses.

DEFINITION 1 (EXPLANATION TEMPLATE). An explanation
template is a stylized query on the database and log.

Consider a query Q of the following form, where T1, ..., Tn are
(not necessarily distinct) tables in the database, and each Ci is an
attribute comparison condition of the form A1θA2 where θ ∈ {<
,≤,=,≥, >}.

SELECT Log.Lid, A_1, ..., A_m
FROM Log, T_1, ..., T_n
WHERE C_1 AND ... AND C_j

Let G be a graph, where each attribute in Log, T1, ..., Tn is a
node. Let there be an edge from attribute A1 to A2 in G if (i) A1

and A2 are in the same tuple variable (i.e., Log, T1, ..., Tn) or (ii)
Q imposes a comparison condition between A1 and A2.

QueryQ is an explanation template if there is a path P onG that
starts at the data that was accessed (Log.Patient) and terminates
at the user who accessed the data (Log.User), touching at least
one attribute from each tuple variable mentioned in the query, and
where no edge is traversed more than once.

Patient Date Doctor 
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Figure 2: Paths through the explanation graph

Patient Date Doctor
Alice 1/1/2010 Dave
Bob 2/2/2010 Mike

(a) Appointments

Doctor Dept.
Mike Pediatrics
Dave Pediatrics

(b) Doctor Info

Lid Date User Patient
L1 1/1/2010 Dave Alice
L2 2/2/2010 Dave Bob

(c) Log

Figure 3: Example hospital database and log of accesses

Because an explanation template is a query, it can be used to ex-
plain why many different data accesses occurred. We refer to these
data-specific descriptions (query results) as explanation instances.
Notice that instances of a particular explanation template can be
easily converted to natural language by providing a parameterized
description string.

EXAMPLE 2.2. Consider the database and log provided in Fig-
ure 3. Explanations like (A) from Example 2.1 can be derived from
the following explanation template:

SELECT L.Lid, L.Patient, L.User, A.Date
FROM Log L, Appointments A
WHERE L.Patient = A.Patient

AND A.Doctor = L.User

Figure 2 (A) shows the graph G associated with this explanation
template. Notice that there is a path P that starts at Log.Patient
and terminates at Log.User. The edges between attributes in the
same tuple variable are implicit.

Instances of this explanation template can easily be converted to
natural language using a simple description string: “[L.Patient]
had an appointment with [L.User] on [A.Date].” For example, log
record L1 can be explained using the description “Alice had an
appointment with Dave on 1/1/2010.”

Explanations like example (B) can be derived from the following
explanation template:

SELECT L.Lid, L.Patient, L.User, A.Doctor,
A.Date, I1.Department

FROM Log L, Appointments A, Doctor_Info I1,
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Doctor_Info I2
WHERE L.Patient = A.Patient

AND A.Doctor = I1.Doctor
AND I1.Department = I2.Department
AND I2.Doctor = L.User

Figure 2 (B) shows the graph associated with this explanation
template. Instances of this explanation are easily expressed in nat-
ural language: “[L.Patient] had an appointment with [A.Doctor]
on [A.Date], and [L.User] and [A.Doctor] work together in the
[I1.Department] department.”

Notice that a single log record may have multiple explanation
instances, generated from one or more explanation templates. For
example, the query implementing explanation (A) would produce
multiple results with Lid = L1 if Alice had multiple appointments
with Dr. Dave. We consider each of these instances to be a valu-
able source of information; in practice, when there are multiple
explanation instances for a given log record, we convert each to
natural language and rank the explanations in ascending order of
path length.

It is useful to draw a further distinction between what we will
call simple explanation templates and their more complex deco-
rated counterparts.

DEFINITION 2 (SIMPLE EXPLANATION TEMPLATE). Consid-
er an explanation template and its associated graphG and path P .
The explanation template is simple if it is not possible to remove
any set of selection condition edges from G and still have a path
P ′ from Log.Patient to Log.User.

Intuitively, a simple explanation provides a minimal connection
between the data and the user who accessed it. Notice that expla-
nation templates (A) and (B) in Example 2.2 are both simple.

At the same time, simple explanations may not always be suffi-
cient to express the desired semantics. For example, suppose we
want to express the idea that an access occurred because the same
user previously accessed the data (e.g., explanation (C) in Exam-
ple 2.1). A simple explanation template could partially capture the
desired semantics as follows:

SELECT L1.Lid, L1.Patient, L1.User
FROM Log L1, Log L2
WHERE L1.Patient = L2.Patient

AND L2.User = L1.User

However, to express the temporal aspect of the explanation, we
need the additional selection condition L1.Date > L2.Date.
Figure 2 (C) shows the graph associated with this explanation tem-
plate. As a result, this decorated explanation always explains a
subset of the accesses that are explained by the corresponding sim-
ple explanation.

DEFINITION 3 (DECORATED EXPLANATION TEMPLATE). A
decorated explanation template is a simple explanation template
with additional selection conditions added.

Finally, for modern databases with large schemas, the number
and complexity of explanations can be very large, even if we only
consider simple explanations. At the same time, we hypothesize
that most explanations only require information from a few tables
in the database. (We verify this hypothesis in Section 5.) For this
reason, we may restrict the number of tables that a path can refer-
ence to an administrator-specified value T .

DEFINITION 4 (RESTRICTED EXPLANATION TEMPLATE). A
restricted simple explanation template is a simple explanation tem-
plate that only refers to at most T tables.

3. MINING EXPLANATIONS
Before explanations can be used in any particular database, the

appropriate explanation templates must be specified. One approach
would require the security or database administrator to specify ex-
planation templates manually. However, this can be a tedious pro-
cess. Worse, due to the complexity of modern database schemas,
a single administrator may not have complete knowledge of all the
different reasons that data accesses occur.

While it is important to keep the administrator in the loop, we ar-
gue that the system should reduce the administrator’s burden by au-
tomatically suggesting templates from the data. In this section, we
describe our approach to mining templates from a given database.
The administrator can then review the suggested set of templates
before applying them.

The goal of the mining algorithms is to find the set of frequent
explanation templates, or those that can be used to explain many ac-
cesses. Intuitively, this reduces the possibility of spurious results.
The problem of mining frequent explanation templates is related to
previous work on frequent pattern mining [5]. Indeed, our algo-
rithms take a bottom-up pruning approach inspired by algorithms
like a priori. At the same time, there are several important differ-
ences between the template mining problem and frequent pattern
mining that prevent us from directly applying existing algorithms:
First, we are mining connected paths between a start and end at-
tribute in the schema. Second, our measure of frequency (support)
is different; for explanation templates, frequency is determined by
the number of accesses in the log that are explained by the tem-
plate, so every path we consider must reference the log. Finally,
the data is stored across multiple tables in the database, rather than
in a single large file of transactions.

3.1 Problem Statement
Our goal is to find the set of explanation templates that occur

frequently in a given database instance. We define support to be
the number of accesses in the log that are explained by the template.

An extremely naive approach would enumerate all possible tem-
plates of the form described in Definition 1. However, the number
of possible templates is unbounded. Even if we restrict ourselves
to simple templates without self-joins, the number of possible tem-
plates is still exponential in terms of the number of attributes in the
schema.

To reduce the space, we make some practical simplifying as-
sumptions: (1) We only consider simple explanation templates.
(2) We only consider equi-joins between two tables if there exists
a key-foreign key relationship, or if another relationship between
two attributes is explicitly provided by the administrator. (3) An
attribute and table can only be used in a self-join if the administra-
tor explicitly allows the attribute to be used in a self-join. (4) We
restrict the path length toM and restrict the number of tables refer-
enced to T . We leave the task of developing algorithms for mining
more complex (decorated) explanation templates to future work.

DEFINITION 5 (EXPLANATION MINING). Given a database
D and a log of accesses L, return those explanation templates of
length at most M , that reference at most T tables and that explain
(support) at least s% of the accesses in the log, where the edges
in the path are restricted to attributes from the same tuple variable,
key relationships, specified self-joins, or administrator-specified re-
lationships.

EXAMPLE 3.1. Continuing with Example 2.1 and the database
in Figure 3, template (A) has support of 50% (from access L1), and
template (B) has support of 100% (from accesses L1 and L2).
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Algorithm 1 One-Way Template Mining Algorithm
Input: Start attribute (Log.Patient), end attribute (Log.User), sup-

port (S), max path length (M), restricted number of tables ref-
erenced (T ), the set of edges from the schema (Edges) and the
database instance (D).

Output: Set of supported explanation templates (up to the max
length).

1: Length = 1
2: Paths = {Edges that begin with the start attribute}
3: Explanations = {}
4: while Length ≤M do
5: New Paths = {}
6: for Path p ∈ Paths do
7: for Edge e ∈ Edges do
8: if areConnected(p, e) then
9: Candidate Path = p.append(e)

10: if isARestrictedSimplePath(Candidate Path) then
11: if Support(Candidate Path, D) ≥ S then
12: New Paths.add(Candidate Path)
13: if isAnExplanation(Candidate Path) then
14: Explanations.add(Candidate Path)
15: Paths = New Paths
16: Length += 1
17: Return Explanations

3.2 One-Way Algorithm
We begin by describing a basic algorithm. (Details are pro-

vided in Algorithm 1.) The administrator provides the start attribute
Log.Patient (the data that is accessed), the end attribute Log.User
(the user who accessed the data), the minimum support S, the max-
imum length M , the maximum number of tables referenced T , the
schema, and the database. We restrict the set of edges (denoted as
Edges) that can be used in explanations as described in Section 3.1.
An initial set of paths of length one are created by taking the set
of edges that begin with the start attribute Log.Patient. The goal of
the algorithm is to find the set of supported explanation templates,
which are those templates that explain at least s% of the accesses.

The algorithm finds the set of supported templates as follows:
First, for each path at the current length, and for each edge, the al-
gorithm tests if the two are connected. Intuitively, the path and edge
are connected if the last attribute in the path is the same attribute as
the first attribute in the edge. Second, for those connected paths and
edges, the path and edge are combined by appending the edge to the
right end of the path. Third, the algorithm checks if this candidate
path is a restricted simple path. Intuitively, the candidate path is
simple if it begins at the log and continues to join with previously
untraversed tables until the log is reached (the path traverses each
node at most once and at most two nodes per table). The candi-
date path is a restricted simple path if it references no more than
T tables (a path that references a table and a self-join for that table
is counted as a single reference). Next, the candidate path is con-
verted to SQL and evaluated on the database to calculate the path’s
support. We calculate the support using the following query:

SELECT COUNT(DISTINCT Log.Lid)
FROM Log, T_1, ..., T_N
WHERE C

If the support is greater than or equal to S = |Log| × s%, then
the path is added to the set of new paths that will be used in the
next iteration of the algorithm. Furthermore, if the path has the
appropriate start and end attributes, then the path is also an expla-
nation template, and is marked accordingly. The algorithm repeats

for paths of increasing length until the maximum path length is
reached.

EXAMPLE 3.2. Consider the database shown in Figure 3; the
one-way algorithm works as follows: The input set of edges in-
cludes key-foreign key equi-joins such as {Log.Patient = Appoint-
ments.Patient, Appointments.Patient = Log.Patient, Log.User = Ap-
pointments.Doctor, Appointments.Doctor =Log.User} and the
administrator-provided self-join {Doctor Info.Department = Doc-
tor Info2.Department}. The initial set of paths is: {Log.Patient =
Appointments.Patient}. This first path is converted into SQL and
has the selection condition Log.Patient =
Appointments.Patient and is evaluated on the database.
The path has support of 100%.

Next, connected edges are appended onto the path. For example,
one candidate path has the selection condition: Log.Patient =
Appointments.Patient AND Appointments.Doctor
= Log.User. This candidate path is also an explanation since
it has the correct start and end attributes. The explanation has
support of 50%.

The one-way algorithm works in a bottom-up manner to find
the supported explanation templates. We observe several important
properties of the algorithm: First, the paths must always include an
attribute from the Log in order to calculate the support for the path;
if there was no Log attribute, then it would be impossible to count
the number of log entries explained.

Second, the support function is monotonic. If a path P of length
` − 1 does not have the necessary support (i.e., does not explain
≥ s% of the accesses in the log), then adding additional edges
to the path will never produce an explanation template with the
necessary support. Thus, the bottom-up algorithm is able to prune
certain paths that are guaranteed not to have the necessary support.

3.2.1 Performance Optimizations
We apply three performance optimizations for the algorithm:
Caching Selection Conditions and Support Values: We ob-

serve that multiple paths may have the same selection conditions,
even though the paths traverse the explanation graph in different
orders. Since the order in which the selection conditions are ap-
plied does not change the result, these paths are guaranteed to have
the same support (i.e., R.attr = T.attr is equivalent to T.attr =
R.attr). Thus, a simple optimization is to cache the support of
each path that has already been tested. Then, before the next path’s
support is calculated, the algorithm checks if some variation of
the path (with an equivalent selection condition) has already been
tested. If so, the algorithm does not need to evaluate the query
on the database and can use the previously recorded support value
instead.

Reducing Result Multiplicity: The multiplicity of data in the
database can impact performance. For example, from Example 2.2,
if Alice had three appointments with Dr. Dave, then there would
be three instances of explanation (A) for the same log id. These
additional rows in the output make computing the support (i.e., the
distinct set of log ids) more costly. Therefore, since it does not mat-
ter how many times a given log id is in the result, the performance
can be improved by reducing the number of rows in the result. To
remove duplicates from each table, we use a subquery to extract the
distinct set of rows from the table, while only projecting those at-
tributes needed for the path. For example, the query from Example
2.2 can be rewritten as follows:
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SELECT COUNT(DISTINCT L.Lid)
FROM Log L,

(SELECT DISTINCT Patient, Doctor
FROM Appointments) A

WHERE L.Patient = A.Patient
AND A.Doctor = L.User

Skipping Non-Selective Paths: For many (short) paths, the se-
lection conditions are not selective and return most of the log. Com-
puting the support for these paths wastes time because these non-
selective paths typically have sufficient support and are not pruned.
Therefore, the algorithm’s performance can be improved by pass-
ing these non-selective paths directly to the next iteration of the
algorithm, instead of calculating their support. We determine if a
path is likely to have sufficient support by asking the database op-
timizer for the number of log ids it expects to be in the result of the
query. If the value is greater than the desired support S × c (where
c is a constant like 10), the system skips this path and adds it to
the set of paths to try in the next iteration of the algorithm. In the
special case when the path is also an explanation, the path is not
skipped. The constant c is used to account for the optimizer’s esti-
mation error. Using this optimization, the system trades off pruning
some paths in order to not have to calculate the support of the non-
selective paths. Even in the worst case when the database optimizer
significantly errs with its estimation, the output set of explanation
templates does not change because paths are not discarded; rather,
they are tested in the next iteration of the algorithm.

3.3 Two-Way Algorithm
Intuitively, the two-way algorithm constructs paths in two direc-

tions: from the start to the end, and from the end to the start. The
two-way algorithm is initiated with the edges that begin with the
start attribute and the edges that terminate with the end attribute.
The paths that begin with the start attribute are extended to the
right with connected edges until the end attribute is reached (i.e.,
the one-way algorithm), while the paths that terminate with the end
attribute are extended to the left with connected edges until the start
attribute is reached. Therefore, an optimized algorithm would have
them meet in the middle.

3.3.1 Bridging Paths
The one-way and two-way algorithms explore all paths that have

the desired support. However, the goal of the algorithms is to find
supported explanation templates. Therefore, by enforcing the con-
straint that paths must start and end with particular attributes, we
can restrict the set of paths the algorithms must consider. Moreover,
since we have paths extending from the start and end attributes, we
can combine, or bridge, these paths.

Consider the case where the two-way algorithm has executed and
produced all supported paths up to length `. The algorithm can use
these paths to easily construct the set of candidate explanation tem-
plates up to length 2`−1 (the candidate templates are a superset of
those templates that have the necessary support). These candidate
templates can be produced by connecting those paths that begin
with the start attribute to those paths that terminate with the end at-
tribute as shown in Figure 4. The remaining paths that do not start
or end with one of these attributes can be ignored.

More concretely, candidate templates of length n (2 ≤ ` < n ≤
2` − 1) can be produced by taking paths of length ` that begin
with the start attribute and connecting them to paths of length n −
` + 1 that terminate with the end attribute. We say the paths are
bridged because the algorithm requires that the edges where the
two paths are connected (the bridge edge) are equivalent. As a
result, the length of the combined path is one less than the sum of
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Figure 4: Bridging paths to create explanations

the individual path lengths. Once the set of candidate templates is
produced, the support for each candidate is tested.

EXAMPLE 3.3. Template (B) from Example 2.1 can be created
by bridging the following two paths:

SELECT COUNT(DISTINCT L.Lid)
FROM Log L, Appointments A, Dept_Info I1,

Dept_Info I2
WHERE L.Patient = A.Patient

AND A.Doctor = I1.Doctor
AND I1.Department = I2.Department

SELECT COUNT(DISTINCT L.Lid)
FROM Log L, Dept_Info I1, Dept_Info I2
WHERE I1.Department = I2.Department

AND I2.Doctor = L.User

Notice that the combined path has the appropriate start and end
attributes, and the condition I1.Department = I2.Department can
be used to bridge the paths.

When the length of the desired path is greater than or equal to
2`, the candidates cannot be constructed from the paths that have
been found thus far. While the algorithm can still use the paths to
restrict the ends that the candidate template can take, the algorithm
does not have knowledge about which edges should be included in
the middle of the explanation. Thus, the algorithm must consider
all combinations of edges from the schema to bridge these paths.

Bridging paths is beneficial because it can greatly reduce the
space of candidate templates to test. In general, since the algo-
rithm’s performance is proportional to the number of candidates
that must be tested, bridging improves performance because the
start and end attribute constraints are pushed down in the algorithm.
However, if only short paths are mined, but long explanation tem-
plates are desired (i.e., n > 2`), then the number of candidates
exponentially increases with the length. Thus, for some length n, it
is then no longer beneficial to bridge paths.

4. DEALING WITH MISSING DATA
So far we have only considered explanations that can be ex-

pressed solely in terms of the data stored in the database. Unfortu-
nately, real databases are typically not perfectly curated. Informa-
tion may be missing from the database, or relationships may not be
recorded. For example, consider a nurse in a hospital who works
directly with a doctor. When a patient has an appointment with
the doctor, the appointment is recorded in the database, and we can
use explanations of the type described in Section 2 to explain the
doctor’s accesses. Unfortunately, appointments are typically only
scheduled with the doctor, not with the nurse. Thus, we cannot ex-
plain why the nurse accessed the patient’s record, even though the
access is appropriate.
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To explain these types of accesses, we must deal with “missing”
data in the database. One common type of missing data are the re-
lationships between users of the database. While a database may
store information such as the department each user works in, we
show in Section 5.3.1 that additional information is still needed to
explain accesses. Moreover, as we found in our data set, the nurse
and doctor are assigned different department codes based on their
job title. We hypothesize that information used to explain an access
such as an appointment often is stored in the database with a ref-
erence to a single user, but that information can be used to explain
why many other users access the data. Thus, if the database stored
relationships among users, additional accesses could be explained.

By adding this missing data, the algorithms may introduce false
positive explanations. In Section 5.3.2 we study the precision and
recall trade-offs from adding missing data and show that even when
missing data is added, the rate of false positive explanations is low
due to the structure of the explanations.

A natural method to determine relationships between users of a
database is to analyze user access patterns [10, 18]. In general,
users who work together often access the same data. Using the log
of accesses, we can automatically discover collaborative groups
of users who access the same data often and use these groups to
explain more accesses. For example, an explanation for why the
nurse accessed the patient’s medical record could be described as
follows: the nurse accessed the patient’s medical record because
the nurse works with the doctor and the doctor had an appointment
with the patient.

Next, we outline one possible approach to construct collabora-
tive groups that we found to be effective for our data set. However,
we note that there has been extensive work on clustering [13, 27],
and alternative approaches are possible. In general though, we treat
these algorithms as a black box that produces a set of relationships
between users of the database. Once this data is plugged into the
database, our explanation mining algorithms can incorporate the
information to find additional supported templates.

4.1 Extracting Collaborative Groups
Given an access log, we can model the relationships between

database users using a graphical structure. We use a method similar
to that presented by Chen et al. [10]. Let a node in the graph
represent a user. An edge exists between two users if the users
access the same data. We assign weights to the edges to signify the
strength of the users’ relationship. To do this for a log of accesses
that occur between some start and end time that has m patients
and n users, we construct an m × n matrix A. The index A[i, j]
represents the inverse of the number of users (including user j) that
accessed patient i’s record. More formally, if user j does not access
i’s record, then A[i, j] = 0, else:

A[i, j] =
1

# users who accessed patient i′s record

The weight of an edge between user u1 and user u2 can be found
in W [u1, u2] where W = ATA. Intuitively, W [u1, u2] represents
the similarity of two users’ access patterns, relative to how often a
particular record is accessed. Our current approach does not adjust
the weight depending on the number of times a user accesses a
specific record, but rather it only considers if a user accesses the
record. A node’s weight is defined as the sum of the connected
edges’ weights.

Given the graph structure, we can directly apply weighted graph
clustering algorithms. Specifically, we use an algorithm that at-
tempts to maximize the graph modularity measure [21]. Intuitively,
optimizing for the graph modularity measure attempts to maximize

Patient User Ids
A 0, 1, 2
B 0, 2
C 1, 2
D 2, 3

!"#

!$#

!%# !&#

"'&(#

"'$$#

"'&(#

"'%)#

Figure 5: (i) Example log of accesses (per patient), and (ii) the
associated graphical representation with clustering.

the connections (and weights) for nodes within a cluster and min-
imize the connections between nodes that reside in different clus-
ters. The algorithm is also parameter-free in the sense that it selects
the number of clusters automatically.

After running the clustering algorithm once, the algorithm out-
puts a set of clusters and an assignment of users to clusters. We
can recursively apply the clustering algorithm on each cluster to
produce a hierarchical clustering. Intuitively, clusters produced at
the lower levels of the hierarchy will be more connected than clus-
ters produced at higher levels. In Section 5.3.2 we show how this
affects the precision and recall of explanations.

EXAMPLE 4.1. Consider the log of accesses in Figure 5 that
lists which users have accessed which patient’s medical records.
From the log, we can construct the matrix A. For example,
A[patient A, user 0] = 1

3
since three users accessed patient A’s

record. After evaluating W = ATA, we find the edge weights
that are labeled on the graphical representation. After running the
clustering algorithm, users 0, 1 and 2 are assigned to the same
cluster.

After clustering, the table Groups(Group Depth, Group id, User)
is added to the database. By applying a self-join on this table, the
mining algorithms can use these groups to explain additional ac-
cesses.

EXAMPLE 4.2. Nurse Nick’s access of Alice’s record in Figure
1 occurred because Nick works with Dr. Dave, and Dr. Dave had
an appointment with Alice. The corresponding explanation tem-
plate is expressed as follows:

SELECT L.Lid,L.Patient,L.User,A.Date,G1.User
FROM Log L, Appointments A,

Groups G1, Groups G2
WHERE L.Patient = A.Patient

AND A.Doctor = G1.User
AND G1.Group_id = G2.Group_id
AND G2.User = L.User

5. EXPERIMENTAL EVALUATION
To test our ideas, we conducted an extensive experimental study

using a real access log and database from the CareWeb system at
the University of Michigan Health System. Our experiments aim
to answer the following questions:

• Do explanations (as we described them in Section 2.1) exist in
real databases? We find that explanations like those described in
Example 2.1 occur in the real hospital database and can explain
over 94% of the accesses in the log.

• What missing information can be added to the database? Is this
information useful for producing explanations? Using the al-
gorithm described in Section 4.1, we were able to find real-life
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collaborative groups, including the Michigan Cancer Center and
the Psychiatric Services offices. After extending the database to
include these collaborative groups, we were able to explain many
more accesses.

• Can we mine explanation templates efficiently? We measure the
performance of the one-way, two-way and bridged algorithms
from Section 3 and find they are able to discover explanation
templates automatically and efficiently. Moreover, the bridging
optimization can improve performance in particular cases.

• How effective are the mined explanation templates at correctly
classifying future accesses? We measure the precision and re-
call of the mined explanations and find that shorter explanations
provide the best precision, but moderate recall. Longer expla-
nations, including those that use the group information, can be
used to improve recall.

• Is the same set of explanation templates mined over time? We
find that the set of explanation templates discovered by the min-
ing algorithms is relatively stable across time.

5.1 Implementation & Environment
Our system is a Python layer on top of PostgreSQL4. This layer

constructs paths from the schema and executes queries on the data-
base to determine an explanation’s support. Clustering was per-
formed with a Java implementation of the graph modularity algo-
rithm. The experiments were executed on a dual core CPU with 4
GB of RAM, running Red Hat Linux.

5.2 Data Overview
We conducted an extensive experimental study using data from

the University of Michigan Health System. To the best of our
knowledge, ours is the first study to combine information from an
access log with other information stored in a hospital’s database for
the purpose of explaining data accesses.

In our study, we used a de-identified log containing one week’s
worth of data accesses.5 We also used de-idenfied data about the
patients whose medical records were accessed during this period
of time, including: (data set A) Appointments, Visits, Documents,
and (data set B) Labs, Medications and Radiology. Information for
these tables was extracted from the weeks around the time of the
access.

The richness of the data set allows us to mine many different
types of explanations. The log contained approximately 4.5M ac-
cesses (reads and writes), 124K distinct patients, and 12K distinct
users. The number of distinct user-patient pairs is approximately
500K, which gives a user-patient density of |user−patient pairs|

|users|×|patients| =

0.0003. To determine the reason for an access, we received data
on approximately 51K appointments, 3K visits, 76K documents
produced, 45K lab records, 242K medication records, and 17K ra-
diology records. For example, the Appointment table contains a
record for each appointment, including the patient, the doctor, and
the date. The Medications table contains a record for each med-
ication order, including the patient, the person who requested the
medication, the person who signed for it, and the person who ad-
ministered it. We were also given 291 descriptive codes describing
which users worked in which departments such as Pediatrics and
Nursing-Pediatrics.

4http://www.postgresql.org
5In all cases, protected health information (PHI) was removed, and
patient and user IDs were coded in a way that did not permit the
study team to link the data back to specific individuals.
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Figure 6: Frequency of events in the database for all accesses.
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Figure 7: Hand-crafted explanations’ recall for all accesses.

When we started the study, we initially requested the Appoint-
ments, Visits, and Documents tables, in addition to the log. How-
ever, after some preliminary analysis, we discovered that a large
proportion of the unexplained accesses were by users who worked
in departments that provide consultation services throughout the
hospital (e.g., radiology, pathology, and pharmacy). Users in these
departments often do not have appointments with patients. How-
ever, there is often an explicit request recorded in the database.
Therefore, we expanded the study to also include the Labs, Med-
ications, and Radiology tables, which maintain a record for each
such request.

5.3 Results
5.3.1 Explanations in a Real Data Set

Our first set of experiments tests the fundamental hypothesis that
accesses in the log can be explained using data stored elsewhere in
the database.

We began by measuring the proportion of accesses in the log
pertaining to a patient such that the patient had some type of event
recorded elsewhere in the database. In particular, we started by
measuring the proportion of patients who had an appointment
(Appt), visit, or document produced (Document). Figure 6 shows
the frequency of these events in the log. (The recall of Appointment
would be 1.0 if every patient whose record was accessed also had
an appointment with someone listed in the database.) As expected,
many patients had an appointment with someone or had a document
produced (e.g., a doctor’s note added to the file) by someone. Ad-
ditionally, a majority of the accesses can be categorized as repeat
accesses, meaning that the same user accessed the same patient’s
record for an additional time. When we combined all these events
together, approximately 97% of all accesses corresponded to a pa-
tient who had some type of event in the database. Interestingly,
a small percentage of the accesses did not correspond to a patient
who experienced some type of event. We suspect that this is largely
due to the incomplete data set. For example, appointments outside
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Figure 8: Frequency of events in the database for first accesses.
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Figure 9: Hand-crafted explanations’ recall for first accesses.

of the study’s timeframe were not considered.
Of course, these events do not constitute explanations since they

do not necessarily connect the patient whose record was accessed to
the specific user who accessed the record. (For example, a patient
may have an appointment listed, but it may not be with the person
who accessed her record.) To measure the proportion of accesses
that can be explained using the approach described in Section 2.1,
we hand-crafted a simple set of explanation templates, based on
common reasons for medical records to be accessed, that test if
the patient: (i) had an appointment with the specific doctor who
accessed the record (Appt w/Dr.), (ii) had a visit with the doctor
(Visit w/Dr.), (iii) had a document produced by the doctor (Doc.
w/Dr.), or (iv) the access was a repeat access.

Figure 7 shows the recall for the explanations (i.e., proportion
of the log records explained). While the repeat accesses can still
explain a majority of the accesses, the recall of the other expla-
nations is lower. This result is expected because the appointments,
visits and documents produced typically only reference the primary
doctor in charge of the patient’s care. Therefore, using these basic
explanation templates, we cannot explain why a nurse accesses a
medical record. Even with this lower recall, these explanation tem-
plates can still explain 90% of the accesses.

Although repeat accesses make up a majority of the log, it is
more challenging and interesting to explain why a user accesses
a record for the first time. To do this, we analyzed all of the first
accesses in the log, where a user accesses a patient’s medical record
for the first time. (Notice that since we only have a subset of the
log, some accesses that are actually repeat accesses appear to be
first accesses due to truncation.)

Figures 8 and 9 show the recall for the events and explanation
templates among only the first accesses. When combined, the ex-
planation templates for appointments, visits, and documents pro-
duced explain approximately 11% of first accesses (see the All w/Dr.
bar in the chart). Ideally, we should be able to explain approxi-
mately 75% of the first accesses because 75% of the patients have
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Figure 10: Collaborative Group I (Cancer Center)
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Figure 11: Collaborative Group II (Psychiatric Care)

some corresponding event in the database (see Figure 8). For the
remaining 25% of the patients, we have no corresponding event.
We attribute this result in large part to the incomplete data set.

In the next sections, we will show that it is possible to improve
recall by adding missing data, and also by mining additional expla-
nation templates.

5.3.2 Dealing With Missing Data
When a patient has an appointment, the appointment is sched-

uled with the doctor. However, the nurses who work with the doctor
also typically access the patient’s medical record. For this reason,
we could only explain 11% of the first accesses, even though 75%
of these patients have some associated event (e.g., an appointment
with someone). To improve recall, we applied the algorithm de-
scribed in Section 4.1 to cluster users who access similar medical
records using the first six days of accesses in the log, and we added
these collaborative groups to the database.

Since we were working with de-identified data, it was impossi-
ble to systematically verify the correctness of the resulting groups.
However, a manual inspection of the groups suggests that the pro-
cess was successful. For example, we studied the department codes
present from the users in each group. Figures 10 and 11 show the
department codes present in two of the 33 top-level groups. The
first group clearly contains users who work in the Cancer Center,
and the second group contains users who work in psychiatric care.

Interestingly, department codes themselves do not directly co-
incide with collaborative groups. For example, the Medical Stu-
dents department code appears in the psychiatric care collaborative
group. This makes sense because certain medical students were
rotating through psychiatric care during the week when our log
was collected, and they accessed the associated patients’ medical
records. However, medical students change rotations on a regular
basis. This indicates that it would be incorrect to consider all med-
ical students as their own collaborative group. It also indicates that
we must update the collaborative groups from time to time in order
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Figure 12: Group predictive power for first accesses (Data set
A). Collaborative groups were trained using the first 6 days of
the log; precision and recall were tested using the seventh day.

to capture dynamic collaboration patterns.
Our goal in extracting collaborative groups is to improve expla-

nation recall (i.e., the number of accesses that can be explained).
As a baseline, we could assign all users to a single group; doing
this, we are able to explain the 75% of first accesses where the pa-
tient has an event (see Figure 8). However, this approach has the
consequence of potentially providing spurious false positive expla-
nations if two users are not actually part of a collaborative group.

To measure the tradeoff between adding collaborative groups to
improve recall and introducing false positives, we performed a sim-
ple experiment. We constructed a fake log that contains the same
number of accesses as the real log. We generated each access in
the fake log by selecting a user and a patient uniformly at random
from the set of users and patients in the database. (Because the
user-patient density in the log is so low, it is unlikely that we will
generate many fake accesses that “look” real.) We then combined
the real and fake logs, and evaluated the explanation templates on
the combined log.

We define recall to be the proportion of real accesses returned by
an explanation template from the set of all real accesses (Recall =
|Real Accesses Explained|

|Real Log| ). We define precision to be the propor-
tion of real accesses that are in the set of all accesses returned
(Precision = |Real Accesses Explained|

|Real+Fake Accesses Explained| ). The normalized
recall is the proportion of real accesses returned by an explanation
template from the set of accesses we have information on
(Normalized Recall = |Real Accesses Explained|

|Real Accesses With Events| ). The nor-
malized recall takes into account the fact we have a partial data set.
In an ideal world, our explanation templates would observe preci-
sion and recall values close to 1.0.

We ended up with an 8-level hierarchy of collaborative groups,
and we created the Groups table as described in Section 4.1. Us-
ing hand-crafted explanation templates that incorporate the groups
(e.g., Example 4.2), we measured the precision, recall and normal-
ized recall. Figure 12 shows the results for the groups at different
levels of the hierarchy, measured using the first accesses from the
seventh day of the log. Depth 0 refers to the naive approach of
placing every user in a single group. Additionally, we included the
hand-crafted explanation template that captures the idea that a user
accesses a medical record because another user with the same de-
partment code has an appointment, visit or produced a document
with the patient (e.g., explanation (B) from Example 2.1).

As expected, the top-level groups in the hierarchy (depths 0 and
1) result in higher recall, but lower precision. On the seventh day,
the depth 0 group explains 81% of the first accesses. We also found
that explanations based on collaborative groups outperformed ex-
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Figure 13: Mining performance (Data sets A & B, log days 1-6,
T = 3, s = 1%)

planations based on department codes, because users from different
departments (e.g., Pediatrics and Nursing-Pediatrics) often work
together.

In practice, depth 1 collaborative groups appear to strike a rea-
sonable balance of high precision (>90%) and improved recall. For
day seven in the log, if we consider explanations based on appoint-
ments, visits, documents produced, and repeat accesses (e.g., Fig-
ure 7), and we also include collaborative groups at depth 1, we are
able to explain over 94% of all accesses.

5.3.3 Mining Explanations
Our next set of experiments measured the performance of the

mining algorithms presented in Section 3. We ran the algorithms
on the first accesses from the first six days of the log, with the com-
bined data sets A and B, and the added group information. Based
on an initial study, we set the support threshold to 1%. (A support
threshold of 1% was sufficient to produce all of the explanation
templates that we constructed by hand except one template where
a doctor has a visit with a patient, which had a very small sup-
port.) We restricted the size of templates to T = 3 tables. We
allowed self-joins on the Groups.Group id attribute and the depart-
ment code attribute. The algorithms utilized the optimizations de-
scribed in Section 3.2.1. Due to how the data was extracted, data
set B identifies users with a key audit id, and data set A identifies
users with a caregiver id. We used a mapping table to switch from
one identifier to the other. Thus, to deal with the slight difference
in how the data was extracted, we did not count this added mapping
table against the number of tables used.

We evaluated the algorithms based on their performance and
their ability to find the hand-crafted explanation templates we pre-
viously constructed. Figure 13 shows the cumulative run time of
the various algorithms by path length (the length corresponds to
the number of joins in the path). The algorithms mined expla-
nations up to a length of five when the path included a self-join
and the mapping table. Bridge-` indicates that we used paths up
to length ` for bridging. For our experimental setup, the Bridge-
2 algorithm was the most efficient because it pushes the start and
end constraints down in the algorithm. The one-way algorithm was
faster than the two-way algorithm because the two-way algorithm
considers more initial edges. Without the optimizations described
in Section 3.2.1, the run time increases by many hours.

Each algorithm produced the same set of explanation templates.
Moreover, it is worth noting that our mining algorithms were able
to discover all the supported hand-crafted explanation templates we
described in the paper such as appointments with doctors, appoint-
ments with users that work in the same department, and appoint-
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Figure 14: Mined explanations predictive power for first ac-
cesses (Data sets A & B, trained on days 1-6, tested on day 7)

ments with users that are in the same group.
It is important to note that this paper is not intended to be a full

performance study. Rather, we intend this as a proof of concept,
demonstrating that explanation templates can be mined automati-
cally from a real data set. Therefore, the administrator’s time can
be saved if algorithms can find these explanation templates.

5.3.4 Predictive Power Of Explanations
Using the explanation templates mined from the first six days of

accesses from Section 5.3.3 on data sets A and B, we tested the
predictive power of the explanation templates on the seventh day
of accesses using the same fake log that was described in Section
5.3.2. The goal is to determine if the mined explanation templates
can correctly explain real accesses, while not spuriously explaining
fake accesses. Figure 14 shows the results for explanations of var-
ious lengths, and the results when all of the explanations are tested
together (All) for first accesses.

Explanation templates of length two have the best precision, while
the recall is approximately 34% (42% normalized). These short ex-
planations are like explanation (A) from Example 2.1, where the
doctor has an appointment with the patient. The precision is high
for these explanations because it is very unlikely that, for example,
a fake access corresponds to an actual appointment. We believe this
is a result of the user-patient density being so small.

It is also important to point out that the recall for these length-
two explanation templates is higher when data set A and B are com-
bined compared to when only data set A is included in Figure 12
(the recall increases from 13% to 34% when analyzing the first ac-
cesses for day seven). This change in recall shows that as more data
is added to the database, we can explain additional accesses. With
a complete data set, we argue that we can explain more accesses.

As explanation template paths get longer, the recall increases
while the precision drops. Explanations of length three, which typ-
ically combine event information of two types (e.g., appointments
and medications) have a recall of 51% (65% normalized). Expla-
nation templates of length four, which use group information, in-
crease the recall to 73% (89% when normalized). The precision
drops since it is more likely that the user from a fake access corre-
sponds, for example, to an appointment with another user that is in
the same group. When all the explanations are combined and tested
together, we find the recall and precision only change slightly from
the length-four explanation templates because the longer explana-
tions typically are more general versions of the shorter explana-
tions. Therefore, the longer explanation templates explain most of
the accesses that the shorter templates explain. For example, tem-
plate (B) from Example 2.1 explains all those accesses explained
by template (A).

# Explanation Templates
Length Days 1-6 Day 1 Day 3 Day 7 Common Templates

2 11 11 11 12 11
3 241 257 231 268 217
4 25 25 25 27 25

Table 1: Number of explanations mined
We analyzed the department codes for which we could not ex-

plain the largest number of accesses. The top four departments
were: Nursing-Vascular Access Service, Anesthesiology, Health
Information Management, and Paging & Information Services. The
users in the vascular access service department typically assist with
IVs. Therefore, since our data set does not explicitly record why
each nurse treated a patient and these nurses assist many different
departments, it makes sense that the mined explanation templates
could not explain their accesses.

For the evaluation, we used group information from any depth
in the hierarchy. However, we observe that not every event type
should use the same depth. For example, when only data set A
was used, we had a precision of approximately 93% for depth 1,
however when data set B was included, the precision dropped to
66%. Therefore, group information at one depth may be sufficient
to explain an access with an appointment, but group information at
another depth may be necessary to explain accesses with medica-
tion information to attain a desired level of precision. In the future,
we will consider how to mine decorated explanation templates that
restrict the groups that can be used to better control precision.

5.3.5 Stability of Explanations
Lastly, we measured the stability of the explanation templates

that were mined over different time periods to determine if there
exists a set of consistently occurring explanation templates. To do
this, we ran the mining algorithms on different subsets of the log:
days 1-6, day 1, day 3 and day 7. Table 1 shows the number of
explanation templates produced per time period. For our data sets,
the number of explanations that are produced is small enough for an
administrator to manually analyze and approve those semantically
correct explanations. Moreover, there is a set of common expla-
nation templates that occur in every time period. Therefore, we
believe the explanation templates mined represent generic reasons
why medical records are accessed.

We did observe a small difference in the explanations mined
across time periods. For example, on the seventh day, a twelfth
length-two explanation template was added because there were more
accesses corresponding to visits. We found larger variability in
length-three explanations. This variation occurred from those ex-
planation templates that connected two event types. For example,
the path through radiology information to medication information
occurred frequently on some days, but did not occur frequently dur-
ing others.

6. RELATED WORK
Throughout this paper, we have focused on application-level ac-

cess logs of the type generated, for example, by electronic health
records systems. Typically, these logs store (User, Patient) pairs,
so it is easy to determine which accesses referenced a particular
patient’s record. A recent body of work has focused on the re-
lated problem of DBMS or SQL log auditing. In this case, logs are
collected at the level of the DBMS recording the text of all SQL
queries and updates; most commercial DBMSs now support this
form of logging [17, 20, 26]. In contrast to application-level au-
diting, it is non-trivial to determine which logged queries accessed
particular portions of the database, or particular records, and used
these records in non-trivial ways. Various models and systems have
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been proposed to address this problem for audit logs collected at the
level of the DBMS [4, 12, 15, 19].

Anomaly-based intrusion and misuse detection have been stud-
ied extensively in the past [8]. In the electronic health records do-
main, Chen et al. study how to detect anomalous insiders by an-
alyzing an access log in a real hospital system [10]; they detect
anomalous users by measuring the deviation of each user’s access
pattern from other users that access similar medical records. This
work considers the user to be the unit of suspiciousness, deciding
whether or not a user is behaving in an unexpected way. In contrast,
we consider individual accesses, and we try to explain why each
access occurs. This approach is more appropriate if, for example,
hospital employees are generally well-behaved, but in some iso-
lated cases they inappropriately access information (e.g., the Brit-
ney Spears [22] and Barack Obama cases [16]). In addition, our
approach has the advantage of producing easily interpretable re-
sults, while the output of the anomaly detection mechanism does
not clearly explain why a user is suspicious.

Auditing and misuse detection are often considered complemen-
tary to access control, which can be used to limit individual users’
access to data [1, 23, 24]. Unfortunately, in health care, it is of-
ten infeasible to specify and enforce comprehensive access con-
trol policies due to the work environment. Instead, hospitals often
maintain a log of accesses to detect misuse after the fact.

Recent work by Malin et al. propose learning access control
policies from EHR access logs [18]. They use a data-driven ap-
proach to determine relationships between users and departments
in the hospital. Using these relationships, for example, the system
can determine the probability with which a patient’s medical record
will be accessed by a surgeon after it is accessed by an emergency
room physician.

The mining algorithms presented in Section 3 have some similar-
ities to previous work on pattern mining [5, 6, 14, 25], although ex-
isting algorithms do not solve our problem directly. The main dif-
ferences between our problem and classical frequent pattern mining
are as follows: First, we are mining connected paths between a start
and end attributes in the schema, where the classical problem mines
item sets. Second, our metric for frequency (support) is determined
by the number of accesses in the log that are explained by the tem-
plate. Therefore, every path we consider must reference the log.
Additionally, the structure of the patterns that are mined and where
the data is stored differs from the classical problem. For instance,
the templates represent logical expressions that data in the database
must satisfy. In contrast, the classical problem learns relationships
between actual values. Lastly, the data is stored across multiple
tables in the database, rather than in a single file of transactions.

In some ways, explaining why an access occurred is related to
the basic motivation for data provenance. While our explanations
attempt to explain why a user accesses data, provenance aims to
explain where data came from, or how and why it was produced
[7, 9, 11]. While there may be some connection between the two
lines of research, provenance techniques do not directly solve the
problem of explaining accesses in a database.

7. CONCLUSION
In this paper, we presented explanation-based auditing. Many

systems, including EHRs, collect access logs. While this infor-
mation is sufficient to explain who has accessed a particular piece
of data (e.g., a patient’s medical record), it is not usually enough
to explain why. To address this problem, we introduced a frame-
work that generates explanations automatically. Our work is based
on the fundamental observation that accesses in specific classes of
databases occur for a reason, and the reason can be inferred from

data in the database. Thus, we model an explanation as a path that
connects the data accessed to the user who accessed it, by way
of data elsewhere in the database. Producing explanations for a
large database can be time consuming. Instead, we provided algo-
rithms to automatically mine explanation templates from the data.
We evaluated our system on a real log and data set from the Univer-
sity of Michigan Health System. Using our model, we can explain
over 94% of the accesses.
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