
Optimistic Concurrency Control by Melding Trees
Philip A. Bernstein Colin W. Reid Ming Wu

Microsoft Corporation

{philbe, colinre, miw}@microsoft.com

Xinhao Yuan†

Tsinghua University, Beijing, China

xinhaoyuan@gmail.com

ABSTRACT
This paper describes a new optimistic concurrency control algo-
rithm for tree-structured data called meld. Each transaction exe-
cutes on a snapshot of a multiversion database and logs a record
with its intended updates. Meld processes log records in log order
on a cached partial-copy of the last committed state to determine
whether each transaction commits. If so, it merges the transac-
tion’s updates into that state. Meld is used in the Hyder transac-
tion system and enables Hyder to scale out without partitioning.
Since meld is on the critical path of transaction execution, it must
be very fast. The paper describes the meld algorithm in detail and
reports on an evaluation of an implementation. It can perform
over 400K update transactions per second for transactions with
two operations, and 130K for transactions with eight operations.

1. INTRODUCTION
This paper describes a new optimistic concurrency control tech-
nique called meld. It is intended for use in a system with many
servers that execute transactions on shared, tree-structured, multi-
version data. The system could be a transactional indexed-record
manager, which is used as an independent key-value store or the
storage layer of a database system, such as Hyder [4]. It could be
a log-structured file system that supports transactions [17]. Or it
could be an in-memory transactional store on a shared-memory
multiprocessor, where transactions execute on different cores.

Meld is targeted for use in a system where servers share one
database log that is the only representation of the database. Every
server maintains a locally-cached (partial) copy of the database in
main memory, and it can execute transactions. When a transaction
finishes, it appends a log record, called an intention, which con-
tains the final values of the data items it modified. For serializable
isolation the intention also identifies the transaction’s readset. Un-
like conventional database systems, appending an intention to the
log does not commit the transaction. Meld makes that decision.

Every server executes the meld operator. Meld processes log
records one-at-a-time in log-order. For each record, it determines
whether the corresponding transaction commits. If so, it merges
the transaction’s updates into the server’s cached database state.

Meld is deterministic. Thus, every server that runs meld makes the
same commit and abort decision for every transaction. Yet the
only point of arbitration between the servers is the operation that
appends a transaction record to the shared log. Therefore, the

system can grow simply by adding another server, giving it access
to the log, giving it a recent snapshot of the database, and having
it start running meld with the log record following the last one that
contributed to the snapshot. The system can thereby scale out to
many servers without partitioning the database or transactions.

The database is a multi-versioned tree-structured key-value store.
Each transaction T executes against a database version. T’s
intention I contains a reference R to T’s snapshot, which is
defined by the last committed transaction in the log that
contributed to the database state that T read (Figure 1). The
intentions between R and I are called T’s conflict zone.

Meld is an optimistic concurrency control algorithm. It determines
if any committed transaction in T’s conflict zone conflicts with T.
If not, meld decides to commit T and merges T’s updates into the
locally-cached partial-copy of the database. If there is a conflict,
meld decides to abort T and discards its updates. Meld then ack-
nowledges T’s commit or abort, if T executed at the same server
as meld. The definition of conflict can include read-write, write-
write, or phantom conflicts, depending on the isolation level that T
requires. This supports all of the isolation in the SQL standard.

At an architectural level, there are several main potential
bottlenecks in a system that uses meld: the number of aborts
caused by conflicts, the rate at which servers can append to and
retrieve from the log, and the speed of the meld operator. The
number of aborts largely depends on application behavior. The
rates that the log can be written and accessed are moving targets
that will improve over time, as the underlying technology speeds
up. By contrast, the speed of meld will not benefit from tech-
nology improvements for the foreseeable future. Meld is inherent-
ly a sequential algorithm. Although parts of it can be parallelized,
it ultimately must process log records in log sequence. It therefore
depends on the performance of a single processor core, which is
not expected to speed up very much in the coming years.

It is important that meld be very fast, for two reasons. First, the
update-transaction rate of the entire multi-server system is limited
by the rate that meld can process intention records. Second, the
longer it takes to meld a transaction’s intention, the greater the
number of intentions in each transaction’s conflict zone and hence
the greater the chance that each transaction aborts.

Meld attains its high performance by minimizing the number of
nodes it has to examine to check for a conflict. Rather than scan-
ning the intention’s conflict zone to determine whether the trans-
action experienced a conflict, meld maintains enough metadata in
the last committed state to detect conflicts accurately. By leverag-
ing that metadata and the database’s tree structure, it can often

† Work performed while employed at Microsoft Corporation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 37th International Conference on Very Large Data Bases,
August 29th - September 3rd 2011, Seattle, Washington.
Proceedings of the VLDB Endowment, Vol. 4, No. 11
Copyright 2011 VLDB Endowment 2150-8097/11/08... $ 10.00.

T’s intention I

T’s updatesR

Other transactions’ intentions

Figure 1 Detecting a transaction's conflicts.

T’s conflict zone

start of
log

end of
log

944

determine the absence of conflicts without comparing all readsets
and writesets of transactions. This innovation speeds up
transaction processing even if meld runs on only one server. Thus,
meld is potentially useful for any system that uses optimistic
concurrency control, not just one for shared storage.

The main contributions of our paper are a highly optimized algo-
rithm for meld and detailed measurements of its implementation.

Meld was initially developed for the Hyder system, which is
designed to run on a cluster of servers that have shared access to a
large pool of network-addressable storage, ideally raw flash chips.
Hyder relies on meld to scale out without partitioning. The basic
meld algorithm is sketched briefly in [4]. This paper extends that
sketch by presenting the entire algorithm, including many
optimizations. These optimizations are essential to attain high
transaction rates comparable to those of locking systems—
mechanisms that have been optimized over the last 40 years.

Hyder’s performance is analyzed in [4], showing how far it can
scale out and under what conditions. That analysis takes the speed
of meld as an input parameter. This paper shows what values can
be expected for that parameter. We present performance measure-
ments of our meld implementation different loads.

The paper is organized as follows. The basics are covered in
Section 2 on the search-tree index structure and Section 3 on a
skeletal version of the meld algorithm itself. These sections are
taken from [4]. The rest of the paper is new material. Section 4
explains the detailed data structures needed to guide conflict de-
tection by the meld algorithm. Section 5 tells how to meld concur-
rent transactions. Section 6 covers delete operations. Section 7
presents the control structure that drives the mechanisms in
Sections 3-6. Section 8 presents an evaluation of our
implementation. Section 9 covers related work, and Section 10 is
the conclusion. The appendix discusses checkpointing, recovery,
transaction execution, and garbage collection, and presents meld
pseudo code and additional performance measurements.

2. INDEX STRUCTURE
Meld operates on a database that is structured as a search tree.
Each node n is a [key, payload] pair (denoted key(n) and pay-
load(n)). The system maintains a node cache of recently accessed
parts of the tree. Its basic operations are get, insert, delete and
update of nodes and ranges of nodes, identified by their keys.

Most relational databases are stored as trees. The top of the tree is
the database catalog, which identifies the databases. Each node
that represents a database has immediate descendants that repre-
sent subschemas, whose descendants represent tables. Each table
has descendants that represent rows, which are [key, payload]
pairs, where the payload contains the non-key attributes. Second-
ary indices can also be implemented as tables, where each row’s
key is the secondary index key and its payload is a primary key.
For example, this approach is used in Microsoft SQL Server.

Figure 2 Copy-on-write in a binary search tree.

For the purpose of this paper, the database is stored as a binary
search tree (see Figure 2). Since the database is multiversioned, to

modify a node n, a new copy n of n is created. Since n’s parent p
needs to be updated with a new pointer to n, a new copy p of p is
needed. And so on, up the tree (again, see Figure 2). Notice that
D is the root of a complete tree, which shares the unmodified
parts of the tree with its previous version, rooted at D.

An updated tree is marshaled into a transaction’s intention and
appended to the log (Figure 3). The details of how a transaction
generates its intention are described in Appendix E.

Figure 3 The tree of Figure 2 marshaled into a log.

For good performance, it is important to minimize intention size.
This makes binary trees a good choice. A binary tree over a
billion keys has depth 30. By contrast, a B-tree over a billion keys
with 200-key pages has depth 4. With raw flash, SSDs or shingled
disks, B-tree pages cannot be updated in-place. Thus, an update of
a B-tree leaf creates a new version of four pages on the root-to-
leaf path, which consumes space for 800 keys, much more than a
30-node path. Still, B-trees with low fanout and prefix and suffix
key-compression can be competitive. They may be preferable to
reduce random seeks, especially for sequential access in key-
order. The meld algorithm presented here can be adapted for B-
trees and for search trees where payloads reside only in leaves.

3. BASIC MELD
This section presents a simplified description of meld that
introduces the main concepts. Later sections expand on it with
features that improve the accuracy and speed of conflict detection.

Meld has two inputs: an intention record I and the last commit-
ted state (LCS) of the database, which resulted from processing
the last committed transaction that preceded I. Intention I con-
tains a binary search tree with all of the nodes that I’s transaction
(denoted T(I)) inserted or modified and their ancestors. This
includes deletions, since deleting a node requires modifying its
parents. It also includes some metadata about each node, such as
the previous version and a flag indicating whether T(I) depends
on the previous version being unchanged. When a strong isolation
level is used, the intention also contains nodes that T(I) read.
Meld returns either an indication that T(I) experienced a conflict
or, if not, the new last committed state, which includes I’s
updates. In what follows, we do not make a sharp distinction
between I and T(I) when the distinction is clear from context.

A serial intention is an intention whose conflict zone is empty.
That is, its snapshot is the state in the intention that immediately
precedes it in the log. In that case, meld is trivial, since the inten-
tion’s root defines its output’s LCS. This case arises only when
the update load is very light—when the transaction inter-arrival
time is more than the end-to-end processing time of a transaction.

A non-serial intention is called concurrent. Melding a concurrent
I is more complex, because LCS includes updates that were not in
I’s snapshot. Meld must check that these updates do not conflict
with I. If they do not, then it must merge I’s updates into LCS.
That is, it cannot simply replace LCS by I, as in the serial case.

For example, suppose transaction T1 executes on an empty
database, inserting nodes B, C, D, and E. (See Figure 4.) Then
transactions T2 and T3 execute on T1’s output. T2 inserts node A,
and T3 inserts F. T2 and T3 do not conflict, so after melding them
LCS should include both of their updates.

To update C’s value,
create a new version C
and replace C’s
ancestors up to the
root.

 D

A

B

C

E

F

D
B

C

Update C

 D A BC EF

945

Figure 4 Example transactions to be melded.

Each node n in an intention I has a unique version number (VN),
a source content version (SCV), and a flag DependsOn. For
now, assume that the source content version refers to the version
of the node in I’s snapshot. The DependsOn flag is TRUE if I
depends on n not having changed during T(I)’s execution, that is,
because T(I) read n and ran with repeatable read or serializable
isolation level. We denote node n in Ij by nj, and its VN, SCV, and
DependsOn flag by VN(nj), SCV(nj), and DependsOn(nj) respec-
tively. Similarly, VN of node n in LCS is denoted VN(nLCS).

The need for DependsOn arises in part because some nodes in I
were updated only because a descendant was updated. For exam-
ple, in Figure 2, B was updated only because C was updated. In
this case, DependsOn(C) = TRUE and DependsOn(B) = FALSE.

VN, SCV, and DependsOn enable meld to detect conflicts. If
SCV(nI) ≠ VN(nLCS), then a committed transaction modified n
while T(I) was executing. In this case, if DependsOn(nI) = TRUE,
then T(I) experienced a read-write conflict and should abort.

This is an oversimplification, because n may have been updated
(and hence SCV(nI) ≠ VN(nLCS)) only because one of n’s
descendants was updated, not because its content changed. Such
an update may not be a conflict. We enrich the definition of SCV
in Section 4.2 to avoid such false positives.

Suppose transactions T1-T3 from Figure 4 are sequenced in the log
as shown in Figure 5. Meld processes the log as follows:

1. Meld deduces that T1 is serial, because SCV(D1) = 50 =
VN(DLCS), which means T0 immediately precedes T1. So it
melds T1 by returning a new LCS whose root is D1, where
VN(D1) = 54.

2. Similarly, meld deduces that T2 is serial and returns a new
LCS whose root is D2, where VN(D2) = 57.

3. For T3, meld sees that SCV(D3) ≠ VN(DLCS) (i.e., 54 ≠ 57).
Since DependsOn(D3) = FALSE, these unequal VN’s do not
indicate a conflict. However, a descendant of D3 might
depend on a node in LCS that was updated in T3’s conflict
zone. So meld has to drill deeper into I3 by visiting E3.

4. Meld sees that SCV(E3) = VN(ELCS) = 53. Thus, the subtree
rooted at E did not change while T3 was executing. So there
is no conflict and meld can declare T3 as committed.

Figure 5 Log of the transactions of Figure 4.

In (4) above, meld truncates the traversal of I3 before touching F.
This traversal truncation occurs whenever meld encounters an
intention I’s subtree that did not change while T(I) was executing.
This optimization significantly reduces the time to meld I com-
pared to a naïve algorithm that tests every node in I for a conflict.

Now that meld knows that T3 committed, it has to merge T3’s
updates into LCS. Unlike the serial cases of T1 and T2, it cannot
simply return D3 as the root of the new LCS, because SCV(D3) ≠
VN(DLCS). This means that LCS includes updates that are not in
I3, namely, T2’s insertion of node A. Therefore, meld must create
a new copy of D that points to B2 on the left and E3 on the right.

Figure 6 Adding ephemeral intention 3 and T4 to Figure 5.

Since every node must reside in some intention, meld creates a
new intention that contains the new D (see 3 in Figure 6). This is
called an ephemeral intention, because it exists only in memory.
It is uniquely associated with the transaction that caused it to be
created, in this case T3, and logically commits immediately after
T3. In this case, it has just one node D, but in general it can have
many nodes. We discuss ephemeral intentions in Section 5.

Notice that a server needs to cache only paths in the tree that meld
accessed for recent transactions, not the whole database tree.

4. DATA STRUCTURES

4.1 Version Numbers and Pointers
The meld algorithm requires that versions of nodes with the same
key have distinct version numbers. To meet this requirement, it is
tempting to store a version number with each node in the log and
increment it in each new version of the node. However, this does
not work, since concurrent transactions can independently gener-
ate successor nodes to a given version. Moreover, it consumes log
space, which reduces the rate at which the log is read and written,
and hence reduces transaction throughput. For these reasons,
version numbers of new nodes are not explicitly stored in the log.
Instead, they are calculated lazily during meld as a function of the
location and number of updated nodes in each intention.

Meld assigns a commit sequence number (CSN) to each com-
mitted intention I. CSN(I) equals the CSN of the intention that
generated LCS into which I is melded, plus the number of nodes
in I. For example, in Figure 5, CSN(I1) = CSN(I0) + 4 = 54,
CSN(I2) = CSN(I1) + 3 = 57, and CSN(I3) = CSN(I2) + 3 = 60.

For each node n in intention I, VN(n) equals CSN(I) minus the
zero-origin index of n in I, where nodes are indexed starting with
the last node in I and going backward. In Figure 5, since CSN(I3)
= 60, we have VN(D) = 60 – 0 = 60, VN(E) = 60 – 1 = 59, etc.

Each node has two child pointers. A pointer to a node n in inten-
tion I is stored in the log as a [CSN(I), i] pair, where i is the index
of n in I. Since an intention I often has pointers to multiple nodes
in a given intention I, it is worth having I store just one copy of
CSN(I). A pointer to a node in I refers to this copy by its offset in
I with fewer bits than would be needed to refer to CSN(I).

946

4.2 Metadata to Detect Basic Conflicts
Each node n in intention I includes VN(n), DependsOn(n),
SCV(n), an Altered flag, a previous version number (PVN) and
a new content version (NCV). PVN is used here only to help ex-
planations; it is not used by the algorithm. We explained VN(n)
and DependsOn(n) earlier. We explain the other metadata here.

We define PVN(n) to be the version number of the node in I’s
snapshot with the same key as n. If n is newly inserted, then it has
no predecessor. We define SCV(n) to be the version number of
the node that first generated the payload in node(PVN(n)), where
node(PVN(n)) is the node whose VN is PVN(n). For all nodes n
in Figure 5, SCV(n) = PVN(n), but in general this need not be the
case. Suppose SCV(n) = PVN(n) in I, and consider a node n in
the next intention I’ where key(n) = key(n) and where n has the
same payload as n. That is, n is in I’ only because one of its
descendants was modified. In this case, SCV(n) = SCV(n). For
example, in Figure 6, suppose we add a transaction T4 that up-
dates node F. Like I3, T4’s intention I4 stores the path DEF.
The value of SCV(F) in I4 (i.e., SCV(F4)) is 58, because F was
updated in I3. However, SCV(E4)  59. Instead, SCV(E4) =
SCV(E3) = 53, because E4 has the same payload as E3, which
came from E1, where VN(E1) = 53.

The flag Altered(n) is true if n’s payload is modified in the inten-
tion. The field NCV(n) is calculated from SCV(n) and Altered(n).
If Altered(n) is true then NCV(n) = VN(n). Otherwise NCV(n) =
SCV(n). That is, NCV(n) defines SCV for the successor of n. The
definitions of SCV and NCV enable more precise conflict
checking than the one in Section 3. It ensures that SCV(nI) ≠
NCV(nLCS) if and only if a committed transaction modified n’s
payload while T(I) was executing.

4.3 Metadata to Detect Phantoms
To support phantom detection, each node n has a flag Depends-
OnTree and optionally a DependencyRange. DependsOnTree(n)
is TRUE if T(I) depends on the subtree rooted at node(PVN(n))
(subtree(PVN(n))) not having changed during T(I)’s execution,
because T(I) read nodes in subtree(PVN(n)) and ran with
repeatable read or serializable isolation. That is, T(I) should abort
if subtree(PVN(n))  subtree(nLCS). If DependencyRange is
absent, then T(I) depends on the entire key range of subtree(n). If
DependencyRange is present, then it identifies the key range in
subtree(n) that T(I) depends on.

A node d with DependsOnTree(d) = TRUE might be far from I’s
root. With a little extra bookkeeping, meld can avoid traversing
the entire path to d by detecting if d has an ancestor n in I whose
subtree was unchanged in I’s conflict zone. To do this, each node
n in I has a flag SubtreeIsOnlyReadDependent, which is TRUE
iff none of its descendants are updated (i.e., have Altered = TRUE).
That is, n’s subtree is present in I only due to nodes (like d) that
are read-dependent on I’s snapshot. In addition, n has a source
structure version (SSV(n)), which is the oldest version of n that
has exactly subtree(PVN(n)). It also has a new structure version
(NSV(n)) which is calculated: If SubtreeIsOnlyReadDependent(n)
= TRUE then NSV(n) = SSV(n). Otherwise NSV(n) = VN(n). It is
the oldest version of n whose subtree is exactly subtree(VN(n)).

Meld uses the above metadata when processing a node n in I and
comparing it to node m in LCS with the same key as n. If SSV(n)
= NSV(m), then meld stops traversing the subtree with root n in I.

Notice that SubtreeIsOnlyReadDependent, SSV, and NSV are
exactly analogous to Altered, SCV and NCV. The difference is
that the former track any change in a node’s subtree, while the
latter track changes in a node’s content.

If a secondary index is stored as a table as described in Section 2,
then DependsOnTree can be used to detect changes in key ranges
just like for a primary index. Thus, the phantom detection tech-
nique of this section applies to secondary indices too.

In our current implementation, with some compression tech-
niques (e.g., the one mentioned in Section 4.1 and variable-length
integer encoding), the average metadata size per node that needs
to be stored in the log can be less than 30 bytes.

5. EPHEMERAL INTENTIONS
Every committed concurrent (i.e., non-serial) intention I needs to
be merged with LCS, which generates an ephemeral intention,
such as 3 in Figure 6. It is created deterministically by all servers
that execute meld and is sequenced immediately after the
concurrent intention that triggered it. It therefore has a unique
well-defined CSN. Thus, even though it exists only in main
memory and not in the log, its nodes (called ephemeral nodes)
can be referenced unambiguously by later transactions.

A node n in I need not generate an ephemeral node if SubtreeIs-
OnlyReadDependent(n) = TRUE. In that case, since no nodes in
subtree(n) were updated, the ephemeral node generated for n’s
parent can point to nLCS. However, meld must continue to traverse
down the tree until it determines whether or not there is a conflict.

Ephemeral intentions are problematic when memory is limited.
An ephemeral intention is generated every time a concurrent
intention is melded. We do not allow an ephemeral intention I to
be discarded if it is reachable in LCS, since a future transaction
may access it and it exists only in main memory. Although I can
be re-created by re-melding the concurrent intention IC that
created it, it may be rather expensive to regenerate I since IC
might no longer be in main memory at regeneration time.

Fortunately, the normal operation of the system tends to trim
ephemeral nodes. For example, in Figure 6, T4 causes D in 3 to
be replaced. Since T4 is serial, it replaces D in 3 by D in I4. Once
meld commits I4, the ephemeral node D in 3 is no longer reach-
able in future committed states. If T4 were concurrent because
another transaction committed in between T3 and T4, then meld
would create a new ephemeral intention with a copy of D, but the
total amount of ephemeral state would not increase. Updates that
contend on the same regions of the tree, such as the root in this
case, tend to create ephemeral nodes in those regions. But
intentions with updates on those regions tend to trim ephemeral
state. So trimming tends to clean up ephemeral state over time as
the ephemeral nodes are copied into subsequent intentions.

Although the meld process tends to rapidly make most ephemeral
nodes unreachable from LCS, some ephemeral nodes may still
remain reachable. These ephemeral nodes can be tracked, for
example, by storing an ephemeral flag indicating whether each
subtree contains any ephemeral nodes. A more elaborate method
can track the number ephemeral nodes or the maximum number of
pointers that must be traversed to reach the ephemeral nodes.

The ephemeral flag enables efficient enumeration of all reachable
ephemeral nodes. A flushing mechanism can periodically execute
a transaction T that does nothing but make a copy of a set of eph-

947

emeral nodes that together have no reachable ephemeral nodes. It
appends T’s intention, called a flush intention, to the log.

A flush intention has no dependencies, so it will not experience a
conflict. Hence, the regular meld process commits this intention.
This makes the original ephemeral nodes unreachable in the new
committed state, effectively replacing the original ephemeral
nodes with the flush intention’s persisted nodes. A new ephemeral
intention is normally created as a result of melding the flush
intention, but its size is based only on the intentions that
intervened during the flush. Since the number of intervening
intentions for each concurrent flush intention tends to be fairly
stable for a given workload, flushing stabilizes the amount of
reachable ephemeral state.

6. DELETIONS
The deletion of a node n in intention I needs to be recorded in the
tree for two reasons. First, depending on the semantics of the
delete operation, an update or delete of n in I’s conflict zone
might require meld to abort I. Second, I’s deletion affects meld’s
conflict detection of any concurrent transaction whose conflict
zone contains I and that read n, updated n, or scanned a range of
nodes that includes n. We considered three possible approaches.

One approach to deleting a node n is to include n in I’s tree as a
tombstone, which is marked as deleted. Although the use of
tombstones enables accurate conflict detection of deletions, it
consumes space and requires mechanisms to track tombstones and
eventually remove them from the tree. Further details are in
Appendix B on Garbage Collection.

A second approach is to actually delete node n in I’s tree (which
still requires including n’s parent p in I). This requires adding
metadata that ensures that meld will detect conflicts on n for two
cases: (i) in I’s conflict zone and (ii) in a later transaction I whose
conflict zone includes I. For case (i), since n is absent from I,
meld will not detect a conflict with a transaction in I’s conflict
zone that updated n. To fix this, we can add a DependsOnTree
flag to nodes (not just to pointers as in Section 4.3), and set it to
TRUE for p (i.e., for any node whose child is deleted). Given this
flag, meld will abort I if anything in p’s subtree changed in I’s
conflict zone, such as an update to n. Unfortunately, it will abort I
if there are other changes in p’s subtree that do not conflict with I.
This avoids the complexity of tracking and deleting tombstones,
but it increases the chance of a false conflict.

For case (ii), suppose I read or wrote n. Then DependsOn(n) =
TRUE in I. If no committed transaction re-inserted a node with n’s
key in between I and I, then when processing I, meld will not
find n in LCS and hence will abort I. If a committed transaction
did re-insert a node with n’s key in between I and I, that node’s
NCV will be greater than SCV(n) in I, which meld will detect as
a conflict. Now suppose I inserted a node with n’s key. Then as
for a write of n by I, meld will detect a conflict if a committed
transaction re-inserted a node with n’s key in between I and I.

For case (ii), now suppose I deleted n. Given that I already de-
leted n, this a no-op. Meld will not detect this as a conflict, since n
is absent from I and I. This is treated like case (i), that is, both
intentions should set DependsOnTree(p) = TRUE and Altered(p) =
TRUE, which ensures meld will detect this as a conflict.

A third approach, which is used in our current implementation,
combines the other two. It deletes nodes in I’s tree and adds the
list of deleted nodes to I. The latter are essentially tombstones, but
they are not in I’s tree. Case (i) is therefore handled by checking

that the SCV of each node in the delete list is unchanged in LCS.
Case (ii) is handled as in the second approach.

7. THE MELD ALGORITHM
Meld is a recursive algorithm that traverses the intention record I,
comparing its nodes to LCS. Each recursive call takes a node n in
I and a node nL in LCS as input. It returns an indication of a
conflict, and if there is none, the root nL of a subtree to replace nL
in LCS that includes I’s results in the subtree’s key range. Either
nL = n or nL, or nL is a newly-created ephemeral node.

For each node n in the intention, meld looks for the node nL in
LCS with the same key as n. It starts at the root of I and of LCS. If
their keys are equal, we call it the symmetric case, because I and
LCS have the same structure. In this case the recursion is simple.
Since n’s left subtree covers the same key range as nL’s left
subtree, meld can be called recursively on n’s left child and nL’s
left child. Similarly for the right children.

Insertions, deletions, or rotations by committed transactions in I’s
conflict zone can cause the structure of subtrees of I and LCS to
diverge. This is the asymmetric case, and it complicates the
recursion. We explain the algorithm for each case in turn.

7.1 Symmetric Case
Consider a call to meld on node n in I and nL in LCS where key(n)
= key(nL). If SubtreeIsOnlyReadDependent(n) = TRUE, then meld
recursively performs a special meld process on n’s subtrees. It is
basically the same as normal meld except that it does not create
ephemeral nodes, but only detects conflict. When the special meld
returns back to the current level, the meld simply returns nL.

If SSV(n) = NSV(nL), then nL’s subtree in LCS is unchanged since
I executed. That is, no committed transaction in I’s conflict zone
modified a node in nL’s subtree. Therefore (the recursive call to)
meld simply returns n. This is the serial case, for a subtree of I
rooted at n. Since it uses NSV(nL) instead of VN(nL), it leverages
the read-write optimization described at the end of Section 4.3.

If SSV(n)  NSV(nL), then nL’s subtree in LCS changed after I’s
snapshot, which is the case of a concurrent meld. So meld checks
for a conflict between n and nL, and if there is none, it creates an
ephemeral node and continues to recursively meld n’s subtrees.
There are several conflict checks, which we covered earlier:

 If Altered(n) = TRUE and SCV(n)  NCV(nL), then there is a
write-write conflict, so abort.

 If DependsOn(n) = TRUE and Altered(nL) = TRUE, then there
is a read-write conflict, so abort (under serializable isolation).

 If DependsOnTree(n) = TRUE, then there is a read-write
conflict. Since SSV(n)  NSV(nL), something in subtree(nL)
changed.

If none of the above conflicts are detected, then meld recursively
melds n’s subtrees as follows:

1. Create a new ephemeral node n for n.
2. Concurrently do the following for the left and right child of n

a. If the left (resp. right) child of n is in another intention
or is NULL, then the to-be-melded intention did not
update that subtree. Therefore, assign the left (resp.
right) child of nL to the left (resp. right) child of n .

b. Otherwise, the to-be-melded intention updated that
subtree. Therefore, recursively call meld on the left
(resp. right) children of n and nL. If it returns a conflict,

948

then return a conflict and exit. Otherwise, it returns a
node n. Assign n to the left (resp. right) child of n .

3. SSV(n) = NSV(nL); Altered(n) = FALSE;
4. SubtreeIsOnlyReadDependent(n) = FALSE;
5. If Altered(n), then {

Payload(n) = Payload(n); SCV(n) = NCV(n); }
else {Payload(n) = Payload(nL); SCV(n) = NCV(nL);
 If (NSV(left child of n) = NSV(left child of nL) and
 NSV(right child of n) = NSV(right child of nL))
 SubtreeIsOnlyReadDependent(n) = TRUE; }

6. Return n

7.2 Asymmetric Case
Consider a call to meld on node n in I and nL in LCS where key(n)
 key(nL). Since the trees are not aligned, we can no longer rely
on the range of keys in the two subtrees being the same. Thus, we
cannot simply meld the left subtree of n (leftSubtree(n)) with
leftSubtree(nL), since in general the subtrees cover different key
ranges. (And the same for the right, of course.) For example, if
n < nL, leftSubtree(nL) may have keys greater than key(n). Some
of those keys may be in rightSubtree(n), and they too must be
melded with leftSubtree(nL) (see Figure 7).

To handle this, we add a third parameter to meld that identifies the
key range being melded. In the above example, we meld n with
leftSubtree(nL), but only for the range less than key(nL) (which
does not include all keys in rightSubtree(n)). We then find a node
d in rightSubtree(n) that has all nodes in subtree(n) with keys
greater than key(nL). We meld d with rightSubtree(nL), but only
for the range greater than key(nL) (since leftSubtree(d) may have
nodes with keys less than key(nL)).

Figure 7 Splitting ranges during recursive meld.

As the recursion moves down the tree, it needs to keep track of the
key ranges. Each recursive call splits the key range it was given as
input and chooses subtrees to meld for each partition. Given that
meld is working on a key range of [low, high] based on its input
parameter, it makes two recursive calls on subtrees. One is on
leftSubtree(nL) and n with a key range of [low, key(nL)). The other
is on rightSubtree(nL) and d with a key range of (key(nL), high],
where d is found by starting at n and traversing right children until
encountering the first node d with a key greater than key(nL).

Notice that the recursive calls are made on half-open intervals that
do not include key(nL). Before the recursive calls, meld looks for a
node n in subtree(n) with key(n) = key(nL). If it finds such an n
it checks for conflicts between n and nL as for the symmetric case.
If there is no conflict it creates an ephemeral node for n.

Each recursive call, with nodes n and nL and keyrange as input,
returns a node nL that is a copy of nL with the following changes:

1. For every node m in subtree(nL), if there is a node n in
subtree(n) with key(n) = key(m) and Altered(n) = TRUE,
then replace m by n in subtree(nL).

2. For every node n in subtree(n), if there is no node m in
subtree(nL) with key(m) = key(n) and key(n)  keyrange,
then add n to subtree(nL).

3. If m is in subtree(nL), then m is in subtree(nL), no matter
whether there is a node n in subtree(n) with key(m) =
key(n), unless I deleted it.

In (1), I updated n. In (2), I inserted n. In (3), I deleted n.

It is easy to rebalance the index tree in a recursive manner in the
meld algorithm which is recursive by itself. To do so, each node
just needs to maintain the depth of the subtree rooted at it.

See Appendix C for more detailed pseudo-code of the algorithm.

8. EXPERIMENTS
We implemented a prototype of meld with a transactional key-
value store in C++ on the Windows platform. It contains a log
simulator and a client that consists of a transaction executor,
intention dispatcher, and meld operator. The dispatcher receives
each appended intention record and passes it to the meld operator.

In a distributed configuration, the dispatcher receives each
intention from the network. In this case, it needs to unmarshal the
intention into an in-memory tree structure before meld can operate
on it. This task, called pre-deserialization, uses significant
processor time. Although meld can perform this task, it is better if
the dispatcher does it and executes it in parallel with meld. In fact,
many intentions can be deserialized in parallel by employing
concurrent intention dispatchers executing on different cores. We
found this shortened meld’s execution time by up to 45%.

We evaluate the performance of meld with synthetic benchmarks.
These benchmarks have a simple, regular structure that enables us
to explain the behavior we are witnessing (unlike benchmarks
with mixed transaction load, such as TPC-C/E). Each benchmark
is a sequence of transactions consisting of multiple key-value op-
erations: read, update, insert of key-value pairs identified by keys.
All of the transactions access an initial database table containing
128K key-value pairs where keys and values are both 8-byte
strings. Every transaction requires serializable isolation; hence its
intention record contains the data items it reads. The only effect of
weaker isolation levels on meld throughput is to reduce the num-
ber of nodes traversed by dropping readsets from intentions; we
cover this as a read-% of zero in Section 8.2. We use a single
client to process the transaction sequences in our experiments in
order to precisely control the behavior of the benchmarks.

During the generation of transaction sequences, we control the
number of operations per transaction (or transaction size), the
ratio among different operation types, and the number of concur-
rent transactions in the conflict zone of each transaction (which
we call the concurrency degree). We believe these factors reflect
the behavioral characteristics of many types of applications.

All experiments are performed on a 4-core, 8-thread Intel Xeon
x5550 2.67GHz, with 4×256KB L2 cache and 8MB shared L3
cache, 12GB main memory, running Windows Server 2008 R2.
The meld thread is always assigned to a dedicated CPU thread.

A study of the effect of database caching and speed of reading and
writing the log is in [4] and is beyond the scope of this paper.

nL
n

 

A node d with key  key(nL)
Right child d of d with key > key(nL)



Meld these with keyrange < key(nL)

Meld these with
keyrange > key(nL)

Solid line is an edge
Dashed line is a path
Dotted ellipse identifies a tree

949

Therefore, the entire database table and all the appended intention
records are main-memory resident to avoid any I/O during meld.

We use meld latency and throughput as the main performance
metrics. The latency of each meld is its execution time and the
meld throughput is simply the reciprocal of the average meld
latency. The measured meld performance does not include the
cost of pre-deserialization, since it is off the critical path.

8.1 Symmetric Case
To measure the symmetric case of meld, we use benchmarks
consisting of only read and update operations. Figure 8(a) shows
the average meld latency relative to the number of operations per
transaction. Figure 8(b) shows the average throughput in melds
(i.e., transactions) per second. The ratio between read and update
operations is 1:1, and keys in the table are accessed randomly with
a uniform distribution. The different curves in the figures are for
experiments with different concurrency degrees; the series con-di
represents an experiment with concurrency degree i. Since we
mainly focus on the performance of the meld algorithm in this
paper, the experiments do not distinguish between aborted and
committed transactions. Abort rates are given in Appendix F.

Figure 8 Meld Latency and Throughput vs. Transaction Size.

Figure 9 Number of Node Accesses and Created Ephemeral

Nodes vs. Transaction Size.

As shown in Figure 8(b), meld can do more than 400K update
transactions (i.e., melds) per second (TPS) when transaction size
is 2 and concurrency degree is  16. It performs more than 100K
TPS when transaction size is  8 and concurrency degree is  16.

The performance of meld decreases with an increasing number of
operations per transaction. The reason is that the more operations
in each transaction, the more keys each transaction accesses, and
hence the more probable that concurrent transactions access keys
with common ancestors in the index tree. This forces meld to
traverse deeper in the tree to detect conflicts, and hence results in
more nodes in the intention subtree and LCS being accessed and
more ephemeral nodes being created during meld, which, we
believe, are the major contributors to meld latency. Figure 9
confirms this. The curves are very consistent with those of
average meld latency in Figure 8(a). For a similar reason, meld
performs worse when the concurrency degree increases.

The number of operations per transaction is purely an application
behavior characteristic. By contrast, the concurrency degree can

be affected by many factors, such as the rate of transaction
arrivals, the speed of local transaction execution, and the speed of
meld. Moreover, concurrency degree and meld performance can
interact with each other. Increasing the concurrency degree makes
meld slower, which increases the conflict zone size of executing
transactions and hence can increase the concurrency degree even
more. This happens when the system is overloaded, which
suggests that the system should avoid starting new transactions
when the concurrency degree exceeds some threshold.

8.2 Optimization on Read-Only Subtree
We next evaluate meld performance with different read-to-update
ratios. This ratio affects meld performance due to the Subtree-
IsOnlyReadDependent optimizations on read-only subtrees (cf.
Section 4.3 and 5), clearly an important case in many applications.

Figure 10 shows meld throughput versus the fraction of operations
that are reads. The series con-di-#opn represents an experiment
with concurrency degree i and transaction size n. Meld performs
better when reads predominate, demonstrating the effectiveness of
the optimization. Without it, meld performance should be
unaffected by different read-update ratios and be very close to its
performance in the case when all transactions are update-only.

In the figure, when the transaction size is 2, more than 60% of
operations are reads, and concurrency degree is 16 or less, meld
achieves over 400K TPS. Even at concurrency degree 64, meld
can still do over 400K TPS when 80% of operations are reads.

8.3 Asymmetric Case
The asymmetric case incurs more overhead than the symmetric
case since it has to use the key of an LCS node at the current tree
depth to split the corresponding intention subtree and may intro-
duce rebalancing. To measure asymmetric case, we use bench-
marks consisting of only read and insert operations. We omit the
evaluation results for the asymmetric case when deletes are pre-
sent, since they are similar to the case with only reads and inserts.

In the experiments, the intervals between every two adjacent keys
in the initial database table are the same. The read operations
access the key-value pairs in the initial table with a uniform ran-
dom distribution. The insert operations insert key-value pairs with
unique keys that are randomly distributed among the intervals be-
tween keys in the initial table, also uniformly distributed. Figure
11 shows meld throughput corresponding to different transaction
sizes. The series con-di-x% represents an experiment where
concurrency degree is i and x percent of the operations are inserts.

As in the symmetric-case experiments, meld performs worse
when transaction size increases. However, the asymmetric case
introduced through inserts does not significantly degrade meld
performance relative to the corresponding symmetric case. For
example, compare a read-insert ratio of 1:1 in the asymmetric case
to a read-update ratio of 1:1 in the symmetric case. Only when the

(a) (b)

(a) (b)

Figure 10 Throughput vs.
Read Percentage.

Figure 11 Throughput vs.
Transaction Size for
Asymmetric Case.

950

concurrency degree is 64 and transaction size is 32 is the
asymmetric case slower than the symmetric case, and only by
22%. When the concurrency degree is < 64 and transaction size is
< 32, meld throughput for the asymmetric case is < 10% lower.

We observed that inserts do not increase the number of accessed
nodes very much compared to the symmetric case (< 20%). This
is because there are not enough operations of committed transac-
tions in the conflict zone of each transaction to significantly
change the structure of the index tree, and in most cases, meld can
return early by grafting LCS or intention subtrees when no
asymmetry is encountered.

In summary, meld performance is excellent for small transactions
and very good for transactions with up to 8 operations. Since
concurrency degree can degrade meld performance, systems using
meld should keep it as low as possible. This can be achieved by
load control and optimizing local transaction execution. Meld is
friendly to reads and not very sensitive to inserts and deletes.

9. RELATED WORK
Due to their optimization of write-intensive workloads on tradi-
tional disk and flash memory, log-structured storage techniques
have been widely investigated [8][14][15][20]. Their optimiza-
tions are mainly for batching updates to achieve large sequential
writes. Some of these mechanisms merge the batched updates into
the latest snapshot of the storage; however, they do not perform
concurrency control, and hence are different than meld.

Optimistic concurrency control (OCC) was originally proposed in
[11]. Its benefits and tradeoffs have been extensively explored in
[1][2][10][13][16][18][19]. Some of these mechanisms combine
pessimistic and optimistic methods [13][16][18]. Their techniques
are orthogonal to ours. Compared to other pure OCC schemes, a
major uniqueness of meld is its ability to determine the absence of
conflicts without processing the entire read and write set.

Tashkent [5] proposed to avoid separating the durability and
commit ordering of update transactions. Their system uses
centralized conflict testing with OCC. But they give no details on
fine-grained conflict checking, which is not their focus. An OCC-
based distributed B-tree system is described in [3]. It uses single-
version data and simple version numbers to detect conflicts.

The rich literature of locking protocols over tree-structured data
can be found in books on transaction processing, such as [9].
Locking protocols for XML trees are compared in [11].

As far as we know, our meld algorithm is an entirely new way to
perform OCC. The only similar work we know of is OXenstored
in [7]. That algorithm works on multiversion tries [6] and gener-
ates intentions much like ours. It requires that the smallest sub-trie
S of the intention I that contains all of the transaction’s updates
was not modified in I’s conflict zone. This is a much coarser-
grained conflict test than ours, since another transaction’s update
to a node of S not referenced by I still causes I to abort. They do
not discuss any of the issues in Sections 3-7, such as optimizing
an intention’s representation, supporting different isolation levels,
or optimizing detection of read-write or delete conflicts.

10. CONCLUSION
This paper introduced the meld algorithm, a new technique for
optimistic concurrency control over trees. Meld operates on a log
of transaction intentions that it treats as a multiversion database. It
determines which transactions committed by detecting the pres-
ence of conflicting updates by committed transactions in the range

of log records between the snapshot the transaction read and its
intention. Meld merges the updates of each committed transaction
into a cached partial-copy of the last committed database state.

We described the meld algorithm in detail, including many of its
optimizations. We also provided the results of extensive
experiments to explore the behavior of our implementation of
meld. For transactions with two to ten operations, our meld
implementation processes 100K – 400K transactions per second.

There are many research opportunities for further work on meld.
An obvious extension is to modify the algorithm for other search
tree structures, notably B-+trees and binary trees where payloads
are only at the leaves. It would be worthwhile to study its
performance on different storage devices, where cache misses
affect meld speed, and to compare it to other optimistic and
locking algorithms on multi-version trees. In some settings, it may
be better to represent an intention by its operations, instead of its
after-images, which might lead to a rather different algorithm than
the one presented here.

11. REFERENCES
[1] Adya, A., R. Gruber, B. Liskov, and U. Maheshwari: Efficient

Optimistic Concurrency Control Using Loosely Synchronized
Clocks. SIGMOD 1995, pp. 23-34, 1995.

[2] Agrawal, D., A. J. Bernstein, P. Gupta, and S. Sengupta: Distributed
Multi-version Optimistic Concurrency Control with Reduced
Rollback. Distributed Computing, 2(l):45-59, 1987.

[3] Aguilera, M.K., W.M. Golab, and M.A. Shah: A Practical Scalable
Distributed B-tree. PVLDB 1(1): 598-609, 2008.

[4] Bernstein, P.A., C.W. Reid, and S. Das: Hyder—A Transactional
Record Manager for Shared Flash. CIDR 2011, pp. 9-20, 2011.

[5] Elnikety, S., S. Dropsho, and F. Pedone. Tashkent: Uniting
Durability with Transaction Ordering for High-Performance Scalable
Database Replication. Proc. of EuroSys 2006, pp. 117-130, 2006.

[6] Fredkin, E.: Trie memory. CACM, 3(9):490–499, 1960.
[7] Gazagnairem, T. and V. Hanquez: OXenstored—An Efficient

Hierarchical and Transactional Database using Functional
Programming with Reference Cell Comparisons. Int’l. Conf. on
Functional Prog. (ICFP 2009), pp. 203-214, 2009.

[8] Graefe, G: Write-optimized B-trees. VLDB 2004, pp. 672-683, 2004.
[9] Gray, J.N, and A. Reuter: Transaction Processing: Concepts and

Techniques. Morgan-Kauffman. 1992.
[10] Gruber, R.E.: Optimistic Concurrency Control for Nested Distribut-

ed Transactions. Tech. Report MIT/LCS/TR-453, MIT, June 1989.
[11] Haustein, H.P., T. Härder, K. Luttenberger: Contest of XML Lock

Protocols. VLDB 2006, pp. 1069-1080, 2006.
[12] Kung, H. T. and J.T. Robinson: On Optimistic Methods for

Concurrency Control. ACM TODS 6(2): 213-226, 1981.
[13] Lausen, G. Concurrency Control in Database Systems: A Step

towards the Integration of Optimistic Methods and Locking. Proc.
ACM Annual Conf. 1982, pp. 64-68, 1982.

[14] Lee, S-W. and B. Moon. Design of Flash-based DBMS: an In-page
Logging Approach. SIGMOD 2007, pp. 55–66, 1982.

[15] O'Neil, P., E. Cheng, D. Gawlick, E. O'Neil: The Log-Structured
merge-tree (LSM-tree). Acta Inf. 33(4): 351-385, 1996.

[16] Phatak, S.H. and B. R. Badrinath: Bounded locking for optimistic
concurrency control. Rutgers University TR DCS-TR-380, 1999.

[17] Seltzer, M.I. Transaction Support in a Log-Structured File System.
ICDE 1993, pp. 503-510, 1993.

[18] Sheth A. P. and M. T. Liu: Integrating Locking and Optimistic
Concurrency Control in Distributed Database Systems. ICDCS 1986,
pp. 89–99, 1986.

[19] Thomasian, A. and E. Rahm: A New Distributed Optimistic
Concurrency Control Method and a Comparison of its Performance
with Two-Phase Locking. ICDCS 1990, pp. 294-301, 1990.

[20] Wu, C-H. L-P. Chang, T-W. Kuo: An Efficient R-tree Implementa-
tion over Flash-memory Storage Systems. ACM GIS 2003, pp. 17–
24, 2003.

951

APPENDIX
A. CHECKPOINT AND RECOVERY
To recover from a failure, a server needs the root of some com-
mitted intention in the log, from which it can start running meld.
The log does not distinguish committed from aborted intentions.
Therefore, to recover from the log alone, a server would have to
replay meld from the beginning of the log. To avoid this, a
server needs to periodically checkpoint LCS.

It is tempting simply to write a checkpoint record that points to
the last committed intention I known to the server. However,
this does not help because I might have pointers to ephemeral
nodes, which were created by melding earlier intentions.
Moreover, in the common case that I is a concurrent intention,
the result of melding I is an ephemeral intention, which of
course does not appear in the log.

To avoid these problems, a server S periodically executes a
checkpoint transaction Tck that makes a copy of all ephemeral
nodes reachable from LCS, as explained in Section 5, and
flushes them into the log. Tck’s intention, called a checkpoint
intention¸ includes a restart CSN. If the root of LCS is persis-
tent, then the restart CSN is that root. Otherwise, LCS is ephem-
eral and the restart CSN is the CSN of the concurrent transaction
that triggered the ephemeral intention that defines LCS.

To recover from a failure, a server first obtains a checkpoint
intention, ideally the last one in the log. It can get this from
another server or from a well-known location in persistent
storage. Or it can find the end of the log as in any log-based
recovery algorithm (e.g., [9], pp. 513-514) and scan backwards
until it finds a checkpoint intention. Then the server reconstructs
the in-memory ephemeral nodes from the checkpoint intention
and starts running meld from the CSN of the intention that
follows the checkpoint intention’s restart CSN.

The system can be initialized by writing a checkpoint intention
that includes a root and a restart CSN of zero.

From a correctness standpoint, the normal meld algorithm can
ignore the checkpoint record. However, from an efficiency
standpoint, it is beneficial for meld to leverage the checkpoint’s
persistent copies of ephemeral nodes by replacing ephemeral
nodes in LCS by the corresponding nodes in the checkpoint,
similarly to how it processes a flush intention.

B. GARBAGE COLLECTION
To recycle log space, the system needs to garbage collect old
versions of nodes in the log that are still reachable. It does this
via two operations, sweep and trim.

Sweep is a flush transaction that copies nodes that are reachable
in LCS and are in the oldest region (i.e., head) of the log into a
new sweep intention. To help sweep find these nodes, we add
an OldestDescendant field to each node n, which references the
oldest node in subtree(n), i.e., the one closest to the log head.
When a new version of a node is created, OldestDescendant is
set to the minimum OldestDescendant of its two children.

Given a threshold address  near the head of the log, a sweep
transaction Tsw starts from LCS’s root and traverses the database
tree, copying all nodes that precede . Tsw will not experience a
conflict since it has no dependencies or alterations (the details
are quite subtle). After meld commits Tsw’s intention, no log
addresses preceding  are reachable from LCS.

Trim is an atomic operation provided by the log to truncate the
log before a given location so that the physical space can be
reclaimed. A server invokes trim at a location that is
unreachable from the latest checkpoint snapshot. This
guarantees that the untrimmed log space contains at least one
checkpoint, so the system is recoverable. To avoid expensive
server synchronization, a server can perform trim independently.
It should avoid trimming space that is reachable by a committed
state that might be the snapshot of an active transaction at any
server. Still, a slow server might allow a transaction to access a
node located in the trimmed space. Therefore, the log needs to
return an exception in response to an attempt to access trimmed
space. This can be done if logical log addresses of trimmed
space are never reused, e.g., by having logical log addresses
increase monotonically and never wrap.

An orthogonal garbage collection issue arises if tombstones are
used for deletions, using the first approach suggested in Section
6. A tombstone needs to be retained in LCS until the intentions
of all transactions that might conflict with it have already been
melded. This can be done by having an upper limit on the size of
a conflict zone, where size is measured in number of
transactions, nodes, or bytes. Meld aborts every intention that
exceeds this limit—a deterministic server-local test. The limit
can be set high enough that a transaction with a larger conflict
zone is likely to experience a conflict in any case, so the limit
does not cause many transactions to abort unnecessarily.

C. PSEUDO CODE OF MELD
In this section, we present detailed pseudo code of the meld
algorithm. The algorithm uses data structures for an index tree
node and a pointer to it, which are shown in Figure 12.

Figure 12 Data structure of node and pointer of index tree.

struct TreePointer {
 // Points to the in-memory tree node structure.
 // Is null if no in-memory node exists in the cache.
 // Not stored in the log.
 TreeNode *node;
 // The location of the tree node in the log.
 // Stored in the log.
 SequenceNumber csn;
 uint32 offset;
};

struct TreeNode {
 TreePointer left, right;
 // For garbage collection
 TreePointer OldestDescendant;
 uint8 depth; // For balance information
 NodeVersion VN; // Partially stored in the log
 // The following fields are stored in the log
 NodeVersion SSV;
 NodeVersion SCV;
 bool Altered, DependsOn;
 bool DependsOnTree;
 bool SubtreeIsOnlyReadDependent;
 KeyRange DependencyRange;
 // The following fields are calculated

952

The following is a brief explanation of four functions and an
annotation that are used in the pseudo code:

Meld(): the main function to do meld. It returns true if a
conflict is encountered.

MeldNoEphem(): Sub-function to meld without creating ephe-
meral nodes. Its logic is basically the same as Meld().

LeftRangeSplit(): Given a key K and key range, return a new
key range with all keys less than K.

RightRangeSplit(): Given a key K and key range, return a new
key range with all keys larger than K.

[out]: An annotation on a parameter that means that the value of
the parameter can be changed by the callee function.

For conciseness, the pseudo code of meld that follows does not
include details about the handling of deletions.

Algorithm Meld

Input:
lcstree : a pointer to an LCS subtree.
itree : a pointer to an intention subtree or to an LCS subtree
 directly referenced by a node in the intention subtree.
kr : the current key range. The key of a node in the
 intention
 subtree should be melded into the resulting snapshot
 if and only if it is in this range.

Output:
 rtree : a pointer to the resulting subtree.
Return:

true if a conflict is detected, otherwise false.

1: if (itree.node == null)

 // itree is empty
2: rtree = lcstree; return false;
3: if (itree.node.SubtreeIsOnlyReadDependent)

 // itree is read-only.
 // Meld without creating an ephemeral node

4: if (MeldNoEphem(lcstree, itree, kr))
5: return true;
6: else
7: rtree = lcstree; return false;
8: if (lcstree.node == null)
 // Pick up nodes within the key range from itree. Detect
 // possible conflicts, e.g., whether the key of a node
 // in itree but not in lcstree is caused by a deletion of
 // lcstree’s transaction and itree’s transaction does not
 // insert it. The insertion of itree’s transaction for a node
 // can be easily identified by checking whether the
 // node’s SCV is valid, i.e., whether the payload of the
 // node has a source.
 …
9: return false;
10: if (itree points to a node outside of its intention)
 // itree points to a node whose subtree is the
 // same age as or older than the lcs subtree.
11: rtree = lcstree; return false;
12: if (lcstree.node.NSV == itree.node.SSV)

 // itree’s updates are based on lcstree, which was
 // not modified in itree’s transaction’s conflict zone

13: rtree = itree; return false;
 // the intention generating lcstree is concurrent

 // with itree’s intention
14: if (itree.node.DependsOnTree)
15: return true;
16: rnode = CreateEphemNode();
 // create ephemeral node
17: bool IsSymmetric = false;
18: if (lcstree.node.NCV == itree.node.SCV)

 // There is no concurrent update on this node of itree
19: IsSymmetric = true;
20: else if (lcstree.node.key == itree.node.key)

 // There is a concurrent update on this node of itree
21: IsSymmetric = true;
22: if (itree.node.DependsOn)
23: return true;

24: if (IsSymmetric)
25: Meld the left subtrees of lcstree and itree using
 the left subrange of kr split by lcstree.node.key.
 Then Meld the right subtrees symmetrically. Store
 the result in rnode.left and rnode.right respectively.
 Then rebalance the tree rooted at rnode.

 // prepare fields of rnode
 …

26: rtree.node = rnode; return false;
 // asymmetric case
27: pnode = the node in itree with lcstree.node.key if it exists,
 else null;
28: if (pnode != null)
29: if (lcstree.node.NCV != pnode.SCV
 && pnode.DependsOn)
30: return true;

31: if (lcstree.node.key > itree.node.key)
32: leftkr = LeftRangeSplit(kr, lcstree.node.key);
33: if (Meld(lcstree.node.left, itree, leftkr,

 [out] rnode.left))
34: return true;
35: ttree = itree; tnode = itree.node;
36: while (tnode && tnode.key <= lcstree.node.key)
37: ttree = tnode.right; tnode = ttree.node;
38: rightkr = RightRangeSplit(kr, lcstree.node.key);
39: if (Meld(lcstree.node.right, ttree, rightkr,

 [out] rnode.right))
40: return true;
41: Rebalance the tree rooted at rnode.
 // prepare rnode fields
 …
42: rtree.node = rnode; return false;
43: else
 // symmetric to lines 32-42 above
 …

D. CORRECTNESS ARGUMENT
We sketch a proof of correctness of the meld algorithm. We use
the term grafting conditions for conditions that stop further
recursive calls to meld. If meld returns an LCS subtree, we call
them grafting-lcs conditions, e.g., the conditions at lines 1, 3,
and 10 in the pseudo-code (Appendix C). Otherwise, if meld
returns an intention subtree, we call them grafting-intention
conditions, e.g., the conditions at line 8 and 12.

953

A correct meld algorithm should preserve three properties:

1. It detects all conflicts.
2. If no conflict is detected, it returns a new LCS tree that

a. includes all updated nodes of the intention tree plus
all nodes of the LCS tree that are not replaced by
updated nodes in the intention tree, and

b. does not duplicate any node which should be unique,
i.e., does not contain two nodes with the same key.

In the proofs of these properties, we continue to use notation
lcstree, itree, and rtree to represent the LCS subtree, the
corresponding intention subtree, and the new resulting LCS
subtree of each recursive call of meld, respectively. Before we
prove the three properties, we first argue that proving them only
needs to consider the grafting conditions.

Meld recursively traverses the LCS and intention trees starting
from their roots, from which two versions of the entire database
tree are reachable. It enumerates all the nodes in the two trees
except the ones that are truncated by the grafting conditions.

For every node in the intention tree that is enumerated, meld
checks the node’s dependency information to detect the conflict
that may be caused by it (lines 14, 22, and 30). Therefore, for
the proof of property 1, we only need to consider the grafting
conditions to show that they do not stop the traversal of a
subtree that might manifest a conflict.

Now consider property 2a. During the traversal, for any
enumerated pair of nodes in the LCS tree and intention tree that
have the same key, meld replaces them with a newly created
ephemeral node (lines 16, 26, and 42). Hence, if it does a full
traversal of both trees without encountering a grafting condition,
the property holds. Therefore, in the proof of property 2a, we
only need to consider the effect of grafting conditions.

For property 2b, by the same argument, when meld encounters
LCS and intention nodes that have the same key, it replaces
them by only one ephemeral node. Therefore, in this case meld
does not duplicate these nodes in the new LCS tree. All other
cases of generating rtree involve a grafting condition, which
picks up a subtree of lcstree or itree. Therefore, in the proof of
property 2b, we again only need to consider the effect of
grafting conditions.

We now sketch proofs of properties 1, 2a, and 2b in the
following three theorems, respectively. Thus, for each of the
properties, as long as the action associated with each grafting
condition does not break the claims of the corresponding
theorem, the theorem is true and the property holds.

THEOREM 1. Meld detects all conflicts.

Proof sketch: This claim is true if meld checks every node in
the intention subtree that might incur a conflict. According to
the arguments in the last paragraph, we only need to consider
grafting conditions.

For grafting-lcs conditions:

1. itree is empty (line 1).
It is clear that no node in itree needs to be checked unless
itree’s intention deletes a node from lcstree. The pseudo
code does not handle deletions. But if it did and deletion
were handled by tombstones, then tombstones would be
enumerated and detected as conflicts like any other update.
If tombstones were not used, then this can be handled by
delete sets, described in Section 6.

2. itree points to a node outside of its intention (line 10).
Since an intention’s transaction never updates nodes
outside its intention, it is clear that no node in itree needs to
be checked.

3. itree is a read-only subtree (line 3).
Meld invokes function MeldNoEphem() to detect possible
read-write conflicts incurred by nodes in itree.

For grafting-intention conditions:

1. lcstree is empty (line 8).
In this case, meld picks all the nodes of itree whose keys
are in the current key range and detects conflicts that may
be caused by them. Since each invocation of meld
guarantees that its parameter itree contains all the nodes in
the intention tree whose keys are within the corresponding
key range, the nodes of itree whose keys are not within the
current key range are handled by other invocations of meld.

2. lcstree.node.NSV == itree.node.SSV (line 12).
This is the serial case, and hence no conflict can happen in
itree. □

THEOREM 2. If no conflict is detected, then meld merges the LCS
tree and intention tree into a new LCS tree that contains all
updated nodes of the intention tree plus all nodes of the LCS tree
that are not replaced by updated nodes in the intention tree.

Proof sketch:

For grafting-lcs conditions, rtree returns lcstree, so all keys of
lcstree are returned. Therefore, we only consider whether some
node in itree may be left out.

1. itree is empty (line 1).
There are no nodes in itree so none can be missed.

2. itree points to a node outside of its intention (line 10).
Since itree points to a subtree that is the same age or older
than lcstree, lcstree has the latest version of the nodes in
the current key range. Therefore, no node in that subtree of
itree needs to be included in rtree.

3. itree is a read-only subtree (line 3).
Since itree is a read-only subtree, it does not include any
new nodes beyond those in lcstree.

For grafting-intention conditions:

1. lcstree is empty (line 8).
In this case, since Meld does not directly return lcstree or
itree, the nodes in both of them need to be considered. No
nodes in lcstree can be missed since lcstree is empty. For
itree, meld picks all the nodes in itree that are in the key
range of the current lcstree. Therefore, as long as all the
nodes belonging to the intention and within the key range
are under itree, no node can be missed. This is guaranteed
by the recursive calls in both the symmetric and
asymmetric cases.

2. lcstree.node.NSV == itree.node.SSV (line 12)
In this case, rtree returns itree, and hence we only consider
whether nodes in lcstree can be missed. Since itree is
generated based on the structure and content of lcstree, all
the nodes in lcstree should also exist in itree unless itree’s
intention deletes them. Clearly, no node in lcstree can be
missed. □

THEOREM 3. If no conflict is detected, meld merges the LCS tree
and intention tree into a new LCS tree that does not duplicate

954

any node that should be unique, i.e., does not contain two nodes
with the same key.

Proof sketch:

During the handling of all the grafting conditions, meld returns
the nodes in lcstree or itree, but not both. Hence, the only case
where duplication can be introduced is if some node in itree
whose key is outside the current key range is included in the
returned rtree. This can only happen in the second grafting-
intention condition (line 12):

lcstree.node.NSV == itree.node.SSV

In this case, rtree returns itree assuming all the nodes in itree are
within the current key range. This can be guaranteed by the
transaction executor, i.e., during the execution of transaction. If
it generates a subtree i whose key range is beyond the key range
of the subtree j whose NSV equals to the SSV of i, it has to
invalidate the SSV of i. □

E. Transaction Execution
Our meld algorithm depends on version information in LCS
nodes and intention trees. The latter is maintained during
transaction execution, which we describe in this section.

When a transaction T starts, it initializes its intention tree I with
a pointer p to the root of its snapshot. This is the root of the lat-
est locally-cached partial copy of the database generated by the
meld in T’s server. Notice that p crosses intentions, in that it
points from I to the root of a (usually ephemeral) intention in the
snapshot. Suppose T executes under serializable isolation, which
requires capturing its readset. In this case, when it reaches a
node n in the snapshot, it creates a new copy n of n in I. This
copy n includes n’s child pointers, if it has any, which are cross-
intention pointers. T then assigns NCV(n) and NSV(n) to
SCV(n) and SSV(n), respectively. NCV(n) and NSV(n) are
calculated based on n’s source versions, alteration flags, and
VN(n) as described in Sections 4.2 and 4.3. Under weaker
isolation levels, T copies node n only if it is on a path to a node
that T updated.

VN(n) cannot be calculated and stored during T’s execution,
since the CSN of T’s intention cannot be known until it is
appended to the log and melded. Suppose we serialize T’s inten-
tion tree I into an intention record by a post-order traversal. If n
has a right child rc in I, VN(rc) = VN(n)  1. If n has a left
child lc in I, VN(lc) = VN(n)  |subtree(rc)|, where |subtree(rc)|
is the size (i.e., number of nodes) in the right subtree of n in I,.
To enable this calculation, while serializing I, we store the size
of I and of each node that is the right child of its parent.

As a result, when a node in the log is visited by traversing from
its parent in the same intention, its VN can be calculated. Note
that the execution of the transaction may generate pointers
crossing intentions through which a node in the log can also be
accessed. We therefore need to associate the calculated VN of
the node with those pointers.

T’s intention tree should not be destroyed immediately after
being serialized and appended into the log, since it can be used
by meld in the same server to avoid unnecessary deserialization.

F. Experiments on Other Parameters
Abort rate. The abort rate of transactions depends only on the
behavior of the application and optimistic concurrency control
(OCC). Given an application, all OCC algorithms (including

meld) using the same conflict predicate. Hence, they abort the
same transactions and generate the same abort rate. Conversely,
the only effect of the abort rate on the performance of OCC
algorithms (including meld) is that the algorithm need not check
conflicts with already aborted transactions.

Figure 13 shows the abort rate corresponding to the experiment
for the symmetric case presented in Section 8.1. When the trans-
action size is 32 and concurrency degree is 256 (d256), the abort
rate is over 40%. Since the d256 case has more than twice the
aborts of d64, it is truncating many more traversals of intentions
than d64. This is probably why d256 has almost the same laten-
cy as d64 in Fig 8a, unlike the lower concurrency degrees whose
latency increases significantly as concurrency degree increases.

Comparison to brute force. To demonstrate the effectiveness
of the optimizations used by meld, we conducted experiments
that compare meld with a brute-force version that disables all
optimizations and examines all nodes in the intention tree to
detect a conflict. Figure 14 shows meld performance normalized
to its brute-force counterpart. The rw series presents the sym-
metric case with a read-update ratio of 1:1. The ri series gives
the asymmetric case with a read-insert ratio of 1:1. The results
show that meld optimizations yield approximately a 2x speedup.

Our experiments favored the brute-force solution by caching all
the data used by meld in main memory to avoid I/O. In a
configuration that cannot fit all data in cache, the brute-force
version will suffer more since it needs to access more data
which may incur more cache misses.

Tree depth. We also evaluated how meld performance would be
affected by tree depth. To do this, we enlarged the size of the
initial database table to 512K key-value pairs, which adds two
levels to the tree depth relative to the original configuration in
Section 8. Figure 15 compares meld performance with initial
table sizes of 128K and 512K key-value pairs in the symmetric
case with a read-update ratio of 1:1. The curves for each
concurrency degree are nearly identical, and hence barely visible
in the figure. This shows that the tree depth has little effect on
meld performance, since in a deeper tree many melds short-
circuit at the same depth as in shallower tree. Results for the
asymmetric case are similar.

Figure 13 Abort Rate vs. Transaction Size.

Figure 14 Meld Performance
Normalized to Brute-force.

Figure 15 Meld Performance
on Different Database Size.

955

