
Efficient Processing of Top­k Spatial Preference Queries

João B. Rocha­Junior
∗

, Akrivi Vlachou, Christos Doulkeridis, and Kjetil Nørvåg
Department of Computer and Information Science

Norwegian University of Science and Technology (NTNU)
Trondheim, Norway

{joao,vlachou,cdoulk,noervaag}@idi.ntnu.no

ABSTRACT

Top-k spatial preference queries return a ranked set of the k best
data objects based on the scores of feature objects in their spatial
neighborhood. Despite the wide range of location-based applica-
tions that rely on spatial preference queries, existing algorithms in-
cur non-negligible processing cost resulting in high response time.
The reason is that computing the score of a data object requires
examining its spatial neighborhood to find the feature object with
highest score. In this paper, we propose a novel technique to speed
up the performance of top-k spatial preference queries. To this end,
we propose a mapping of pairs of data and feature objects to a
distance-score space, which in turn allows us to identify and ma-
terialize the minimal subset of pairs that is sufficient to answer any
spatial preference query. Furthermore, we present a novel algo-
rithm that improves query processing performance by avoiding ex-
amining the spatial neighborhood of the data objects during query
execution. In addition, we propose an efficient algorithm for mate-
rialization and we describe useful properties that reduce the cost of
maintenance. We show through extensive experiments that our ap-
proach significantly reduces the number of I/Os and execution time
compared to the state-of-the-art algorithms for different setups.

1. INTRODUCTION
With the popularization of geotagging information, there has been

an increasing number of Web information systems specialized in
providing interesting results through location-based queries. How-
ever, most of the existing systems are limited to plain spatial queries
that return the objects present in a given region of the space. In this
paper, we study a more sophisticated query that returns the best spa-
tial objects based on the features (facilities) in their spatial neigh-
borhood [16, 17]. Given a set of data objects of interest, a top-k
spatial preference query returns a ranked set of the k best data ob-
jects. The score of a data object is defined based on the non-spatial
score (quality) of feature objects in its spatial neighborhood. On the
other hand, the score of a feature object does not depend on its spa-
tial location, but on the quality of the feature object. Such quality
values can be obtained by a rating provider (e.g. www.zagat.com).

∗On leave from the Universidade Estadual de Feira de Santana.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 37th International Conference on Very Large Data Bases,
August 29th ­ September 3rd 2011, Seattle, Washington.
Proceedings of the VLDB Endowment, Vol. 4, No. 2
Copyright 2010 VLDB Endowment 2150­8097/10/11... $ 10.00.

Figure 1: Spatial area containing data and feature objects.

For example, Figure 1 presents a spatial area containing data ob-
jects p (hotels) together with feature objects t (restaurants) and v
(cafés) with their respective scores (e.g. rating). Consider a tourist
interested in hotels with good restaurants and cafés in their spatial
neighborhood. The tourist specifies a spatial constraint (in the fig-
ure depicted as a range around each hotel) to restrict the distance
of the eligible feature objects for each hotel. Thus, if the tourist
wants to rank the hotels based on the score of restaurants, the top-1
hotel is p3(0.8) whose score 0.8 is determined by t4. However, if
the tourist wants to rank the hotels based on cafés, the top-1 hotel is
p1(0.9) determined by v2. Finally, if the tourist is interested in both
restaurants and cafés (e.g. summing the scores), the top-1 hotel is
p2(1.2).

Top-k spatial preference queries are intuitive and comprise a use-
ful tool for novel location-based applications. Unfortunately, pro-
cessing top-k spatial preference queries is complex, because it may
require searching the spatial neighborhood of all data objects be-
fore reporting the top-k. Due to this complexity, existing solutions
are costly in terms of both I/Os and execution time [16, 17].

In this paper, we propose a novel approach for processing spa-
tial preference queries efficiently. The main difference compared
to traditional top-k queries is that the score of each data object is
defined by the feature objects that satisfy a spatial constraint (for
example range constraint). Therefore, pairs of data and feature ob-
jects need to be examined to determine the score of an object. Our
approach relies on mapping of pairs of data and feature objects to a
distance-score space, which in turn allows us to identify the mini-
mal subset of pairs that is sufficient to answer all spatial preference
queries. Capitalizing on the materialization of this subset of pairs,
we present an efficient algorithm that improves query processing
performance by avoiding examining the spatial neighborhood of
data objects during query execution. In addition, we propose an ef-
ficient algorithm for materialization and describe useful properties
that reduce the cost of maintaining the materialized information. In
summary, the main contributions of this paper are:

93

• We define a mapping of pairs of data and feature objects to
the distance-score space that enables pruning of feature ob-
jects that do not affect the score of any data object.

• We prove that there exists a minimal subset of pairs that is
sufficient to answer all top-k spatial preference queries.

• We propose an efficient algorithm for processing top-k spa-
tial preference queries that exploits the materialized subset
of points.

• In addition, we propose an effective algorithm for material-
ization, and we identify useful properties for cost-efficient
maintenance of the materialized information.

• We show through an extensive experimental evaluation that
our algorithm outperforms the state-of-the-art algorithms in
terms of both I/Os and execution time.

The rest of this paper is organized as follows: In Section 2, we
present an overview of the related work. In Section 3, we pro-
vide the necessary preliminaries and definitions. In Section 4, we
describe the distance-score space and define the minimal set of rel-
evant data and feature objects. Our algorithm for processing spatial
preference queries is presented in Section 5. In Section 6, we de-
scribe the process of materialization and discuss how maintenance
is performed. Finally, in Section 7, we present the experimental
evaluation and we conclude in Section 8.

2. RELATEDWORK
Several approaches have been proposed for ranking spatial data

objects. The reverse nearest neighbor (RNN) query was first pro-
posed by Korn and Muthukrishnan [8]. Then, Xia et al. studied the
problem of retrieving the top-k most influential spatial objects [15],
where the score of each spatial data object p is defined as the sum of
the scores of all feature objects that have p as their nearest neighbor.
Yang et al. studied the problem of finding an optimal location [4].
The main difference compared to [15] is that the optimal location
can be any point in the data space and not necessarily an object of
the dataset, while the score is computed in a similar way to [15].
The aforementioned approaches define the score of a spatial data

object p based on the scores of feature objects that have p as their
nearest neighbor and are limited to a single feature set. Differently,
Yiu et al. first considered computing the score of a data object p
based on feature objects in its spatial neighborhood from multiple
feature sets [16,17]. To this end, three different spatial scores were
defined: range, nearest neighbor, and influence score; and differ-
ent algorithms were developed to compute top-k spatial preference
queries for these scores.
The algorithms developed by Yiu et al. assume that the data

objects are stored in an R-tree [6] based on spatial attributes, while
the feature objects of each feature set are stored in a separate aggre-
gate R-tree (aR-tree) [11]. The proposed algorithms can be divided
into three categories. The first category is composed by probing
algorithms, namely Simple (SP) and Group (GP) probing. These
algorithms need to compute the score of all data objects before re-
porting the top-k result set. The second category is composed by
Branch and Bound (BB) and Branch and Bound Star (BB*) algo-
rithms. These algorithms avoid computing the score of some data
objects. The idea is computing an upper bound for each entry of
the R-tree of the data objects, and prune the entries whose upper
bound is smaller or equal to the score of the k-th data object al-
ready found. The third category comprises the feature join (FJ)
algorithm. FJ performs a multi-way spatial join on the feature sets

(a) Range. (b) Nearest neighbor. (c) Influence.

Figure 2: Examples of partial scores and spatial constraints.

to obtain combinations of feature objects of high scores. Then, the
aim is to find data objects having the corresponding feature com-
bination with high score in their spatial neighborhood. A more
detailed description of the algorithms can be found in Appendix A.

In this paper, we study the problem that was originally proposed
in [16]. Differently than [16,17], we propose a materialization tech-
nique that leads to significant savings in both computational and I/O
cost during query processing.

3. PRELIMINARIES
Given an object datasetO and a set of c feature datasets {Fi | i ∈

[1, c]}, the top-k spatial preference query [16,17] returns the k data
objects {p1, . . . , pk} fromO with the highest score. The score of a
data object p ∈ O is defined by the scores of feature objects t ∈ Fi

in its spatial neighborhood. Each feature object t is associated with
a non-spatial score w(t) that indicates the goodness (quality) of t
and its domain of values is the range [0, 1].

The score τ(p) of a data object p is determined by aggregating
the partial scores τθ

i (p) with respect to neighborhood condition θ
and the i-th feature dataset Fi: τ(p) = agg{τθ

i (p) | i ∈ [1, c]}.
The aggregate function agg can be any monotone function (such
as sum, max, min), but we use sum in the following discussion
for ease of presentation. The partial score τθ

i (p) of p is determined
by feature objects that belong to the i-th feature dataset Fi only,
and in addition satisfy the user-specified spatial constraint θ. More
specifically, the partial score τθ

i (p) is defined by the non-spatial
score w(t∗) of a single feature object t∗ ∈ Fi. This feature object
t∗ is the feature object with highest score that satisfies the neighbor-
hood condition θ. The following list provides intuitive definitions
of partial score for different neighborhood conditions θ (where d()
denotes the distance function):

• The range (rng) score of p, given a radius r:

τrng
i (p) = max{w(t) | t ∈ Fi : d(p, t) ≤ r}

• The nearest neighbor (nn) score of p:

τnn
i (p) = max{w(t) | t ∈ Fi, ∀v ∈ Fi : d(p, t) ≤ d(p, v)}

• The influence (inf) score of p, given a radius r:

τ inf
i (p) = max{w(t) · 2−

d(p,t)
r | t ∈ Fi}

EXAMPLE 1. Figure 2 depicts an example of a set of spatial

data objects. The points of feature datasets F1 and F2 are repre-

sented with white and black dots respectively, while the data ob-

ject p ∈ O is represented with a cross mark. We assume that

d() is the Euclidean distance without loss of generality, i.e., any

other distance function can be applied. In Figure 2(a), for each

Fi, the range score of p is the maximum non-spatial score w(t) of
the feature objects within distance r from p. Thus, τrng

1 (p) = 0.7,
τrng
2 (p) = 0.8, and the score of p is τ(p) =

∑2
i=1 τ

rng
i (p) = 1.5.

94

In Figure 2(b), for a given dataset Fi, the nearest neighbor score

of p is the non-spatial score of the nearest feature object t ∈ Fi to

p. Thus, τnn
1 (p) = 0.2, τnn

2 (p) = 0.8, and τ(p) = 1.0. In Fig-

ure 2(c), the influence score of p is the maximum influence score

of all feature objects in Fi. The influence score is computed taking

into account the non-spatial score of t that is reduced depending on
the distance between t and p. The radius r controls how rapidly the

score decreases with distance and in our example we set r = 1.7.

Thus, τ inf
1 (p)= max{0.2 · 2− 1.4

1.7 , 0.7 · 2− 2.2
1.7 , 0.4 · 2− 4.2

1.7 , 0.9 ·
2−

4.5
1.7 }= 0.28, τ inf

2 (p)=max{0.8·2− 2.2
1.7 , 0.6·2− 4.2

1.7 , 0.2·2− 4.5
1.7 }

= 0.33, and τ(p) = 0.61.

4. MAPPINGTODISTANCE­SCORESPACE
Top-k spatial preference queries return a ranked set of spatial

data objects. The main difference to traditional top-k queries is
that the score of each data object p ∈ O is obtained by the fea-
ture objects in its spatial neighborhood. Thus, determining the par-
tial score of a data object p based on the feature set Fi requires
that the pairs of objects (p, t) with t ∈ Fi need to be examined.
Consequently, the search space that needs to be explored to de-
termine the partial score is the Cartesian product between O and
Fi. As the total number of pairs with respect to all feature datasets
(
∑c

i=1 |O||Fi|) is significantly larger than the cardinality |O| of
dataset O, processing top-k spatial preference queries is particu-
larly challenging.
In this section, we formally define the search space of the top-k

spatial preference queries by defining a mapping of the data objects
O and any feature dataset Fi to a distance-score space1. Then, we
prove that only a subset of the pairs (p, t), where p ∈ O and t ∈ Fi,
are sufficient to answer all top-k spatial preference queries. This
drastically reduces the search space for any given query, thereby
saving computational costs significantly. In addition, we prove that
this subset of pairs is the minimal subset of pairs necessary.
In a preprocessing step, the subset of pairs is computed and

stored using a multi-dimensional index. As a result, we avoid com-
puting pairs of the Cartesian product on-the-fly during query pro-
cessing, leading to an efficient algorithm for processing top-k spa-
tial preference queries.
Definitions. We map a pair (p, t), where p ∈ O and t ∈ Fi,

to a 2-dimensional space M (called distance-score space) defined
by the axes d(p, t) and w(t). Each pair (p, t) is represented by a
2-dimensional point in the distance-score spaceM.

Definition 1. (Mapping of O based on Fi) The mapping Mi of
O based on Fi to the distance-score space M is the set of pairs
Mi = {(p,t) | p ∈ O, t ∈ Fi}.

To simplify notation, we denote any pair h=(p, t) ∈ Mi, d(h)=d(p, t)
and w(h)=w(t). Since a point h in the distance-score space M
represents a pair (p, t), we use these two terms interchangeably.

Definition 2. (Mapping of p based on Fi) Given a data object
p ∈ O, the mapping Mp

i of p based on Fi to M is the subset of
Mi (M

p
i ⊆ Mi), such thatMp

i = {(p,t) | t ∈ Fi}.

In the following, we define the subset of pairs ofMp
i that consti-

tute the skyline set [2] ofMp
i , denoted as Sp

i = SKY (Mp
i).

Definition 3. (Dominance≺M)A point h ∈ Mp
i is said to dom-

inate another point h′ ∈ Mp
i , denoted as h ≺M h′, if d(h) <

1Mappings of data points in score-time space have been proposed
for processing continuous top-k [10] and nearest neighbor [1]
queries.

(a) Raw space. (b) Distance-score space.

Figure 3: Mapping to the distance-score spaceM.

d(h′) and w(h) ≥ w(h′); or w(h) > w(h′) and d(h) ≤ d(h′).
The skyline set Sp

i is the set of points h ∈ Mp
i which are not dom-

inated by any other point h′ ∈ Mp
i .

EXAMPLE 2. Figure 3(a) depicts the spatial neighborhood of

data objects p1 and p2, as well as the feature Fi (black dots),

while Figure 3(b) depicts the mapping to the distance-score space

M. In particular, the setMp1
i consists of pairs (p1, t1) . . . (p1, t4)

and is depicted with circles, whereas the set Mp2
i consists of pairs

(p2, t1) . . . (p2, t4) and is depicted with black squares. Notice that

smaller values are preferable for the distance d(p, t), while higher
values are preferable for the non-spatial score w(t). Therefore,

the skyline sets of p1 and p2 with respect to Fi are S
p1
i ={(p1, t1),

(p1, t2), (p1, t4)} and Sp2
i ={(p2, t1), (p2, t3)} respectively. Also

notice that pairs that belong to different objects, i.e., p1, p2, are
incomparable.

Theoretical Properties. We proceed with the theorems that
prove that Sp

i is sufficient to obtain the partial score of p and more-
over that Sp

i comprises the minimal set with this property. The
proofs of the following theorems can be found in Appendix B.

THEOREM 1. For any spatial preference query, the set Sp
i is

sufficient to determine the partial score τθ
i (p) of a data object p ∈

O.

THEOREM 2. Sp
i is the minimal set that is sufficient to com-

pute the partial score τθ
i (p) of a data object p ∈ O for all spatial

preference queries.

We also define the set SO
i =

⋃
∀p∈O Sp

i . From Theorem 1, we

derive that the set SO
i is sufficient to determine the partial score

of any point p ∈ O with respect to feature Fi. Thus, maintaining
the sets SO

i for all features Fi is sufficient to answer any spatial
preference query. Therefore, in a preprocessing phase, we compute
each set SO

i and then index SO
i using an R-tree RO

i , in order to
maintain SO

i efficiently. Notice that each RO
i is a 2-dimensional

R-tree on the distance-score space.
Furthermore, we present a theoretical estimation of the number

of pairs in Mi that satisfy the range constraint of a spatial prefer-
ence range query, assuming uniform distribution of objects p ∈ O
and t ∈ Fi and uniform distribution of scores w(t). Even though
the data and feature objects are uniformly distributed, the Euclidean
distances of objects in the 2-dimensional distance-score space M
are approximately χ2 distributed [13]. Let the random variable X
denote the values of d(p, t), then its probability density function is

fX(x) = 1

21/2Γ(1/2)
x−1/2e−x/2. We can estimate the number E

of pairs in Mi that satisfy the range constraint with radius r (recall
that the total number of points inMi is |O| · |Fi|):

E = |O| · |Fi|
∫ r

0

fX(x)dx =
|O| · |Fi|√

2π

∫ r

0

x−1/2e−x/2dx

95

Algorithm 1 NextObject(MaxHeap H)

1: INPUT: Max-heap H with entries in descending order of non-spatial
score and radius r.

2: OUTPUT: The next data object in H with highest partial score.
3: Entry e← remove entry from top ofH
4: while e is not a data point do
5: for each entry e′ that is child of e do
6: if d(e′) ≤ r then
7: insert e′ intoH
8: end if

9: end for
10: e← remove entry from top of H
11: end while
12: return e

(a) R-tree RO
1 based onM1. (b) R-tree RO

2 based onM2.

Figure 4: Example showing the contents of RO
i .

Notice that the range constraint is posed only to the distance in-
dependently of the score of the feature objects. The number of
pairs E is an upper bound of the objects that are accessed during
a spatial preference range query, assuming uniform distribution of
the data and the feature objects. In practice, our approach indexes
only the set SO

i , which is a subset of Mi, and our algorithm takes
into account the score of the feature objects to reduce the number
of accessed pairs even further. The details on efficient materializa-
tion and maintenance of SO

i are presented in Section 6, while in
the sequel we present the proposed top-k spatial preference query
processing algorithm.

5. QUERY PROCESSING
In this section, we present the Skyline Feature Algorithm (SFA)

for processing top-k spatial preference queries. First, we present an
algorithm that exploits the distance-score space and returns the data
objects in descending order of their partial scores. Then, we present
the algorithmic details of SFA, which produces the result of the
top-k spatial preference query by coordinating access to the partial
scores of data objects. For ease of presentation, in the following,
we refer to a pair (p, t), where p ∈ O and t ∈ Fi, as a data point

indexed by RO
i .

Access to Partial Scores. During query processing, the data
points inRO

i are retrieved sorted in descending order of their partial
scores. Furthermore, only node entries of the R-treeRO

i that satisfy
the spatial constraint are processed. First, we present in details our
algorithm for retrieving data points sorted based on the range score
(Algorithm 1). Then, we describe the necessary modifications for
supporting the influence and nearest neighbor scores.
NextObject takes as input the radius r that defines the range con-

straint and a heap H that contains node entries and data points in
descending order of partial score τθ

i (). Initially, the heap H con-
tains the root of RO

i . Each time, the entry e at the top of the heap
H , i.e., with maximum partial score, is retrieved (lines 3,10). As
long as e is not a data point (line 4), NextObject inserts in the heap

H (line 7) the children entries of e whose distance is smaller or
equal to the radius r (line 6). When the next entry is a data point,
it is returned as the data point with the highest partial score τθ

i () in
SO
i .

EXAMPLE 3. Figure 4(a) shows the R-treeRO
1 that indexes the

set SO
1 of the feature objects t ∈ F1 depicted in Figure 1. The

entries ei ofR
O
1 are represented by Minimum Bounding Rectangles

(MBRs). For example, the root contains two entries {e1, e2}, and
e1 contains three data points {(p3, t4), (p2, t1), (p1, t3)}. Both

the distance d(e) (lower bound) and the score w(e) (upper bound)
of an entry e are defined by the upper-left corner of the MBR, for

example, d(e1) = 1 and w(e1) = 0.8. Consider a query with

range constraint r = 2. The algorithm prunes the entry e2, since
it does not satisfy the range constraint, and places e1 in H . Then,

e1 is expanded and the data points (p3, t4) and (p2, t1) are added
inH , while (p1, t3) is pruned. Finally, (p3, t4) is removed fromH
with score 0.8, and since it is a data point, p3 is returned. The heap
H maintains its state for providing access to the next point.

NextObject can be adapted with minor modifications for the in-
fluence and nearest neighbor scores. For influence score, the radius
is only used to compute the score, therefore even feature objects
whose distance from a data object is larger than r may contribute
to the result set. Thus, line 6 of the algorithm has to be removed
for influence score. Notice that H maintains the node entries in
descending order of partial score τθ

i (), which in this case is defined
by the influence score. For nearest neighbor score, NextObject has
to be modified to prune pairs (p, t) such that t is not the nearest
neighbor of p. For this purpose, during the construction of RO

i ,
such data points are flagged to indicate if t is the nearest neighbor
of p in Fi (by a bit 1-if nearest neighbor, 0-otherwise). Similarly,
an entry e of RO

i is flagged, if at least one of its children entries
is flagged. This enables efficient processing, as entries that do not
contain a nearest neighbor are immediately pruned. Then, lines 6-8
of Algorithm 1 are modified to first check if the child entry e′ is
a nearest neighbor entry, and only then e′ is inserted in H . Af-
ter these modifications, NextObject is readily employed for range,
nearest neighbor and influence score.

The SFA Algorithm. SFA (Algorithm 2) computes the top-k
spatial preference data objects progressively, by aggregating the
partial scores of the data objects retrieved from each R-treeRO

i us-
ing NextObject algorithm. We use sum as the aggregate function
in the following description and in the pseudocode.

Each time NextObject is invoked, the data object p with highest
partial score τθ

i (p) is retrieved from RO
i , thus any unseen data ob-

ject p′ in RO
i has a smaller partial score than p (τθ

i (p
′) ≤ τθ

i (p)).
Therefore, we can compute an upper bound on the score τ(p) of
any data object p based on the highest partial scores τθ

i (p) of seen
data objects in each RO

i .
SFA employs an upper bound Ui on the score of any unseen

object in each heapHi. Also, for eachHi, a list Li of seen objects
is maintained. Moreover, each time an object p is retrieved from
Hi for the first time, p’s lower bound on score (p−) can be updated
using the aggregate function (in this case sum). In addition, SFA
maintains a list C of candidate data objects that may eventually
become top-k results. C is sorted based on descending lower bound
on score.

In each iteration (line 6), SFA selects one heap Hi (line 7) to
retrieve the next data object p (line 8). The upper bound Ui on
the score of Hi is set (line 9) based on p’s partial score τθ

i (p).
Then, if p has not been seen before in Hi, its lower bound p− is
updated based on the partial score τθ

i (p) and p is added to Li (lines
10-13). Notice that although p may be retrieved again from Hi,

96

Algorithm 2 SFA(MaxHeap H1, ..., Hc)

1: INPUT: HeapsHi containing the root of RO
i .

2: OUTPUT: Top-k spatial preference objects.
3: C ← ∅ // List of seen objects p sorted by lower bound on score p−

4: Li ← ∅ // List of seen objects p from heap Hi

5: Ui ←∞ // Upper bound on score for each heap Hi

6: while ∃Hi such thatHi 6= ∅ do
7: i← index of the next input
8: (p, t)← NextObject(Hi) // Next unseen object of Hi

9: Ui ← τθi (p)
10: if p 6∈ Li then
11: p− ← p− + τθi (p)
12: Li ← Li ∪ p
13: end if

14: if p 6∈ C then
15: C ← C ∪ p
16: end if
17: q ← C.peek() // Object with the best lower bound

18: max← max∀p∈C,p 6=q(p
− +

∑
∀j:p/∈Lj

Ui) // Upper bound

19: while q− ≥ max do
20: q ← C.pop()
21: report q as next top-k, halt if k objects have been reported
22: q ← C.peek() // Object with the best lower bound

23: max← max∀p∈C,p 6=q(p
− +

∑
∀j:p/∈Lj

Ui)

24: end while

25: end while
26: while fewer than k objects have been reported do
27: q ← C.pop()
28: report q as next top-k
29: end while

the maximum τθ
i (p) is encountered at the first time, because Hi

is accessed in descending order of score. In addition, p is added to
the listC of candidate objects (lines 14-16). Then, the upper bound
(denoted asmax) on the score of any object is computed in line 18.
We can safely report as next top-k result, any object q in the top of
the list C whose lower bound q− is greater than or equal to max
(lines 19-24). SFA continues in the same fashion, until k objects
have been reported, or until all heaps are exhausted. In the latter
case, if fewer than k objects have been reported, the objects in C
are returned based on the sorting of C (because the lower bound
now equals to the real score), until we have k objects (lines 26-29).

EXAMPLE 4. Assume a top-1 spatial preference range query

with radius r=2 posed on the indexes of Figure 4 and a plain

round-robin strategy for accessing the heaps. At the first itera-

tions, p3 and p1 are retrieved from H1 and H2 respectively, with

lower bounds on score p−3 =0.8 and p−1 =0.9, and C = {p1, p3}.
Since p−1 < max =1.7, SFA retrieves p2 from H1, and p−2 =0.6,
C = {p1, p3, p2} and max=1.5. Next, SFA retrieves p2 from H2,

p−2 =1.2 (which is also its real score) and C = {p2, p1, p3}. Now
the heaps are empty, because no other object satisfies the range

constraint r ≤ 2. Thus, SFA reports p2 as the top-1 object, since

p2 is located at the top ofC (has the highest lower bound on score).

The problem of combining partial scores for top-k spatial pref-
erence queries is similar to the problem of aggregating ranked in-
puts [5, 9]. For ease of presentation, we omitted from Algorithm 2
implementation details that result in reducing the number of data
objects in the list C and, therefore, also the required number of
comparisons (see [9]).

6. MATERIALIZATIONANDMAINTENANCE
SFA processes top-k spatial preference queries efficiently, when

each set of points SO
i is stored in an R-tree RO

i . The remaining

challenge is to compute efficiently and materialize the set SO
i in a

preprocessing phase and to maintain SO
i when updates occur. The

proofs of the theorems and the lemmas of this section can be found
in Appendix B.

Materialization. The straightforward approach for computing
the set SO

i is to combine each data object p ∈ O with each feature
object t ∈ Fi to produce pairs (p, t), and then execute a skyline
algorithm to compute the set Sp

i . This approach is equivalent to
first computing the entire set Mp

i and then computing its skyline,
which is prohibitively expensive for large datasets. An alternative
approach is for each data object p ∈ O and Fi to execute a dynamic
skyline query [12] on the dynamic coordinates d(p, t) and w(t), in
order to compute Sp

i . For each data object, some feature objects
can be pruned, but one dynamic skyline query is still required for
each data object. Hence, this approach also has a high I/O cost,
especially when the cardinality |O| of the object dataset is high.

Nevertheless, data objects that are close in space, i.e., their dis-
tance is small, have similar distances to any feature object. There-
fore, the skyline sets of such objects are also similar with high prob-
ability. In order to reduce the number of required dynamic skyline
queries (and, in consequence, the I/O cost induced by accessing
Fi), the data objects are partitioned into groups2, so that the dis-
tances of data objects that are in the same group are small. Then,
for each group of data points, a dynamic region skyline query is
posed (that will be defined in the following) and we will show that
the result set is a superset of all skyline sets of data points that be-
long to the group.

Let us assume a group of points and let the region λ be the mini-
mum bounding rectangle that encloses all data points of the group.
We denote as maxDist(λ, t) and minDist(λ, t) the maximum
and the minimum distance between t and any data object enclosed
in λ respectively. For the case that t is enclosed in λ, the minimum
distance is zero.

Definition 4. (Dynamic dominance based on region λ)A feature
object t ∈ Fi is said to dynamically dominate another feature ob-
ject t′ ∈ Fi based on region λ, ifmaxDist(λ, t) < minDist(λ, t′)
and w(t) ≥ w(t′), or if maxDist(λ, t) ≤ minDist(λ, t′) and
w(t) > w(t′). The dynamic region skyline set DRSλ

i of Fi is the
set of feature objects t ∈ Fi which are not dynamically dominated
by any other feature object t′ ∈ Fi based on region λ.

THEOREM 3. For any data point p ∈ O enclosed in region λ
and for any t ∈ Fi, it holds that if (p, t) ∈ Sp

i then t ∈ DRSλ
i .

Any skyline algorithm that supports dynamic skyline queries can
be easily adapted in order to compute the dynamic region skyline
DRSλ

i by modifying the dominance relationship. Thus, instead of
computing the set Sp

i for each data object p individually, we first
compute the set DRSλ

i for a region λ. Thereafter, for each data
object p enclosed in λ, the set Sp

i is computed by using only the
feature objects in DRSλ

i . The gain is that we compute the sky-
line sets Sp

i of all data objects enclosed in λ with a single query
on Fi, thus reducing I/O cost on Fi. Subsequently, the pairs (p, t)
in Sp

i are inserted in the R-tree RO
i ; each of them representing a

2-dimensional point with values d(p, t) and w(t). During the in-
sertion, the pair (p, t) in Sp

i with the smallest distance d(p, t) is
flagged, indicating that t is the nearest neighbor of p. The interme-
diate entries of RO

i that contain a nearest neighbor are also flagged
accordingly.

Even though any dynamic skyline algorithm and any grouping of
the data objects O are applicable for the computation of SO

i , in our

2The grouping of data objects can be performed by applying any
space partitioning technique [14] or spatial clustering algorithm [7].

97

implementation we use an adaptation of BBS [12] for the dynamic
region skyline query. Moreover, we partition the data objectsO into
groups based on the leaf node of the R-tree they belong to. The R-
tree is built on the spatial coordinates, thus the objects belonging to
the same leaf node tend to be close each other in the space.
In the following, we discuss the cost of the materialization. In [12],

the number of node accesses of BBS in worst-case is reported to be
s · h, where s is the number of skyline points3 and h the height of
the R-tree. The theoretical worst-case cost of our materialization is
|O|·si ·h (for the basic approach) or |λ|·si ·h (where |λ| denotes the
number of regions for the region skyline and si the average size of
Sp
i for p ∈ O). The space required by our materialization is s · |O|

for each feature dataset, and it is always bounded by |Fi| · |O|.
However, our experiments both with real and synthetic data clearly
demonstrate that these costs are significantly smaller in practice.
Maintenance. In the following, we discuss the issue of index

maintenance in the presence of insertions, deletions and updates of
data or feature objects. Insertions and deletions of a data object
p ∈ O are relatively straightforward and cost-efficient. When p is
inserted inO, each indexRO

i must be updated by inserting the sky-
line points Sp

i of the mappingMp
i of p based on Fi. If p is deleted,

any occurrence of p in an index RO
i must also be deleted. Updates

of the spatial location of p are handled as a deletion followed by an
insertion.
The most frequent maintenance operation is update of the score

of a feature object. Usually, the score of feature objects (e.g. user
ratings) change dynamically, in comparison to the spatial location
of a feature object which is more static. In practice, such updates
of score are expected to occur more often than updates of the geo-
graphic location. The challenge of handling updates of the score of
a feature object t ∈ Fi is that such an update can potentially affect
all materialized skyline sets SO

i . However, we show that we can
exploit useful properties of the mapping to distance-score space to
drastically reduce the cost of updates.
For ease of presentation, we first assume that all feature objects

t ∈ Fi have distinct score values. We will drop this restriction later.
We define a total ordering T of the feature objects t ∈ Fi based on
their scores w(t), such that t precedes t′ if w(t) > w(t′). The
following lemmas determine when an update of a feature object’s
score causes an update to the materialized skyline sets and, hence,
to the index RO

i .

LEMMA 1. Let t ∈ Fi denote a feature object whose score

w(t) is updated. If the ordering T of feature objects is not altered,

all materialized skylines Sp
i are valid ∀p ∈ O.

LEMMA 2. Let t ∈ Fi denote a feature object whose score

w(t) is updated, and let t′ ∈ Fi denote the only feature object

whose relative order with t changes in the ordering T of feature

objects. Then, ∀p ∈ O such that (p, t) /∈ Sp
i and (p, t′) /∈ Sp

i , the

skyline set Sp
i is still valid after the update.

A direct consequence of Lemma 2 is that an update of a feature
object’s t score only affects a limited number of points (pairs) in
SO
i . We call a basic update operation the update of RO

i based
on score of feature t whose relative order changes only with one
feature object t′ in T . For this basic update operation, any data
object p such that (p, t) ∈ Sp

i or (p, t′) ∈ Sp
i before the update,

has to be examined and tested if (p, t) ∈ Sp
i and (p, t′) ∈ Sp

i

after the update. Then, an arbitrary update of the score of a feature
object t can be supported by applying repeatedly the basic update
operation to consecutive feature objects in the ordering T , until the
correct ordering is obtained.

3We refer to [3, 18] for estimation models of skyline cardinality.

In the following, we drop the assumption of distinct values in
the scores of feature objects. Let us assume a set of feature objects
{t′j} ∈ Fi that have the same score w(t′j). If the score of one of
them (denoted as t) changes, we assume that the relative order of
t with all other feature objects t′j has changed, therefore we apply
repeatedly the basic update operation on the set {t′j}. Similarly, if
the updated score of a feature object t becomes equal to the score
of another feature object t′, we assume that the relative order of t
and t′ changed, and again apply the basic update operation.

Finally, the remaining challenge is to support efficiently inser-
tions and deletions of feature objects. Both operations can be sup-
ported by using the feature score update functionality. For the dele-
tion of feature object t, first the score is updated and the new score
is set equal to 0. Afterwards, all remaining tuples in RO

i that con-
tain t are deleted from the R-tree. Notice that these tuples cannot
dominate any other tuple ofMi and therefore, the resulting SO

i set
is valid. Similarly, for the insertion of a feature object t, the fea-
ture object is first inserted with a minimum value of score equal to
0. Then, t is in the skyline set only for data objects that have t as
the nearest feature object, compared to any other existing feature
object. In order to determine these data objects, a reverse nearest
neighbor query [8] on the indexes built on the spatial coordinates
can be performed. Alternatively, theRO

i index can be used in order
to retrieve all pairs that are flagged as nearest neighbor pairs. Then,
the distance between the data object and its nearest neighbor fea-
ture object is compared against the distance to t. If the distance to
t is smaller than the distance to the nearest feature object, then the
new pair is inserted and has to be flagged as nearest neighbor pair,
whereas the flag of the previous pair must be removed.

7. EXPERIMENTAL STUDY
In this section, we evaluate our proposed algorithm (SFA) and

we compare SFA against the algorithms developed by Yiu et al.

[16, 17], denoted as GP, BB, BB*, and FJ. All algorithms were
implemented in Java and executed on a PC with 3GHz Dual Core
AMD Processor with 2GB RAM. The datasets were indexed by an
R-tree (aR-tree for [16, 17]) with block size of 4KB. We used an
LRU memory buffer with a fixed size of 0.2% of the size of the
total number of objects stored in O and Fi. We report the average
values of 20 experiments, and in each experiment we recreate all
datasets and indexes to factor out the effects of randomization. In
all experiments, we measured the total execution time (referred to
as response time) and number of I/Os. All charts are plotted using
a logarithmic scale on the y-axis.

7.1 Experimental Settings
We conduct experiments using both synthetic and real datasets.

First, we perform experiments using uniform distribution (UN) for
the spatial locations of data and feature objects and for the score
of the feature objects (within the range [0, 1]). We also generate
a synthetic dataset (CN) that resembles the real world: (1) there
exist multiple city centers (centroids) with higher occurrences of
data objects, (2) there exists a higher probability of finding fea-
ture objects nearby the city centers (centroids). Appendix C.1 pro-
vides a detailed description of CN including a plot of a generated
dataset. We use the synthetic dataset (CN) as our default dataset.
By default, the non-spatial score of the feature objects is a uni-
formly generated value within the range [0, 1]. In addition, we
evaluate also score values that follow the exponential distribution
(Appendix C.3). In Appendix C, we provide a table that contains
the parameters and values used in the experimental evaluation, the
description and more experimental results of the real dataset, and
we evaluate the cost of materialization.

98

 10

 100

1K

10K

100K

1M

10M

 10 20 30 40 50
I/

O

Number of results (k)

GP
FJ

BB
BB*

SFA

(a) UN.

 10

 100

1K

10K

100K

1M

10M

 10 20 30 40 50

I/
O

Number of results (k)

GP
FJ

BB
BB*

SFA

(b) CN.

 10

 100

1K

10K

100K

1M

10M

 10 20 30 40 50

I/
O

Number of results (k)

GP
FJ

BB
BB*

SFA

(c) RL.

 0.001

 0.01

 0.1

 1

 10

 100

1K

10K

 10 20 30 40 50

T
im

e
 (

s
)

Number of results (k)

GP
FJ

BB
BB*

SFA

(d) UN.

 0.001

 0.01

 0.1

 1

 10

 100

1K

10K

 10 20 30 40 50

T
im

e
 (

s
)

Number of results (k)

GP
FJ

BB
BB*

SFA

(e) CN.

 0.001

 0.01

 0.1

 1

 10

 100

1K

10K

 10 20 30 40 50

T
im

e
 (

s
)

Number of results (k)

GP
FJ

BB
BB*

SFA

(f) RL.

Figure 5: Effect of different data distributions {UN,CN,RL} on I/O and response time (range score).

7.2 Query Processing Performance
Range Score. In Figure 5, we use our default setup and study the

number of I/Os and the response time for all datasets, while vary-
ing k. Figure 5(a) presents the I/O cost using the UN dataset. The
performance of GP is stable because it always computes the score
of all data objects. FJ requires a much higher number of I/Os, as
it needs to access many leaf entries of the feature R-trees in order
to report the correct top-k result set. The branch-and-bound algo-
rithms (BB and BB*) perform slightly better than GP for this setup.
However, SFA results in one order of magnitude fewer I/Os than the
best of its competitors. In Figure 5(b), we plot the number of I/Os
for the CN dataset. BB* performs better than GP, BB, and FJ due
to the employed pruning. However, SFA reduces even further the
number of required I/Os compared to BB* and scales better than
BB* for increasing value of k. In Figure 5(c), the I/O cost for the
real dataset (RL) is presented. Again, SFA outperforms all other al-
gorithms (in terms of I/Os) by at least one order of magnitude. This
experiment indicates that SFA performs efficiently for a wide range
of different datasets. Figures 5(d), 5(e) and 5(f) depict the response
time for the same experimental setups respectively. In general, we
observe that the gain of SFA compared to the other algorithms in
terms of response time is even higher than the gain in I/Os (be-
tween one and two orders of magnitude). The fast response time of
SFA indicates that SFA is suitable for applications involving Web
information systems, where the main challenge is to minimize the
response time for the user.
In the next experiment, we vary the number of features c and

evaluate the performance of our algorithm. SFA outperforms all
other algorithms both in terms of I/Os (Figure 6(a)) and response
time (Figure 6(b)). For a single feature dataset, SFA requires only
few I/Os in order to retrieve the top-10 objects. Also, notice that
SFA results in very small response time (under one second) even
in the case of c=5 feature datasets. On the other hand, FJ does not
scale with increasing values of c and has the worst performance of
all algorithms for higher values of c. In the following, due to space
limitations, we report only the response time, however we observed
that the relative trends in I/Os are similar.
In Figure 7, we vary different parameters and evaluate the re-

sponse time of queries with range score. Figure 7(a) depicts the
response time with varying radius r. SFA is always faster than all

 10

 100

1K

10K

100K

1M

10M

 1 2 3 4 5

I/
O

Number of feature datasets (c)

GP
FJ

BB
BB*

SFA

(a) I/O.

 0.001

 0.01

 0.1

 1

 10

 100

1K

10K

 1 2 3 4 5

T
im

e
 (

s
)

Number of feature datasets (c)

GP
FJ

BB
BB*

SFA

(b) Response time.

Figure 6: Effect of c on I/O and response time (range score).

other algorithms, irrespective of the value of radius. Notice that FJ
and BB* perform worse for small radius and improve their perfor-
mance with increasing radius until a certain point, because for very
small radius many objects (or combinations of feature objects) have
to be examined in order to identify an object with non-zero score,
which can then be used for pruning. This is because most objects
have zero score as there exist no feature objects in their neighbor-
hood. Next, we study the scalability of SFA by varying the cardi-
nality of the feature datasets |Fi| (Figure 7(b)) and the cardinality
of the object dataset |O| (Figure 7(c)). In Figure 7(b), we notice
that increasing |Fi| affects the performance of all algorithms, but
not SFA. The main reason is that increasing the size of |Fi| has a
small impact on the cardinality of skyline sets Sp

i . Since SFA ma-
terializes pairs that are not dominated, the number of such pairs is
not affected significantly by increasing |Fi|. In Figure 7(c), SFA
outperforms all algorithms, even though FJ is more stable with in-
creasing |O| than SFA. This is mainly because FJ is sensitive to the
cardinality of Fi and not to the size of O.

Influence Score. In the following, we evaluate the performance
of SFA for processing queries with influence score (Figure 8). We
compare our approach against BB and BB*, which support queries
with influence score. In Figure 8(a), we vary the number of features
c. Notice that computing queries with influence score is very costly
for BB and BB*. The main reason is that the influence score lim-
its the pruning capabilities of BB and BB*, therefore they have to
search a large area of the space for computing the score of the data
objects. SFA, on the contrary, accesses the data objects in decreas-
ing order of influence score, without any significant additional cost
compared to the range score. Thus, SFA is more than two orders of

99

 0.001

 0.01

 0.1

 1

 10

 100

1K

10K

 10 40 160 640 2560
T

im
e

 (
s
)

Radius (r)

GP
FJ

BB
BB*

SFA

(a) Varying radius r.

 0.001

 0.01

 0.1

 1

 10

 100

1K

10K

50K 100K 200K 400K 800K 1600K

T
im

e
 (

s
)

Cardinality of the feature dataset Fi

GP
FJ

BB
BB*

SFA

(b) Varying |Fi|.

 0.001

 0.01

 0.1

 1

 10

 100

1K

10K

50K 100K 200K 400K 800K 1600K

T
im

e
 (

s
)

Cardinality of the object dataset |O|

GP
FJ

BB
BB*

SFA

(c) Varying |O|.
Figure 7: Response time varying different parameters using the CN dataset (range score).

magnitude faster than its competitors. In Figure 8(b), we evaluate
the effect of varying k. All algorithms show stable performance for
varying k and SFA always performs best.
Nearest Neighbor Score. In Figure 9, we compare our ap-

proach against GP and BB algorithms for processing nearest neigh-
bor queries. There is no implementation of BB* for nearest neigh-
bor queries, and it is not trivial to adapt BB* for these queries.
In Figure 9(a), we evaluate the effect of increasing the number of
features c. Similar to other experiments where we evaluated the
impact of varying c, SFA performs more efficiently. In Figure 9(b),
we evaluate the effect of increasing values of k. Again, SFA is two
orders of magnitude better than BB and GP regardless of the exact
value of k.

 0.001

 0.01

 0.1

 1

 10

 100

1K

10K

 1 2 3 4 5

T
im

e
 (

s
)

Number of feature datasets (c)

BB BB* SFA

(a) Varying c.

 0.001

 0.01

 0.1

 1

 10

 100

1K

10K

 10 20 30 40 50

T
im

e
 (

s
)

Number of results (k)

BB BB* SFA

(b) Varying k.

Figure 8: Effect of c and k on response time (influence score).

 0.001

 0.01

 0.1

 1

 10

 100

1K

10K

 1 2 3 4 5

T
im

e
 (

s
)

Number of feature datasets (c)

GP BB SFA

(a) Varying c.

 0.001

 0.01

 0.1

 1

 10

 100

1K

10K

 10 20 30 40 50

T
im

e
 (

s
)

Number of results (k)

GP BB SFA

(b) Varying k.

Figure 9: Effect of c and k on response time (NN score).

8. CONCLUSIONS
In this paper, we present a novel approach for boosting the per-

formance of top-k spatial preference query processing. At the heart
of our framework lies a mapping of pairs of data and feature objects
to a distance-score space, which enables us to identify the minimal
subset of pairs necessary to answer any ranked spatial preference
query. By materializing this subset of pairs, we present efficient al-
gorithms for query processing that result in improved performance.
Furthermore, we describe an efficient algorithm for materialization
and elaborate on useful properties that reduce the cost of mainte-
nance. Our experimental evaluation demonstrates that our approach
reduces I/Os and response time by more than one order of mag-

nitude compared to the state-of-the-art algorithms in most of the
setups.

9. REFERENCES
[1] C. Böhm, B. C. Ooi, C. Plant, and Y. Yan. Efficiently processing

continuous k-nn queries on data streams. In Proc. of Int. Conf. on

Data Engineering (ICDE), pages 156–165, 2007.

[2] S. Börzsönyi, D. Kossmann, and K. Stocker. The skyline operator. In
Proc. of Int. Conf. on Data Engineering (ICDE), page 421430, 2001.

[3] S. Chaudhuri, N. N. Dalvi, and R. Kaushik. Robust cardinality and
cost estimation for skyline operator. In Proc. of Int. Conf. on Data

Engineering (ICDE), page 64, 2006.

[4] Y. Du, D. Zhang, and T. Xia. The Optimal-Location query. In Proc.

of the Int. Symposium on Spatial and Temporal Databases (SSTD),
pages 163–180, 2005.

[5] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms
for middleware. Journal of Computer and System Sciences,
66(4):614–656, 2003.

[6] A. Guttman. R-trees: a dynamic index structure for spatial searching.
In Proc. of the Int. Conf. on Management of Data (SIGMOD), pages
47–57, Boston, Massachusetts, 1984.

[7] J. Han, M. Kamber, and A. K. H. Tung. Spatial clustering methods in
data mining: A survey. Geographic Data Mining and Knowledge

Discovery, pages 1–29, 2001.

[8] F. Korn and S. Muthukrishnan. Influence sets based on reverse
nearest neighbor queries. In Proc. of the Int. Conf. on Management of

Data (SIGMOD), pages 201–212, 2000.

[9] N. Mamoulis, M. L. Yiu, K. H. Cheng, and D. W. Cheung. Efficient
top-k aggregation of ranked inputs. ACM Transactions on Database

Systems (TODS), 32(3):19, 2007.

[10] K. Mouratidis, S. Bakiras, and D. Papadias. Continuous monitoring
of top-k queries over sliding windows. In Proc. of the Int. Conf. on
Management of Data (SIGMOD), pages 635–646, 2006.

[11] D. Papadias, P. Kalnis, J. Zhang, and Y. Tao. Efficient OLAP
operations in spatial data warehouses. In Proc. of the Int. Symposium

on Advances in Spatial and Temporal Databases (SSTD), pages
443–459. Springer-Verlag, 2001.

[12] D. Papadias, Y. Tao, G. Fu, and B. Seeger. Progressive skyline
computation in database systems. ACM Transactions on Database

Systems (TODS), 30(1):41–82, 2005.

[13] E. Pekalska and R. P. W. Duin. Classifiers for dissimilarity-based
pattern recognition. In Proc. of Int. Conf. on Pattern Recognition

(ICPR), pages 2012–2016, 2000.

[14] H. Samet. The quadtree and related hierarchical data structures. ACM
Comput. Surv., 16(2):187–260, 1984.

[15] T. Xia, D. Zhang, E. Kanoulas, and Y. Du. On computing top-t most
influential spatial sites. In Proc. of the Int. Conf. on Very Large Data
Bases (VLDB), pages 946–957, 2005.

[16] M. L. Yiu, X. Dai, N. Mamoulis, and M. Vaitis. Top-k spatial
preference queries. In Proc. of Int. Conf. on Data Engineering

(ICDE), pages 1076–1085, 2007.

[17] M. L. Yiu, H. Lu, N. Mamoulis, and M. Vaitis. Ranking spatial data
by quality preferences. Transactions on Knowledge and Data

Engineering (TKDE), to appear.

[18] Z. Zhang, Y. Yang, R. Cai, D. Papadias, and A. K. H. Tung.
Kernel-based skyline cardinality estimation. In Proc. of the Int. Conf.
on Management of Data (SIGMOD), pages 509–522, 2009.

100

APPENDIX

A. STATE­OF­THE­ART ALGORITHMS
The state-of-the-art algorithms [16, 17] assume that the data ob-

jects p ∈ O are indexed in an R-treeRO based on spatial attributes.
The feature objects of each feature set are stored in a separate ag-
gregate R-tree (aR-tree) aRF

i also based on spatial attributes, and in
addition each entry of aRF

i stores the maximum non-spatial score
among all features t in its sub-tree. The aggregate R-tree enables
efficient computation of the partial score of a data object p based on
Fi. In the sequel, we present a summary of the existing competitor
algorithms.
Simple (SP) and Group (GP) Probing Algorithms. The Sim-

ple Probing (SP) algorithm computes the score of each data object
p and maintains the k data objects with highest score in a heap. The
Group Probing (GP) algorithm shares the same principles with SP,
but instead of computing the score of every data object p separately,
it computes the score of a set of objects V concurrently. The set V
is composed by all data objects that are in the same leaf-entry of
RO . GP reduces I/O by traversingRF

i only once for computing the
score of the set of objects V . However, GP still requires computing
the score of all objects p ∈ O before reporting the top-k objects.
Branch and Bound Algorithms (BB and BB*). The Branch

and Bound algorithm (BB) avoids computing the score of all ob-
jects p ∈ O by computing an upper-bound of the score for each
non-leaf entry e ofRO . Given an entry e ofRO , the upper bound of
the score based on Fi is computed by finding the level-1 entries e′

of aRF
i that satisfy the spatial constraint, and assigning as an upper

bound the highest score of the e′ entries. The entries whose upper-
bound is smaller than the score of the k-th object already found
are pruned. The optimized Branch and Bound algorithm (BB*) im-
proves BB by computing tighter upper-bounds of the scores. BB*
relies on the observation that the unknown partial score of an ob-
ject can be estimated more accurately by using the score of non-leaf
entries of aRF

i . Therefore, the feature trees aRF
i are accessed in

a round-robin fashion, resulting in concurrent traversal of all aRF
i .

The entries of each feature tree aRF
i are accessed in descending or-

der of non-spatial score. Thus, BB* computes tighter upper-bounds
of the score and identifies earlier than BB whether a data object can
be pruned.
Feature Join Algorithm (FJ). The Feature Join (FJ) algorithm

performs a multi-way spatial join on the feature trees aRF
i to obtain

combinations of feature points in the neighborhood of some object
p ∈ O. The feature combinations are examined in descending order
of their score and then data objects p ∈ O are retrieved that have
the corresponding feature combination in their neighborhood. In
order to compute efficiently feature combinations with high score,
FJ combines non-leaf entries of the feature trees aRF

i and prunes
combinations that either have a score that is smaller than the score
of the k-th data object already found or fail to satisfy the spatial
constraint (e.g. for range queries, the minimum distance d among
the entries is d ≤ 2r). If all entries of the highest score combi-
nation are leaf-entries, then the data objects p ∈ O in their spatial
neighborhood are retrieved, otherwise the non-leaf entry with the
highest score is expanded.

B. PROOFS
Proof of Theorem 1: For any spatial preference query, the set Sp

i

is sufficient to determine the partial score τθ
i (p) of a data object

p ∈ O.

PROOF. Range score: Let us assume that ∄(p, t) ∈ Sp
i such

that w(t)=max{w(t) | t ∈ Fi : d(p, t) ≤ r}. Then, ∃(p, t′) ∈

Mp
i such that w(t′)=max{w(t) | t ∈ Fi : d(p, t) ≤ r} and

(p, t′) /∈ Sp
i . Thus, ∃(p, t) ∈ Sp

i such that (p, t) ≺M (p, t′). This
is equivalent to d(p, t) ≤ d(p, t′) ≤ r and w(t) ≥ w(t′). Hence, t
fulfills the range constraint, and since w(t′) is the maximum score,
it means that w(t)=w(t′). This contradicts our assumption that
∄(p, t) ∈ Sp

i such that w(t)=max{w(t) | t ∈ Fi : d(p, t) ≤ r}.
Nearest neighbor score: Let us assume that ∄(p, t) ∈ Sp

i such

that w(t)=max{w(t) | t ∈ Fi, ∀v ∈ Fi : d(p, t) ≤ d(p, v)}.
Then, ∃(p, t′) ∈ Mp

i such that w(t′)=max{w(t) | t ∈ Fi, ∀v ∈
Fi : d(p, t) ≤ d(p, v)} and (p, t′) /∈ Sp

i . Thus, ∃(p, t) ∈ Sp
i

such that (p, t) ≺M (p, t′). This means that d(p, t) ≤ d(p, t′) and
since ∀v ∈ Fi : d(p, t′) ≤ d(p, v) it means that d(p, t)=d(p, t′).
Then, based on the dominance definition, w(t) ≥ w(t′) and since
w(t′) is the maximum score, it is a contradiction to the assumption
that ∄(p, t) ∈ Sp

i such that w(t)=max{w(t) | t ∈ Fi, ∀v ∈ Fi :
d(p, t) ≤ d(p, v)}.

Influence score: Let us assume that ∄(p, t) ∈ Sp
i such thatw(t)=

max{w(t) · 2−
d(p,t)

r | t ∈ Fi}. Then, ∃(p, t′) ∈ Mp
i such

that w(t′)=max{w(t) · 2−
d(p,t)

r | t ∈ Fi} and (p, t′) /∈ Sp
i .

Thus, ∃(p, t) ∈ Sp
i such that (p, t) ≺M (p, t′). This is equiv-

alent to d(p, t) ≤ d(p, t′) and w(t) ≥ w(t′). We derive that

w(t) · 2−
d(p,t)

r ≥ w(t′) · 2−
d(p,t′)

r . Since t′ has the maximum
influence score, it means that the influence scores of t and t′ are
equal. This contradicts our assumption that ∄(p, t) ∈ Sp

i such that

w(t)=max{w(t) · 2−
d(p,t)

r | t ∈ Fi}.
Proof of Theorem 2: Sp

i is the minimal set that is sufficient to

compute the partial score τθ
i (p) of a data object p ∈ O for all

spatial preference queries.

PROOF. It suffices to show that if any pair (p, t) is omitted from
Sp
i , there exists at least one query for which the partial score τ

θ
i (p)

of the data object p is not computed correctly. Let us assume that
(p, t) ∈ Sp

i denotes a pair that can be safely omitted from Sp
i .

Since (p, t) belongs to Sp
i , then ∄(p, t

′) such that (p, t′) ≺M (p, t).
Equivalently, ∄(p, t′) such that d(p, t′) ≤ d(p, t) and w(t′) >
w(t). Then, assuming a range query with radius r=d(p, t), the
partial score τrng

i (p) of p is equal to w(t), because there exists no
feature object t′ that satisfies the range constraint d(p, t′) ≤ r =
d(p, t) and has a higher non-spatial score w(t′) > w(t) than t.
Thus, we conclude that no pair (p, t) can be safely omitted from
Sp
i .

Proof of Theorem 3: For any data point p ∈ O enclosed in region

λ and for any t ∈ Fi, it holds that if (p, t) ∈ Sp
i then t ∈ DRSλ

i .

PROOF. Assume that ∃t ∈ Fi such that (p, t) ∈ Sp
i and that

t′ /∈ DRSλ
i . Then, ∃t′ ∈ Fi that dynamically dominates t based

on region λ. By definition, this means that it holds:
(1) maxDist(λ, t′) < minDist(λ, t) and w(t′) ≥ w(t), or (2)
maxDist(λ, t′) ≤ minDist(λ, t) and w(t′) > w(t). We know
that maxDist(λ, t′) is an upper bound for any distance d(p, t′),
hence d(p, t′) ≤ maxDist(λ, t′). Similarly, minDist(λ, t) is
a lower bound of any distance d(p, t), hence minDist(λ, t) ≤
d(p, t). Thus, in case (1) d(p, t′) < d(p, t) and in case (2) d(p, t′) ≤
d(p, t). In both cases, we derive that (p, t′) ≺M (p, t), which con-
tradicts to the assumption (p, t) ∈ Sp

i .

Proof of Lemma 1: Let t ∈ Fi denote a feature object whose score

w(t) is updated. If the ordering T of feature objects is not altered,

all materialized skylines Sp
i are valid ∀p ∈ O.

PROOF. Given any object p ∈ O and a feature object t′ 6= t,
the distances d(p, t) and d(p, t′) do not change due to the score up-
date. In addition, the order between scores w(t) and w(t′) does

101

y

x

Figure 10: CN data distribution.

not change, because the ordering T of the feature objects does
not change. Hence, the domination relationship between any pair
(p, t′) and (p, t) cannot change, thus all materialized skyline sets
Sp
i are valid ∀p ∈ O.

Proof of Lemma 2: Let t ∈ Fi denote a feature object whose score

w(t) is updated, and let t′ ∈ Fi denote the only feature object

whose relative order with t changes in the ordering T of feature

objects. Then, ∀p ∈ O such that (p, t) /∈ Sp
i and (p, t′) /∈ Sp

i , the

skyline set Sp
i is still valid after the update.

PROOF. Let p denote a data object, Sp
i its skyline with respect

to feature Fi before the update, and (p, t) /∈ Sp
i and (p, t′) /∈ Sp

i .
The proof will show that after the update, no pair (p, t) is added to
Sp
i and that no pair is removed from Sp

i . Since S
p
i does not contain

(p, t′), there exists a pair in Sp
i that dominated (p, t′) before and

still dominates (p, t′) after the update (because the update of t did
not influence their scores nor distances from p). Also, as Sp

i does
not contain (p, t), it follows that there existed a pair (p, t1) ∈ Sp

i

before the update of t that dominated (p, t). If the score w(t) of
t decreased, then obviously (p, t1) still dominates (p, t). On the
other hand, if w(t) increased, we know that it is now higher than
w(t′) only, since only the ordering of t and t′ changed in T . Hence,
the relative order of t1 and t in T does not change (neither do their
distances from p), thus the dominance relationship of (p, t) and
(p, t1) does not change. As a result, (p, t1) still dominates (p, t).
This proves that no pair (p, t) is added to Sp

i . Consequently, we
derive that no existing pair in Sp

i can be removed. This concludes
the proof.

C. DATASET DESCRIPTION AND MORE

EXPERIMENTAL RESULTS
Table 1 contains the parameters and values used in the experi-

mental evaluation. The default values are presented in bold.

Parameter Values

Data distribution UN, CN, RL
Cardinality of O (|O|) 50K, 100K, 200K, 400K, 800K, 1600K
Cardinality of Fi (|Fi|) 50K, 100K, 200K, 400K, 800K, 1600K
Number of results (k) 10, 20, 30, 40, 50
Number of features (c) 1, 2, 3, 4, 5
Query range (r) 10, 40, 160, 640, 2560

Table 1: Parameters and values used in the experiments.

C.1 Synthetic Dataset (CN)
The synthetic dataset (CN) is generated to resemble the real world.

First, we define a number of centroids (using 5 as default), where
the first centroid is positioned in the middle of the space and the
others are randomly positioned in [0, 10K]× [0, 10K]. We generate

 0.001

 0.01

 0.1

 1

 10

 100

1K

10K

 10 40 160 640 2560

T
im

e
 (

s
)

Radius (r)

GP
FJ

BB
BB*

SFA

(a) Range, varying radius r.

 0.001

 0.01

 0.1

 1

 10

 100

1K

10K

 10 20 30 40 50

T
im

e
 (

s
)

Number of results (k)

BB BB* SFA

(b) Influence, varying k.

 0.001

 0.01

 0.1

 1

 10

 100

1K

10K

 10 20 30 40 50

T
im

e
 (

s
)

Number of results (k)

GP BB SFA

(c) Nearest neighbor, varying k.

Figure 11: Response time for different query types on the real

dataset (RL).

the coordinates of a spatial object s (sx, sy) using random uniform
values, and reduce the distance between s and its nearest centroid
n (nx, ny) by a factor of g ∈ [0, 1]. Thus, the spatial location of
s is updated to (sx+(nx-sx)*(1-g), sy+(ny-sy)*(1-g)). A new
value of g is produced for each spatial object s. The value g is
obtained through the following formula g=min(|γ|, 1), where γ is
a randomly generated number that follows a Gaussian distribution
(µ=0.0 and σ2=0.2). Figure 10 depicts an example of a dataset that
follows the CN data distribution. The data objects O are repre-
sented by a cross mark, while the feature datasets F1 and F2 are
represented by white and black dots respectively.

C.2 Results on Real Data
The real dataset (RL) contains information obtained by a travel

portal website [17]. The object dataset O contains 11399 camp-
ing locations; the feature dataset F1 contains 30921 hotels, where
the non-spatial score is the room price; and the feature dataset F2

contains 3848 Wal-Mart stores, where the non-spatial score is the
gasoline supply. The points were normalized to [0, 10K]×[0, 10K],
and the non-spatial scores are normalized in [0, 1].

In Figure 11, we evaluate the comparative performance of SFA
on the real dataset (RL). Figure 11(a) presents the response time for
varying the radius r and queries using range score. SFA performs
efficiently and is one order of magnitude faster than the other ap-
proaches. Figure 11(b) depicts the response time for varying the
number of results k using the influence score. BB* performs better
than BB and terminates faster, due to its improved pruning. How-
ever, SFA outperforms BB and BB* by more than one order of
magnitude. Figure 11(c) shows the response time for varying num-
ber of results k using the nearest neighbor score. SFA processes
efficiently nearest neighbor queries and is two orders of magnitude
better than BB and GP.

C.3 Using Skewed Non­spatial Score Values
In the next experiment, instead of generating the score values

of the feature objects using a uniform distribution, we employ an
exponential distribution to evaluate the impact of the score distri-
bution on the performance of SFA. The exponential distribution of
scores captures the fact that in several applications the score distri-

102

 10

 100

1K

10K

100K

1M

10M

 0.5 1 1.5 2 2.5

I/
O

Rate parameter

GP
FJ

BB
BB*

SFA

(a) I/O.

 0.001

 0.01

 0.1

 1

 10

 100

1K

10K

 0.5 1 1.5 2 2.5

T
im

e
 (

s
)

Rate parameter

GP
FJ

BB
BB*

SFA

(b) Response time.

Figure 12: Effect of skewed score values.

1K

10K

100K

1M

10M

100M

UN. CN. WM. HT.

I/
O

Distributions

Basic
Region skyline

(a) I/Os for accessing Fi.

 0.001

 0.01

 0.1

 1

 10

 100

UN. CN. WM. HT.

T
im

e
 (

m
in

.)

Distributions

Basic
Region skyline

(b) Time for computing SO
i .

Figure 13: Cost of computing the SO
i set.

bution is usually skewed. In this case, only few feature objects have
high scores, while many feature objects have low score values. In
this experiment, we vary the rate parameter of the exponential dis-
tribution from 0.5 to 2.5. Low values of the rate parameter (i.e., 0.5)
indicate that many feature objects have high score values. In con-
trast, for higher values of the rate parameter, fewer feature objects
have high score values.
In Figure 12, we plot the I/Os and response time of all algo-

rithms for the skewed score distribution. First, in Figure 12(a), we
present the values of I/Os. Comparing to the results of Figure 5(b),
which correspond to uniform distribution, we observe that the use
of skewed non-spatial scores reduces the I/O cost of SFA and BB*.
However, SFA constantly outperforms all algorithms. In terms of
response time, in Figure 12(b), SFA is more than one order of mag-
nitude better than all other algorithms independently of the skew-
ness of the score distribution. In general, we observe that only
FJ improves slightly its response time for high values of the rate
parameter (≥ 2.0), while all other algorithms show similar perfor-
mance for all values of skewness.

C.4 Cost of Materialization
In this section, we evaluate the cost of materialization. First,

we evaluate the efficiency of the proposed dynamic region skyline
query for computing the SO

i set. In Figure 13, we compare the cost
of materialization using one dynamic skyline query for each data
object against the cost of using the dynamic region skyline query
(denoted Region skyline). The datasets O and Fi are indexed by R-
trees and the implementation of the dynamic (region) skyline query
relies on BBS [12]. Region skyline executes one dynamic region
skyline query Sλ

i for each leaf-entry (λ) of the R-tree on O and
then, uses Sλ

i for computing the skyline set Sp
i of any data object

p enclosed in λ. Figure 13(a) depicts the I/Os for accessing Fi

(the I/Os for accessing O are identical for both approaches). Re-
gion skyline reduces the I/Os by more than one order of magnitude
compared to Basic. In Figure 13(b), we compare the time for com-
puting SO

i . Region skyline is faster than Basic, which demonstrates
the efficiency of the employed dynamic region skyline query.

Dataset |O| |Fi| a|Sp
i | d|Sp

i |
Wal-Mart (WM) 11399 3848 1.98 0.58
Hotels (HT) 11399 30921 4.82 1.17

CN 100000 100000 11.26 2.97
UN 100000 100000 12.04 0.22

Table 2: Size of the set SO
i for different datasets.

100K

1M

10M

100M

1G

10G

UN. CN. RL.

S
iz

e
 (

b
y
te

s
)

Distributions

aR-tree SFA

(a) Size of the index.

 0.001

 0.01

 0.1

 1

 10

 100

UN. CN. RL.

T
im

e
 (

m
in

.)

Distributions

aR-tree SFA

(b) Construction time.

Figure 14: Materialization cost for different datasets.

Then, we study the size of set SO
i that needs to be indexed in

order to apply the SFA algorithm. Table 2 presents the average size
(a|Sp

i |) and the standard deviation (d|Sp
i |) of the dynamic skyline

set for different datasets. The size of the skyline set depends on
the data distribution and, as shown in Table 2, its average size is
always small compared to the size of Fi. The average skyline size
is smaller for CN than UN, because more feature objects with high
score values tend to be positioned near the centroids, which leads
to more dominated feature objects and reduces the average size of
the dynamic skyline set. In the case of the real datasets Wal-Mart
(WM) and Hotels (HT), the size of the skyline is influenced basi-
cally by the domain of the non-spatial score. Since the real dataset
has fewer discrete values, the dynamic skyline size is smaller.

In the next experiment (Figure 14), we examine the space over-
head and the overall construction time of SFA compared to the
materialization cost of the competitor algorithms that require ag-
gregate R-trees (aR-tree). Figure 14(a) compares the size of the
indexes for different data distributions. For the synthetic dataset,
we use c=3 features, while the real dataset has c=2 features, WM
and HT. The number of indexed objects for the SFA algorithm is∑c

i=1 |O| · a|Sp
i |, thus it depends on the cardinality of data ob-

jects |O| and the average skyline size a|Sp
i |. On the other hand,

the number of indexed objects for the competitor algorithms is
|O| + ∑c

i=1 |Fi|. Figure 14(a) shows that in the case of the real
datasets, the space overhead of SFA is very small in practice. In
the case of the synthetic datasets, the additional required space is
higher, however the significant performance gains of SFA at query
processing time clearly outweigh its space overhead. Figure 14(b)
depicts the overall time to construct the indexes required by each
algorithm. In the case of SFA, the construction time includes the
construction of the indexes (R-trees) that are required to process
the dynamic skyline queries, the computation time for the set SO

i

and the insertion time of SO
i in the R-tree RO

i . The competitor ap-
proaches (aR-tree) require only the insertion of the data points in
the object R-tree and the feature objects to the aggregate R-trees
aRF

i . Figure 14(b) shows that the construction time for SFA is in-
creased compared to aR-tree, but the construction of SFA is still
fast in practice. More importantly, the index construction cost is a
one-time cost, and is expected to be amortized quickly, when the
attained gain in the performance of query processing is considered.

103

 0.001

 0.01

 0.1

 1

 10

 100

UN. CN. RL.

T
im

e
 (

s
)

Distributions

aR-tree SFA

(a) Time.

 0

 0.05

 0.1

 0.15

 0.2

UN. CN. RL.

R
e

la
ti
v
e

 q
u

e
ry

/u
p

d
a

te
 r

a
ti
o

Distributions

(b) RQUR.

Figure 15: Cost of inserting data objects in different datasets.

 0.001

 0.01

 0.1

 1

 10

 100

0.5 1 1.5 2 2.5

T
im

e
 (

s
)

Rate parameter

aR-tree SFA

(a) Score update time.

 0

 0.5

 1

 1.5

 2

 0.5 1 1.5 2 2.5

R
e

la
ti
v
e

 q
u

e
ry

/u
p

d
a

te
 r

a
ti
o

Rate parameter

(b) RQUR for score update.

 0.001

 0.01

 0.1

 1

 10

 100

UN. CN. WM. HT.

T
im

e
 (

s
)

Distributions

aR-tree SFA

(c) Insertion time.

 0

 0.5

 1

 1.5

 2

UN. CN. WM. HT.

R
e

la
ti
v
e

 q
u

e
ry

/u
p

d
a

te
 r

a
ti
o

Distributions

(d) RQUR for insertion.

Figure 16: Cost of updating the non-spatial score and inserting

feature objects.

C.5 Cost of Maintenance
In the following, we evaluate the maintenance of the RO

i in-
dexes caused by insertions and updates of both data and feature
objects. We provide a comparison of the maintenance cost of SFA
to the competitor algorithms (aR-tree). To this end, we measure
the time required for performing the update, as well as the relative
query/update ratio (RQUR) that shows when the cost of our algo-
rithm is amortized compared to BB*. RQUR, defined as mS−mB

qB−qS
,

takes into account the maintenance cost of SFA (mS) and of BB*

(mB), as well as the query time of SFA (qS) and BB* (qB). We
use spatial preference range queries for computing the query cost.
RQUR shows the number of queries per update operation after
which SFA is faster than BB*. For instance, if RQUR is equal to x,
this means that when the query workload has more than x queries
per update, then it is more cost-efficient to use SFA.

In Figure 15, we evaluate the cost for inserting new data objects.
The insertion time is higher for SFA, as shown in Figure 15(a), but
it requires always less than one second. However, in Figure 15(b),
RQUR is always less than one, showing that even if the query work-
load has only one query per update, SFA is faster than BB* for all
datasets. Thus, even one query per update suffices to amortize the
cost of insertion of data objects.

Thereafter, in Figure 16, we evaluate the maintenance cost caused
by updates or insertions of feature objects. For the updates of fea-
ture objects, we update only the non-spatial score. In more details,
the new score is the old score increased by a random value that fol-
lows an exponential distribution. We vary the rate parameter of the
exponential distribution from 0.5 to 2.5. Small values of the rate
parameter lead to more feature objects with high changes of the
score.

In Figure 16(a), we depict the average update time for feature
objects. In general, updates of feature objects are more expensive
than insertions of data objects. However, as shown in Figure 16(b)
where RQUR is depicted, fewer than two queries per update suffice
to amortize the update cost of one feature object, even if the score
increases rapidly (rate parameter = 0.5). Thus, we conclude that
the additional cost for updating the score of feature objects is neg-
ligible, compared to the performance gain achieved during query
processing with SFA.

Finally, we evaluate the cost of insertion of new feature objects.
The spatial location and the score of the new feature objects follow
the initial data distribution of each dataset. Figure 16(c) depicts the
insertion time of a new feature object for different datasets. Again,
it is clear from Figure 16(d) that when the ratio of queries to up-
dates in the query workload is higher than two, SFA is more prof-
itable to employ than BB*. We conclude that the additional cost
of insertions for SFA is amortized fast over few queries, due to the
high efficiency of query processing of SFA. Notice that the inser-
tion time in our experiments is comparable to the update time, even
though it is expected that the insertion time is higher, since during
the insertion first the nearest neighbor tuples are retrieved and then
an update is performed. Nevertheless, in our experiments the scores
of the new feature objects are smaller than the updated score, thus
resulting in smaller update time.

104

