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ABSTRACT 
Database systems are the central information repositories for 
businesses and are subject to a wide array of policies, rules and 
requirements. The spectrum of business level constraints 
implemented within database systems has expanded from classical 
access control to include auditing, usage control, privacy 
management, and records retention. The lack of a systematic 
mechanism of integrating and reasoning about such a  diverse set 
of policies manifested as database level constraints makes 
corporate policy management a chaotic process.  

In this paper we propose a general purpose policy modeling and 
constraint management framework that can integrate numerous 
aspects of business level requirements within database systems. 
Our proposed solution relies on a finite state modeling language 
for business level policies, in which users can declaratively 
express rules related to the normal workflow of a business process 
as well as specifying any undesirable states of business objects 
contained in a database system. The proposed system is then able 
to translate these policies into low level temporal integrity 
constraints that prevent policy violations and ensure that business 
objects and artifacts follow their mandated lifecycles. A formal 
layer for reasoning allows policy makers to discover 
unenforceable and conflicting policies, providing the basis to 
guarantee compliance for a wide array of rules that may need to be 
enforced on complex business objects stored in relational database 
systems. 

1. INTRODUCTION 
Database systems are subject to a wide variety of continuously 
evolving constraints that originate from business level policies. 
However in the absence of a mechanism that bridges the gap 
between the database administrator’s view of the world 
(constraints, queries, and triggers) and the corporate policy 
officer’s view of the world (business rule, objects,  and workflow 
conditions) the management of a large number of rules imposed 
over a database system becomes extremely challenging. The end 
result is typically a complex web of integrity constraints and hand 
written triggers derived from business requirements imposed by 
different operational areas of the business [5][9]. 
The absence of a centralized policy and constraint management 
system within traditional database systems leads to several 
problems, the foremost being lack of transparency. With a large 

number of interdependent business rules and an equally large 
number of constraints in a database system, it becomes difficult to 
manage and audit whether the overall goals of a business policy 
are being met within the set of implemented constraints. Whether 
these constraints are functional dependencies or manually written 
triggers, it becomes extremely challenging to identify particular 
policy level objectives being accomplished by each one. 
Conversely, identifying the set of constraints that are relevant to a 
particular policy becomes equally difficult, and these hurdles can 
impose significant maintenance costs. Furthermore ad-hoc 
implementation of business policies can significantly reduce the 
overall manageability of the system. One of the goals of this work 
is to allow privileged users (enforcement officers who are not 
necessarily database administrators) to specify business level rules 
using a simple and easy to understand language and then 
automatically enforce the translated integrity constraints within 
the corporate relational database system. By decentralizing policy 
creation there exists the opportunity to reduce the management 
overhead imposed on a database administrator by removing the 
need to implement database level constraints manually.  
Most importantly, without a formal layer for reasoning with 
constraints, the set of policies for which compliance guarantees 
can be offered is very limited. Modern auditors can often demand 
a significant level of assurance (a meta-proof) that the claimed 
business policies are being executed and enforced at the database 
level. Satisfying the technically savvy auditor in such cases means 
more than simply demonstrating that there are no policy violations 
in the current database state. The focus of the modern process 
auditing techniques has shifted to verifying rules that are in place 
to ensure business policies are being met, and we believe that in 
the future it will be very likely that comprehensive process audits 
will include analyses of database level constraints. Classical 
integrity constraints have the shortcoming of being able to express 
only a very limited class of business rules, and more complex 
temporal business policies often force administrators to 
implement an intricate set of Event-Condition-Action (ECA) 
based rules. The increasing awareness of data legislation imposed 
on DBMSs and the need for reliable and provable enforcement 
methods naturally brings up questions regarding confluence, 
termination, and enforceability guarantees of these rules. 
Unfortunately analyzing and reasoning about hundreds of hand-
crafted triggers on various parts of the database is simply 
infeasible. 
The core contribution of this work is to show that a policy 
modeling framework can addresses the problems of transparency, 
manageability, and compliance when business rules are 
embedded within a database system as generalized constraints. As 
we shall discuss in Section 2, there are several modeling 
techniques for business policies that are currently being used. 
However none of these languages are able to reason at the 
implementation level and offer a mechanism that combines the 
work done in active rule processing with policy design and 
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constraint management. Our approach bridges this gap between 
the policy/business rule level and the database query/constraint 
level to present a framework that provides significant compliance 
guarantees over a broad class of business rules mapped as data 
level constraints. We show how to convert high level business 
workflows and object lifecycle restrictions into database level 
constraints and to use classical results to reason about their 
execution to detect run-time policy conflicts preemptively, 
allowing the policy administrator(s) the ability to minimize run-
time exceptions. 
The structure of the paper is as follows: In Section 2 we provide a 
comprehensive review of past literature on the topic of modeling 
policies in database systems and discuss why prior proposed 
models are unable to capture modern day business policy 
requirements. In Section 3 we present our own framework, and in 
Section 4 we demonstrate its extensibility and expressivity. 
Finally in Sections 5 we demonstrate how policies can be 
validated and checked for internal consistency, and in Section 6 
discuss the performance of the constraints derived from policy 
models of varying complexity.  

2. RELATED WORK 
Our work lies at the intersection of business policy modeling and 
database integrity constraints. Modeling of business rules within 
database systems has been examined in many contexts over the 
past four decades. We shall discuss in detail the published 
literature that directly addresses our problem and provide only a 
general overview of the various topics that touch on policy and 
constraint management in databases. The techniques proposed for 
rule modeling can be classified into purely logic based models, 
purely graphical models, and hybrid models. The overall objective 
of policy modeling is to have a representation of business policy 
that is both easy to visualize and easy to implement. 

The most well known technique for expressing simple business 
rules within relational systems is via physical design restrictions. 
UML and ER diagrams provide users with the ability to embed 
domain and integrity constraints to cater for many operational and 
storage level assertions. However, with the solidification of the 
SQL-3 standard for triggers and the prevalence of complex Event-
Condition-Action (ECA) style rules being used in the policy 
modeling community, triggers and assertions have seen 
widespread adoption as a mechanism to enforce business rules 
[5][16]. Cochrane et al. [9] provide a detailed description of how 
triggers are implemented, and their work summarizes the trigger 
related features offered by most commercial DBMSs. It is 
interesting to note that, even if not explicitly employed by 
administrators, triggers are still widely used constructs, often 
transparently placed by a database system to monitor integrity 
violations and for the incremental maintenance of materialized 
views. Specific contributions for the many active rule systems 
such as Ariel, Starburst, SAMOS, HiPAC and ODE are too 
detailed to enumerate in this paper. A comprehensive survey of 
trigger based rule systems, and their specific termination, 
confluence and determinism properties is available [17]. In short, 
the theoretical foundations for the analysis of rule systems and 
triggers within database systems are well grounded, and their use 
in policy and assertion monitoring is ever more popular. 

Graphical modeling of rules has seen significant interest from the 
software engineering and business policy modeling communities. 

UML (Unified Modeling Language) is commonly used for 
modeling objects as well as relational databases. It has recently 
been extended to include the Object Constraint Language [22] by 
which simple constraints on objects can be specified. However the 
actual enforcement of these constraints is left to the 
implementation. Demuth et al. [11]  have proposed an extension 
to OCL for automatic translation of object level constraints in the 
modeling language to database level triggers, provided “object-to-
table” mappings are available. Badaway and Richta [4] presented 
a similar technique and Zimbrão et al. proposed a mechanism  for 
translating OCL constraint to SQL assertion [21]. Tanaka et al. 
took a slightly different approach to graphical modeling, 
introducing an extension to entity-relationship modeling (ER2

[14]

) 
that allows users to use diagrams to model events related to 
entities and conditions under which these events can take place 

[19]. 

Constraints on objects in the above models are inseparable from 
the notion of object invariants (universally true statements for all 
business objects of a specific type) and can rarely capture 
complex policies. Specifically, policies that involve temporal 
constructs, or repetitive application of rules, can neither be 
modeled by nor translated into implementation specific actions 
using these techniques. Because of their static nature, these 
modeling languages do not store the state of an object nor keep 
track of the history of past occurrences of a rule being applied. 
For a example, consider an object called “employee” with an 
integer valued property called “salary” and a constraint that states 
that an employee’s salary can only be increased by a maximum of 
10% in any increment. While this policy itself can be 
implemented via a simple constraint and can be modeled well, a 
more complex policy stating that an “employee’s salary cannot 
increase by more than 25% over any three consecutive 
increments” cannot be modeled in a language that does not 
represent intermediate states of individual objects (employees) 
between rule applications.  

The intent of currently proposed modeling techniques is to offer a 
simplified world view of business rules for the database 
programmer and the policy designer. However if a graphical 
modeling language is not capable of expressing constraints of a 
reasonable complexity or does not support a direct 
implementation path in a database system, then its usability is 
seriously diminished. When examining proposed graphical 
models in the context of relational database systems, it becomes 
apparent that unless the rules being modeled are extremely simple 
and straightforward (in terms of “object-to-table” mappings 
[4][11]), high level modeling does not make the task of writing 
and implementing triggers and database level constraints any 
simpler. Instead the simplification is usually for the benefit of 
business policy administrators, who are able to get a bird’s eye 
view of the system design. The benefits of such models are largely 
superficial for the database programmers, who still have to 
determine how the constraints can be implemented and manually 
attempt to simplify and combine them for efficiency and 
manageability. Furthermore the notion of “objects” in ECA rule 
modeling does not acknowledge that relational objects might not 
always be easily identifiable in a database and that a data model 
used to describe business rules might not be accurately 
represented by an optimized (normalized) database schema. 
Consequently it is unclear whether these techniques have seen any 
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adoption by database administrators and how well these model 
work in practice. 

The apparent difference between the world view of business 
policy makers and database administrators has received very little 
mention in the database community. In our prior work we have 
observed that complex business records, such as invoices and 
sales reports, are often viewed as objects by policy makers, but the 
data contained therein may reflect the execution of a complex set 
of queries involving temporal parameters [2]. Consequently any 
reasonably powerful policy modeling system that is able to 
express constraints over business records stored in a database 
should be aware of not only the underlying database schema but 
also the actual data definitions and the queries used to generate 
these records. Research related to artifact centric process 
modeling has only recently attempted to integrate policy modeling 
and implementation [15][12].  Our work does not directly concern 
itself with an underlying business process that modifies the 
contents of a database but is similar in spirit, and it provides a 
complete implementation path for integrity constraints described 
on artifacts as arbitrary relational views. 

There is clearly a tradeoff between low level specifications and 
higher level models; the closer a rule model is to lower level 
database constructs such as queries, integrity constraints, and 
triggers, the more straightforward it is to deploy; and a model that 
is more abstract will generally be ambiguous but easier for policy 
makers to create, exchange, and comprehend. In this paper we 
propose a modeling language that strikes a balance in this 
spectrum, with its goal being seamless automatic generation of 
database level ECA constraints as well as ease of use for policy 
administrators. Our contribution is not to offer yet another rule 
modeling language. The tens of business process modeling 
techniques such as state transition diagrams, flowcharts, data flow 
modeling, and work flow modeling are sufficiently adequate in 
their own context. However because of the lack of a modeling 
language that uses database constructs, we have proposed a model 
and graphical semantics for translating business level workflow to 
database (object) level workflows [3]. In this paper our aim is to 
demonstrate how workflow level restrictions (paths in business 
processes and data objects lifecycles) can be translated, 
implemented, and optimized over a relational database system 
using first order temporal integrity constraints. Our notion of 
policy is critically dependent on the state of an object and is 
fundamentally different from a traditional object level constraint 
as considered in prior work. While we offer graphical semantics 
for modeling, we emphasize that these can easily be adopted and 
integrated into any generic modeling language with support for 
database systems or object level modeling.  

3. POLICY MODELING CONSTRUCTS 
In order to circumvent the problem of establishing “object-to-
table mappings” [11] our model requires policy level objects and 
artifacts to be declaratively defined on the underlying database 
schema. More specifically, policy relevant business objects can 
only be defined as a logical mapping, that is, a business object in 
our model is defined as a tuple in a relational view over a database 
with a fixed schema. This is the fundamental difference between 
UML/OCL modeling and our proposed framework in that we 
adopt a bottom up approach in modeling constraints using 
database level constructs.  We rely on expert users, specifically 

those familiar with the business and the relational database 
schema, to identify records of interest as views within a corporate 
RDMBS. Although relational views could also be used to 
accomplish many other policy relevant goals, for instance to 
identify complex business artifacts [10][17], we consider the term 
“view” and the term “object-definition” to be the same and 
interchangeable.  

The examples we use in this paper will be of simple relational 
views that capture one distinct object per tuple. However we must 
emphasize that the enforcement model can capture policies 
revolving around any business object, multiple objects, a 
complete process, or more generally a business artifact (see 
Appendix D for details). 

3.1 Relational Objects and Object States  
For the remainder of this paper we will consider a relational view 
very much like a UML object definition that defines a particular 
type of object (its attributes and data types). Tuples contained in 
the view will be called “objects” of that particular type. A state is 
identified by a label assigned to a condition on the attributes of an 
object definition. An object belongs to a particular labeled state if 
its attributes satisfy the condition associated with the state. In 
general the state of an object is dependent on the particular 
assignment of its attributes. For example let us say x is an object 
of type V or equivalently x = (a1,a2…an) ∈ V, where V is a view 
over our database schema; then for a labeled state S with its 
appropriate conditional function, if S(a1,a2,…an

For a particular object definition V, S

) is true then x is 
said to be in state S. To simplify our notation we will consider 
S(x) as the boolean result (true or false) of applying the state 
condition to the attributes of the object x.  

V = {SV1,SV2…,SVn}is the 
set of all user-defined states for tuples in V. In essence each of the 
SV1 through is SVn can be considered a function that returns a 
true/false value for any object of type V. At any given point in 
time an object may belong to multiple labeled states if it satisfies 
more than one of these state conditionals. To quickly determine to 
which states an object x of type V belongs, we will denote the 
state configuration of x, SC(x) to be a canonically ordered binary 
string of length |SV|. A zero at position i in the state configuration 
of an object x implies that SVi(x) is false and that the object does 
not belong to state SVi. Similarly a one at position i in the state 
configuration of an object x implies that SVi(x) is true and that the 
object belongs to state SVi. Note that a state configuration of all 
zeros does not imply that the object does not exist but rather that 
it is in none of the user specified states SV

A state change for an object refers to a change in one of the state 
conditions. Since a single update may change the results of 
several conditionals, an object can leave and enter many states 
between two consecutive timestamps. Thus a state change is 
generally evident by the state configuration of an object at two 
consecutive timestamps being unequal. A policy in our model is a 
(multi) state restriction or path constraint on the sequence of state 
changes that we will show to be equivalent to a temporal integrity 
constraint modeled in past temporal logic 

. Such a state 
configuration implies that the object is not currently constrained 
by any policy relevant to the users of the system.  

[18]. Rule execution 
(state transition monitoring) for policy enforcement is done on a 
tuple-by-tuple (object) basis, and database transactions that lead 
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to undesirable sequence of state changes for tuples/objects are 
rejected.  

3.1.1 Example 
Let us say a business user defines the following view to capture a 
typical business object (an invoice) in a database system: 
Invoice = (INV_ID, CREATE_DATE, PAID, AMOUNT, 
PAID_DATE, LATE_FEE) 
The user further defines two states, one to signify an invoice being 
paid together with its corresponding function S1:  PAID = true, 
and a second to represent invoices that are high valued with its 
state function S2: AMOUNT > 1000. The flexibility of our model 
allows many users to work concurrently to define states that they 
require for policy based decision making. For example a different 
user could independently define a state with a more complex 
conditional function such as S3

This abstraction allows us to reason about the policy-relevant 
conditions that an object meets at a particular point in time 
without being concerned with the actual attributes values. 
Assuming that the above S

: DateDifference(now - 
CREATE_DATE) < 7 to capture the condition of a invoice being 
created recently (i.e, within the past 7 days). 

1, S2 and S3 are the only states defined 
system-wide for policy modeling on invoices, a tuple in the view 
with the state configuration of (0,1,1) denotes a recently created, 
unpaid invoice with an amount greater than $1000. Moving from 
state configuration (0,1,1) at timestamp t1 to (1,1,1) at timestamp 
t2

[8]

, is an event that  signifies the payment of a low valued invoice 
within seven days of its creation. For this three-state scenario it 
may be helpful for readers familiar with formal verification and 
model checking  to visualize changes in the state configuration 
as a temporally ordered changes in the state space denoted by a set 
of triples{(0,0,0),…,(1,1,1)}. 
In our model events can be logical (simple passage of time, for 
example, without any change to the underlying data) or user-
initiated physical modifications to the data. Policies are 
considered to be multipath restrictions specified in linear temporal 
logic (LTL) over the state configuration space. The reader should 
observe that there is duality between the state configuration 
changes and how a business object evolves over its lifespan and, 
in a given workflow, the business level interpretation of a 
particular state configuration change is implicitly provided by the 
state conditionals.  

3.2 Data and Constraint Model 
To support the modeling of process-centric temporal integrity 
constraints, we consider a model of data where the history of 
every policy-relevant object is maintained by the system and 
accessible for decision making. This is a standard assumption in 
situations where the decision to reject/allow updates (integrity 
checking) requires the examination of past attribute values of an 
object. To explain our modeling language better, we make the 
simplifying assumption that instead of a typical audit trail 
x t=(t,a1,a2…an), where each ai represents an attribute of the 
object at time t, we will instead view the audit trail for objects as 
x t=(t, SC(x t

We present a diagrammatic method of specifying constraints over 
business objects, however there is a strict one-to-one 
correspondence between state transitions in our models and 
logical implications (assertions) specified in first order temporal 
logic of the past over the state configuration history of objects. To 
explain our model we rely on two classical temporal operators 

)). More specifically, instead of being concerned with 
the attribute values that an object held at a particular time stamp, 
we will only be concerned with the list of states that the object 
belongs to at a particular point in time. This simplified view of the 
audit trail of the object will be called the state configuration 
history. 

[18]: 
 
1. Previously (●): If A is a first order temporal formula then ●A 

is true at time t > 0 if and only if, A is true at time t-1 

2. Sometime in the past (♦): If A is a first order temporal 
formula then ♦A is true at time t if and only if, there exists a 
time k < t, when A was true 

Before we fully establish the duality between state transitions and 
integrity constraints specified in first order temporal logic 
(FOTLICs) let us build an example that uses our framework and 
demonstrates its usability.  

3.3 Example 
A business penalizes customers for late payments on their 
invoices, and an invoice is considered late if it is not paid within 
30 days of being created. A company policy dictates that 
payments are only accepted in full, and if a payment for an 
invoice is received late, a late fee is recorded on the invoice and 
carried forward. The accounting department of the company 
requires the deletion of paid invoices that were created more than 
seven years ago, but the customer relations department wants to 
ensure that details of invoices that were paid late by customers are 
never deleted.   

3.4 Modeling Constructs 
We will use the definition of the invoice object as discussed 
earlier in Section 3.1. A state NewAndUnpaid can be defined as 
“DateDifference(now – CREATE_DATE) < 30 AND PAID = 
false”. Observe that the state is simply a testing condition and an 
invoice object belongs to this state if satisfies the given condition. 
Also note that we require policy makers to define for us both the 
business object as a view and all the policy relevant states as 
conditions using the attributes of the view. By having both object 
definitions and necessary conditions to identify objects present in 
particular states we can subsequently tie state transitions together 
as restrictions between how an object is (or is not) allowed to 
progress in a given workflow. 

Table 1: Basic set of state transitions and temporal assertions. 
State Representation Logical Restriction 

A B
 

Exit Restriction 
(●A(x)  ⋀ ¬A(x)) ⇒ B(x) 

A B
 

Entry Restriction 
(B(x)  ⋀ ¬●B(x)) ⇒●A(x) 

A B
 

Never Eventually 
Transition 

♦A(x) ⇒ ¬B(x) 

A
 

Disallow Exit 
●A(x) ⇒ A(x) 

 

924



As a simple example, consider a state “paid” with its associated 
condition “PAID = true”. A business level constraint that requires 
that once an invoice is paid, it cannot be “unpaid” is essentially 
equivalent to the temporal assertion ●paid(x) ⇒ paid(x), which 
requires that if an object was in the paid state in the prior 
timestamp, it must also be paid in the current timestamp. In a 
typical ECA based system, for every update to the object this 
assertion must hold true. If this assertion is violated the 
transaction updating the object is rejected and rolled back. 
To cover all aspects of an object’s lifecycle a special state ϕ is 
introduced to signify moving to/from “nothingness”. Transitions 
from ϕ to any state S refer to insertions in the view such that the 
newly inserted objects satisfy the state conditional of S. 
Symmetrically, transitions to ϕ from any state can be considered 
deletions (removal from the view). Although ϕ can be considered 
as a “null state configuration,” it is different from a state 
configuration containing all zeros: an object in state ϕ does not 
exist, whereas an object with an all-zero state configuration does 
exist, but it does not meet the conditions to be in any user defined 
state. To start, we propose four state oriented constraints in Table 
1 with their logical temporal assertions shown alongside. 
Using these transitions and appropriately defined states, a policy 
maker can easily create a diagram that depicts the policy 
objectives presented in Section 3.3. Figure 1 attempts to do so and 
capture the business requirements for the previously described 
invoice management scenario. We have included three states in 
addition to the previously defined NewAndUnpaid and established 
five basic restrictions among them. The model presented in Figure 
1 is simply a means of restricting how an object can behave 
during different stages in its lifecycle. The logical interpretation of 
constraint 1 is that all newly created objects must satisfy the 
condition to be in the NewandUnpaid state. Observe that this 
interpretation only has meaning in the context of the given view. 
The reader is reminded that a new row becoming part of a view 
may not always correspond to a new object being physically 
created in the system. That correspondence is strictly dependent 
on the view (object) definition. Constraint 5 requires that once an 
object reaches the PaidLate state, it must never be removed from 
the view.  Any transaction that attempts to remove (from the view) 
an object that has reached this state in the past is rejected. 
Constraints 2,3 and 4 are much simpler in that they restrict the 
arrival of an object in a particular state to specific states in the 
immediately preceding timestamp. Such constraints lay out a strict 
path that an object must follow in its workflow. 
Every constraint diagram can be broken down to a set of temporal 
implications between the conditions specified by the states. For 

example, constraint 2, which mandates that all invoices that begin 
to satisfy the PaidOnTime condition must in the immediately 
preceeding timestamp have been satisfying the NewandUnpaid  
condition. We can easily find a template in Table 1 to provide a 
logical representation of the constraint as: PaidOnTime (x)  ⋀ ¬● 
PaidOnTime (x) ⇒ ●NewandUnpaid(x). Each of the implications 
is of the form precondition(x) ⇒ postcondition(x) and there is 
clearly no need for a single administrator to define every object 
and/or state conditions in a single diagram. For example to 
accomplish the final retention objectives of our scenario a 
different policy maker could separately draw out a single 
restriction as shown in Figure 2 to ensure that any record is to 
leave the view if it was either never paid or paid more than 7 years 
ago. Finally we note that because of the bijection between first 
order temporal integrity constraints and logical restriction in the 
graphical model, users can also see their constraint diagrams as a 
simple list of their temporal assertions of the form precondition(x) 
⇒ postcondition(x) specified over the state configuration of the 
object. 
The choice of viewing all state oriented restrictions and detailed 
state conditions on an object definition in a single diagram, as 
separate graph components, or as a list of logical assertions in first 
order temporal logic is left to the user, and the ability to change 
from one to the other is a strength of the model. From an 
operational perspective, we believe, that not only will policy 
makers benefit from a company-wide unified definition of 
business objects in a relational database, but also that such 
definitions already exist within high level corporate workflows. 
Business users are generally aware of the necessary conditions for 
objects to be in particular states and can independently map 
complex workflows that are pertinent to their business functions.  
Whether they choose to focus on a particular path in the corporate 
level object workflow to model or the association between two 
arbitrary states depends largely on what policy objectives they are 
trying to accomplish. 

3.5 Multipath policy restrictions 
In our examples an invoice can be in multiple states at the same 
point in time. Specifically an invoice in the 
LegacyPaidorNeverPaid state (Figure 2) can also satisfy the 
conditions associated with the state LateandUnpaid (Figure 1).  
As a consequence objects can traverse multiple conceptual 
lifecycles at the same time, allowing multiple workflow paths to 
be simultaneously traversed if necessitated by policy level 
requirements. This complicates the enforcement model 
conceptually in that when an object in states START = {SS1, 
SS2,…SSn} moves atomically (in a single time stamp) to states 
END = {ES1, ES2,…ESn}, then all transitional paths traversed 
between these states (START × END, the cross product of these 
states) are subject to policy rules and restrictions implied by all 
models in which these states were defined. However the most 
significant benefit of this approach is the added flexibility for any 
policy maker to define his or her policy independently from other 
users of the system.   

LateAndUnpaid

DATE_DIFF (NOW – 
CREATE_DATE, days) ≥ 30 AND

PAID_FLAG = FALSE

NewAndUnpaid 

DATE_DIFF (NOW – 
CREATE_DATE, days) < 30 AND

PAID_FLAG = FALSE

PaidOnTime

LATE_FEE = 0 AND
PAID_FLAG = TRUE AND 

DATE_DIFF (NOW – 
CREATE_DATE, years) < 7ϕ

PaidLate

DATE_DIFF (NOW – 
CREATE_DATE, days) ≥30

AND LATE FEE > 0 AND
PAID_FLAG = TRUE

1 2

3

4
5

 
Figure 1: A constraint diagram where each transition specifies a 

logical temporal assertion between two states of an object. 

LegacyPaidorNeverPaid
DATE_DIFF (NOW – 

CREATE_DATE, years) ≥ 7 OR
PAID = FALSE

ϕ
 

Figure 2: A constraint diagram where and object is only allowed to 
be removed from the view if it was in the specified state. 
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3.6 Enforceability 
A classical problem associated with temporal integrity is that of 
enforceability. In general, forcing a temporal function to remain 
constant over time is not possible, and the use of temporal logic 
brings the risk of introducing policies that may not be enforceable. 
For example, let us say that a user has defined a state condition 
that returns true for all invoices created in the last seven days. In 
general any newly created invoice will only stay in this state for 
seven days. Therefore whether we want it or not, by simple 
passage of time, an invoice created today will no longer be in that 
state seven days later. Consequently attempts to prevent 
transitioning out of this state are not enforceable.  In our work we 
focus on implementing only enforceable policies against user 
initiated transactions and provide a brief discussion of detecting 
non-enforceable policies in Section 5.  

4. Modeling Complex Workflows 
Given that we have established a mechanism by which simple 
state oriented restrictions can be tied together by FOTLICs, we 
introduce a few extensions to this model that demonstrate its 
expressivity. We shall shortly see that these extensions are by no 
means definitive or limiting, and users are virtually free to model 
any arbitrary temporal formula that they wish to use for 
constraining an object’s lifecycle. 

4.1 Path Constraints and Sub-formulas 

A common requirement in enforcing workflow policies is that of 
specifying conditional paths that require a sequence of events to 
happen. For example consider the constraint, “an object should 
never reach state C, if it has sometime in the past reached state B 
from state A.”  
Graphically we propose that this be modeled as generalizing a 
transition into a state. Observe that transitions, as introduced in 
Table 1, are rules specified on how objects must change. However 
we can also consider these rules as requirements that must have 
happened in the past to make other rules. Consider constraint (2) 
in Figure 3 as an example. It uses constraint (1), B(x)  ⋀ ¬●B(x) 
⇒●A(x), as a sub-formula to specify a conditional constraint that 
essentially requires that if the transition from A to B took place 
for an object in the past, then that object should then never reach 
state C. More formally (2) specifies the following temporal 
assertion: 

♦(B(x)  ⋀ ¬●B(x) ⇒●A(x)) ⇒ ¬C(x) 

This elegance of FOTLICs allows the use of a conditional 
assertion as a sub-condition to create larger more complex 
assertions and to repeat the process as many times as necessary to 
create conditional paths in policies or workflows.  

4.2 Exploiting Auditing Meta-data 
In most databases where audit trails of business records are being 
maintained, there is also significant auditing related transactional 
meta-data that is kept alongside. This metadata can include 
information about the user who initiated the update, the purpose 

and the context of the transaction that changed the database 
contents. Consequently object-level audit trails can usually be 
viewed as more robust event logs that not only contain the 
attribute values of the object being modified but several additional 
attributes pertaining to the transaction itself: 
x t= (timstamp,a1,a2…an

An example of the benefits of transactional meta-data being 
available for policy-level decision making is that we can model 
constraints that require conditional access control based on 
specific workflow paths being traversed by an object. Consider an 
example of a policy, in which an invoice can only be modified to 
be in the paid state by a user who belongs to the finance user 
group, and only so, if it has previously been marked as approved 
for payment by an employee in the admin user group.  

, user, user_group, purpose, 
application_context, transaction_type, txn_starttime …)  

Traditional modeling of such a business rule would require 
significant transaction and/or application level logic to be 
implemented. However, by using our model all a policy maker 
would have to do is to modify the state conditions such that they 
include restrictions on the transaction related meta-data to 
accomplish their objectives. For example he or she could easily 
redefine the state “paid” and add the additional constraint that the 
user group of the user moving an object to this state must be 
finance as an additional condition to being in that state.  
Modeling access temporal control at the business work-flow level 
has significant advantages as it allows complex access control 
conditions (and sub-conditions as exemplified in Section 4.1) to 
be very easily understood by policy makers. Furthermore our 
framework provides a direct implementation path for such 
workflow based access control requirements by modeling them to 
traditional integrity constraints specified on the object meta-data 
trail. The implementation still enforces what can be considered a 
classical temporal integrity constraint, by rejecting a transaction 
that does not comply with the assertions derived from our model, 
but the end result would accomplish the objectives of conditional 
or workflow based access control modeling. 

5. Conflict Detection and Policy Optimization 

 
Using FOTLICs as the logical representation for enforcement of 
business level policies allows us to reduce policy verification and 
validation to well known problems related to static query analysis. 
For example, let us say that (for some reason) the condition 
specified by a policy maker that defines state S is not satisfiable. 
Consequently there cannot exist an object x that satisfies S(x), 
thereby making the state redundant and all related constraints 
removable from the system of derived logical assertions. 
Since the graphical model and its logical representation have a 
strict one-to-one correspondence, any reasoning that can be 
applied to first order temporal formulas, can also be reflected in 
the graphical model and vice versa. Consider the graphical 
constraint model presented in Figure 4. Constraint (1) specifies 

A B C
1 2

 
Figure 4: An indirectly specified containment restriction. 

A B
1

2
 

Figure 5: Temporal inconsistency (dead end). 

A B C
1

2  
Figure 3: Constraint 1 being used as a “state” or a condition that 

needs to have happened in the passed. 
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the assertion that B(x)  ⋀ ¬●B(x) ⇒●A(x), while constraint (2) 
specifies the assertion ●C(x)  ⋀ ¬C(x) ⇒ B(x). If we analyze these 
implications we come to the conclusion that an object that leaves 
state C must arrive in state B and any object that arrives in state B 
must have previously been in state A, and therefore, objects in 
state B must have previously been in both state A and state C at 
the same time. If the analysis of the conditions of A and C shows 
otherwise (for example that A ∩ C = ϕ) then we have an error in 
the form of a logical inconsistency, that makes state B 
unreachable, and it should be reported to the policy maker.  
Another example is presented in Figure 5, where constraint (1) 
mandates that all objects in A when exiting the state must reach 
state B, ●A(x) ⇒ B(x), and (2) specifies that after reaching state A, 
an object should never reach state B, B(x) ⇒ ¬♦A(x). By chaining 
the implications we get, ●A(x) ⇒ ¬

Two important observations about logical reasoning that concern 
business level policy modeling need to be made here. First we 
note that it is unlikely that any single policy maker will make 
egregious modeling errors such as the ones described above. This 
is because each individual constraint diagram will most likely be a 
mapping of a business process that does not suffer from these 
problems. However as constraint diagrams from various policy 
makers are merged together to create a final implementation 
model (set of logical assertions), the need to resolve such conflicts 
by automated reasoning is ever present. Furthermore there are 
significant avenues of optimization through eliminating and 
combining constraints derived by different policy makers in a 
business to ensure the resulting set of assertions being continually 
checked in a database system is minimal. 

♦A(x), which itself is an 
inconsistent temporal formula and represents a dead end in the 
workflow for the object if it ever reaches state A. In general such 
inconsistencies are typically the result of badly designed or 
conflicting policy requirements.  

Second, we note that our ability to reason over these logical 
constraints is directly restricted by the view (object) definitions 
and their query complexity, as well as the domains over which 
these queries are specified. For arbitrary queries and state 
conditions, the problems of determining containment, closure, and 
intersection are well known to be undecideable. However we 
believe that a significant number of business object definitions 
will involve the use of simple conjunctive queries. Logical 
analysis of assertions in these situations will not only be a 
tractable problem but will also lead to significant optimization 
and reduction of the number of constraints that need to be 
checked per transaction. A complete discussion of the 
computational cost and tools available to optimize a given set of 
assertions in first order logic is beyond the scope of this paper. 
However it is important to note that this optimization is a one-
time cost and needs to be incurred only when a new constraint is 
introduced in the system.  
We conclude by reminding the reader that our objective in this 
section was to demonstrate the one-to-one correspondence 
between logical constraints and the proposed graphical framework 
for modeling business processes. Analysis of first order formulas 
can not only lead to conflict detection and implementation level 
optimizations but also graphical simplifications in the model 
(collapsing, removal, and separation of states) that may not be 
obvious when a large number of constraint from various sources 
are integrated.  

6. Implementation and Performance 
6.1 Generating ECA rules 
The lack of direct support for temporal integrity constraints within 
commercial database systems invariably requires that such 
constraints be implemented as active rules or triggers. The most 
widely cited reference implementation of first order temporal 
integrity constraints implemented as SQL triggers, that reject 
(roll-back) transactions if a first order temporal integrity 
constraint is not met, was presented by Chomicki and Toman [7]. 
The work introduced the use of result memoization for complex 
formulas, through storing the results of sub-formulas, to check 
past temporal integrity constraints in O(1) time and avoid 
examining the entire history of an object. 
The class of past temporal restrictions that our graphical 
framework model generates falls within the class of temporal 
integrity constraints that Chomicki and Toman showed to be 
preservable in O(1) time at an extra space cost of O(f) where f is 
the length of the formula involved (see Appendix A for details). 
Recall that in our model we viewed the object’s history as a time-
stamped sequence of binary strings (state configurations), and 
each entry at position i of a state configuration, denoted by a zero 
or one whether an object belonged to state Si

6.2 Performance Analysis 

 at a given time or 
not. If we consider this historical view of the state transitions 
made by an object to be readily available for querying, and treat 
each temporal assertions specified by the model as a query, then 
checking the validity of the assertion is simply a matter of 
comparing two bit strings representing the previous and the 
current (to be committed) state configurations of an object, every 
time it is updated. In fact any implementation of temporal 
integrity constraints will very closely resemble the check-
constraint functionality provided by modern DBMS systems 
where the actual constraint is specified over the state transition 
history of the object type being modified.  

Due to space restrictions we offer only a summary of our test 
results in this section and invite the reader to see Appendix B for 
a comprehensive examination of the various costs associated with 
temporal integrity constraints derived using our model in 
synthetically created business scenarios of varying complexity. 
The overhead of implementing integrity constraints derived from 
our model can be split into space and computational costs. In our 
tests we were able to demonstrate that for typical business objects, 
specifically invoices as specified by the TPC-H benchmark, the 
worst case cost of storing and maintaining a state transition 
history has virtually no impact in a high-update transactional 
database. Even in the most extreme case business workflows with 
1024 distinct states, the additional overhead of storing the state 
configuration alongside the audit trail was minimal. This is simply 
because the size of a 1024 bit state configuration history pales in 
comparison to the size of typical business objects that contain 
large text/comment fields. As for the computational costs, a 
system that already incurs the cost of additional disk writes while 
maintaining an audit trail will incur a comparatively insignificant 
cost of performing 1024 in-memory arithmetic/string operations 
(such as status = “paid”) that determine the current/new state 
configuration to be stored alongside the audit trail. 
Finally we note that there may be situations where a database 
system cannot tolerate even the most insignificant of performance 
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penalties (storage or computations).  Our framework can still be 
used to audit the database periodically by running the audit logs 
(i.e. creating the state transition history) over a copy of the 
database and verifying it over the set of constraints generated by a 
model written by an auditor. This process would essentially 
simulate the states explored by each business object in the system 
and identify violations that have taken place since the last full 
audit of the system. Although this method cannot prevent invalid 
transitions (because they were already executed), the core benefit 
in this would be that of making the process of business process 
auditing much simpler and it offers the possibility of simulating 
the results of a change in business policy before constraints are 
actively enforced. 

7. Conclusion 
In this paper we presented a policy framework for database 
systems that relies on modeling temporal integrity constraints as 
relationships between states contained in a business level 
workflow. Our methodology resembles that of model checking 
and formal verification by examining how business objects 
change over time through state transitions. The most significant 
benefit of our framework is that it allows policy makers to map 
out their corporate workflows for business objects stored in 
relational systems and seamlessly implement constraints to 
enforce their process centric requirements.  
Our objective was to demonstrate through the use of examples, 
how assertions specified in first order temporal logic can be 
applied to a graphical representation of a state oriented business 
workflow. Policy enforcers may extend this model by introducing 
generalized temporal operators reflecting their preferred 
interpretation of state transition restrictions while still maintaining 
a direct path to efficient implementation of integrity constraint 
monitoring triggers. Most importantly by using our framework 
businesses can seamlessly convert their existing object lifecycles 
and workflows diagrams, that may involve temporal and 
conditional access control requirements, into database level 
constraint with very little effort. It is because of this extensibility, 
expressivity, and ease of use provided by our framework that we 
believe that it can used effectively to mitigate the problems 
associated with management of business policy within database 
systems. 
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Appendix A  
Equivalence of queries, constraints and 
assertions 
Constraints specified in first order logic over a set of attributes 
can be written in several different ways. The methodology 
adopted in [6] is that of specifying a negated existential formula 
of the form: ¬ (∃x) (formula(x)), or simply that there should not 
exist an object x in the relation that satisfies formula(x). Checking 
this constraint is simply a matter of executing a query to find 
tuples that satisfy formula(x). If a transaction takes a database into 
a state where there exists a tuple x such that formula(x) is true, 
then the transaction should be rejected. 
In our model we consider constraints on business objects of the 
form: precondition_formula(x) ⇒ postcondition_formula(x), or 
simply that all objects which satisfy the precondition must also 
satisfy the given post condition. Formally we can write the 
constraint as:  

(∀x) precondition_formula(x) ⇒ postcondition_formula(x) 
and subsequently rewrite the implication as a disjunction: 

(∀x)  postcondition_formula(x)   ∨ ¬ precondition_formula(x) 
Finally we can negate the disjunction and write the original 
assertion as a negated existential formula: 
¬ (∃x) ¬ (postcondition_formula(x)  ∨ ¬ precondition_formula(x)) 

¬ (∃x) ¬ postcondition_formula(x)  ⋀  precondition_formula(x) 

Consequently any assertion derived from our model over the state 
configuration history has a direct path to execution as a SQL 
query for integrity constraint checking.  

Alternative interpretations to reaching a state 
In our work we are proposing an extensible approach to constraint 
modeling for relational objects. If a designer’s view of the 
implication (formula) imposed by our interpretation of a graphical 
construct is different from ous, then s/he is free to create new 
constructs for the specific needs of a business scneario. Our work 
establishes a formal equivalence between graphical construct 
(such as a double-headed arrow) and logical temporal assertion. 
The modeling language can itself be easily extended: as any 
number of new graphical constructs can be introduced provided 
they translate into well defined logical formulas on the state 
conditionals. 
 

 
 
 For example, to introduce the temporal constraint specifying “if 
A(x) is true then always in the past B(x) must also have been 
true”, one could choose the arrow style and interpretation shown 
in Figure 6. Since an object can be in many different states at the 
same time users can create complex temporal formulas via 
graphical constructs that involve multiple states. To keep our 
presentation simple, by not introducing tens and possibly 
hundreds of different arrows, we restrict ourselves to a few 

constructs that translate to essential restrictions for business 
processes moving towards a conclusion. 

Appendix B 
Performance Analysis and Testing 
Observe that in our framework business objects are defined as 
views that may not be physically materialized. However, 
maintenance of a materialized object state configuration history, 
can easily be bootstrapped on top of the database auditing 
framework which itself is often implemented as a set of triggers 
on base tables. Whether the actual state configuration history is 
independently materialized or separate components of it are 
appended to base tables is an implementation level choice. In 
general when an object changes and an audit log needs to be 
written, the state configuration at that point in time can be 
calculated and appended alongside the audit record in the relevant 
base tables or as an independent materialized view. 
There are two sources of overhead that are imposed by 
maintaining a complete state configuration history. Foremost is 
the trade-off between space and time, that is, the design decision 
to store the complete history or to recreate it from the audit logs of 
objects whenever needed. Our tests show that in most 
transactional databases in which real-time constraints need to be 
enforced, the space overhead incurred by materializing a state 
configuration history alongside the audit trail of an object is 
negligible. We considered the business definition of a Purchase 
Order as specified in the TPC-H benchmark to guide our tests. We 
tested against business scenarios of varying complexity by 
considering corporate workflow (pertaining to a single object) of 
size 128 states, 512 states and 1024 states. We utilized TPC-H 
databases of sizes 1GB and 10GB, on an Intel Core 2 Duo based 
machine with 4GB RAM running Microsoft SQL Server 2008. 

Storage Overhead 
Although having 1024 states in a corporate workflow pertaining 
to a single object is very unlikely, it does represent a plausible 
upper bound on the number of states that may need to be 
maintained in a state configuration history. Observe that the state 
configuration history is a very compact representation of an 
object’s membership in all user defined states. Even in the worst 
case, 1024 true/false results are essentially 1024 bits of 
information (128 bytes), and this is still less space than a text-
based comment field associated with a typical object such as a 
purchase order (144 character/byte comment field in the TPC-H 
specifications). Furthermore we believe that since TPC-H is a 
synthetic performance benchmark, the size of an invoice or line 
item row in the TPC-H benchmark is an extremely conservative 
representation of real life business objects and their storage 
requirements, especially in the presence of large text fields. 
Consequently having a corporate workflow of 1024 independent 
states with no conditional variables common in any of them 
represents an extreme case that will perhaps never be encountered 
in real life situations. 
Our tests showed that in the presence of row level auditing, 
appending an additional binary field of up-to 1024 bits to the line 
item audit trail, causes no performance degradation for random 
updates. Our objective was to test whether a system under a 
transactional load (high-update situation) is stressed by the 
additional overhead of writing the state configuration alongside 

A B
 

Figure 6: “A implies always in the past B”, with its logical 
interpretation as A(x)⇒ ■B(x) or equivalently as A(x)⇒ ¬♦¬B(x). 
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the audit trail. The transactional cost associated with committing 
an update including the state configuration history to an object 
was not significantly different (statistically), from the baseline 
cost of simply writing the audit log.  
The rationale behind there being no additional cost is as follows. 
A random update to a row in the line item table causes at most 
two pages to be physically committed to disk, one for the actual 
modification to the row and another for writing the audit trail in a 
separate auditing table. As long as the state configuration can be 
accommodated within the same page as the object, the cost of 
writing this page will not increase. Thus we argue that, even for 
the most complex workflows, the state configuration can be stored 
efficiently and is relatively small compared to the size of the 
actual object such that there will be no additional storage costs 
(other than space) incurred by database systems in practical policy 
situations.  

Computational Overhead 
For each transaction that modifies an object, our framework 
requires that the new state configuration of the object be 
calculated, and then compared against the old state configuration 
to ensure that all specified constraints are being met. We 
anticipate that in most business situations where states for 
business level policy conditions share common variables, we will 
not have to incur the cost of checking each and every state 
conditional independently. For example, consider a workflow for 
invoices with two states called, paid and not_paid, with the 
conditions, paid = true and paid = false respectively. Observe 
that we only need to check one of these condition to conclude the 
state configuration for both states. In business situations where a 
large number of states exist in the policy model, it is very likely 
that many of them will share the same variables, and thus 
checking whether an object belongs to several states may be 
accomplished much more quickly than performing the test for 
each condition independently. Similarly while the state 
configuration is being computed we can simultaneously check 
whether a particular constraint is violated or not and prune the 
space of constraints that need to be checked dynamically. 
Nonetheless, in our tests, we took a pessimistic stance by 
assuming that there are no avenues of optimization available for 
us to exploit. 
We now summarize the results of the tests conducted to measure 
the computational overhead of dealing with varying numbers of 
constraints in a policy model. We noted earlier that there are many 
mechanisms present in database systems that can be used to 
monitor the implications of an update such as check constraints on 
base tables, triggers, assertions, and even check constraints on 
materialized views. Our objective in this section is to provide a 

reference for comparing the practical computational costs of two 
of these possible techniques in light of a varying number of 
assertions specified in first order temporal logic.   
For our tests we utilized various degrees of workflow complexity: 
0 states (to represent no computational overhead as a measure of 
baseline costs), 128 states, 512 states and 1024 states. Adding an 
extra state essentially means an additional (synthetically designed) 
check to see whether an object belongs to that state or not in 
addition to a fixed overhead of checking whether a constraint has 
been violated or not. These checks were designed to simulate 
traditional business level string and arithmetic comparisons (such 
as “status = paid”, “shipcode = ‘M’ ” or “amount > 0”) that a 
system will be expected to do to determine an object’s presence in 
each state. These tests were performed sequentially and the results 
of being present in one state provided no information to determine 
whether the object will (or will not) be present in any other state.  
Not surprisingly the cost per arithmetic/string operation within an 
SQL trigger is significantly higher when compared to an external 
more efficiently written program in a language such as C++. 
Consequently a plain brute force approach of performing a large 
number of state related checks within an SQL trigger is not the 
recommended approach for a high performance database system. 
Figure 7 shows a comparison of the cost incurred when increasing 
the number of states in a workflow from 0 to 1024. Although most 
organizational workflows will be in 0-128 state range, it is still 
less expensive to perform these computations as part of an 
efficient non-SQL memory resident procedure. In the case of 
Microsoft SQL Server 2008 this functionality is provided by the 
ability to execute a pre-compiled DLL (extended stored 
procedure) and most major database systems offer comparable 
features for executing external programs. Importantly, when such 
an approach is adopted there is no discernable increase in the time 
to test 1024 states than to perform no tests at all. 

Appendix C 
Maintaining Temporal State Configuration 
Histories 
During the interval between two consecutive committed audit 
entries with timestamps ta and tb, where ta < tb, an object stored 
on disk consistently retains the last committed values (of those at 
ta

To elaborate the above problem in detail, let us consider an object 
x that is being updated at time t

). Given that timestamps are of finite length (not a dense 
domain), it is possible to iterate through all intermediate 
timestamps and recalculate all intermediate state configurations 
using the last committed attribute values of an object. Although 
not very practical, it is possible in general to detect intermediate 
state changes caused by the passage of time at the time where a 
new object value is being committed. Therefore we can essentially 
use a brute force method to solve the problem of phantom state 
changes. Note that these “hidden” or implicit points of state 
configuration changes (in our example the point in time when the 
state of an invoice changes from NEW to NOT NEW) need only 
be discovered once, and can subsequently be made persistent for 
efficient monitoring of constraints.   

b and assume that the last 
committed state configuration history entry for the object, SC(x,t), 
was at time ta. We need to ensure that all intermediate state 
configuration changes are known to us so that we can enforce the 
path restrictions specified in the model. Note that for all 
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timestamps i where, ta < i < tb-1, we know that the object was 
unchanged (still xa) and therefore we can calculate all 
intermediate state configurations SC(x i,t i) because they will be 
equivalent to SC(xa,t i) and recreate a full extended object history 
if necessary. However the key points of interested in the range 
will be where a state configuration change takes place, that is, 
where SC(xa,t i) ≠ SC(xa,t i+1

In practice we do not need to explore the entire temporal state 
space between two timestamp values to find these points of 
interest (points where logical state changes took place) but only 
need to examine the history at the granularity/timeframe of the 
policy being enforced, which would typically be in the order of 
days or weeks for most business policies. In fact for most cases, 
the time at which the logical state change will occur can be pre-
determined or scheduled by an analysis of the state conditional 
specified by the user. The only significant negative consequence 
of delaying identifying intermediate logical changes in the state 
configuration until an object is being physically updated is that 
potential violations will not be found at the earliest possible 
timestamp. 

).  

Appendix D 
Business Records and Views 
Business records (objects or artifacts) are essentially collections of 
data involved in any business process. In our model, we define 

records on which policies need to be enacted as relational views. 
The abstraction of views provides the flexibility to not only 
identify typical business objects like invoices and purchase orders 
but also business artifacts that may not be considered objects in 
the traditional sense, for example a view that computes a single 
value denoting "the total sales of a company in the past 24 hours" 
can also easily be declared for enforcing a policy. 
With the expressive power of SQL we can build views that can 
aggregate and group data across multiple traditional objects (even 
the entire database) and literally "view" the data in such a way that 
a policy oriented yes-or-no decision to allow a transaction can be 
made based on specific values in that view. A view can represent 
an object, multiple objects, a process in progress or as shown 
above a single data item relevant to a policy maker. Consequently 
we consider the notion of view to be all-encompassing and argue 
that views relevant to policy making will resemble what have been 
referred to in the literature as "business artifacts" [10]. Business 
records such as invoices, expense claims and sales reports 
typically have an intuitive meaning for managers and everyday 
users. Similarly workflows associated with these objects often 
already exist and can easily be converted into constraint diagrams 
to implement meaningful integrity constraints over the entire 
workflow of the object [3].                                              
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