
Business Policy Modeling and Enforcement in Databases
Ahmed A. Ataullah and Frank Wm. Tompa

David R. Cheriton School of Computer Science
University of Waterloo, Ontario, Canada

{aataulla, fwtompa}@cs.uwaterloo.ca

ABSTRACT
Database systems are the central information repositories for
businesses and are subject to a wide array of policies, rules and
requirements. The spectrum of business level constraints
implemented within database systems has expanded from classical
access control to include auditing, usage control, privacy
management, and records retention. The lack of a systematic
mechanism of integrating and reasoning about such a diverse set
of policies manifested as database level constraints makes
corporate policy management a chaotic process.

In this paper we propose a general purpose policy modeling and
constraint management framework that can integrate numerous
aspects of business level requirements within database systems.
Our proposed solution relies on a finite state modeling language
for business level policies, in which users can declaratively
express rules related to the normal workflow of a business process
as well as specifying any undesirable states of business objects
contained in a database system. The proposed system is then able
to translate these policies into low level temporal integrity
constraints that prevent policy violations and ensure that business
objects and artifacts follow their mandated lifecycles. A formal
layer for reasoning allows policy makers to discover
unenforceable and conflicting policies, providing the basis to
guarantee compliance for a wide array of rules that may need to be
enforced on complex business objects stored in relational database
systems.

1. INTRODUCTION
Database systems are subject to a wide variety of continuously
evolving constraints that originate from business level policies.
However in the absence of a mechanism that bridges the gap
between the database administrator’s view of the world
(constraints, queries, and triggers) and the corporate policy
officer’s view of the world (business rule, objects, and workflow
conditions) the management of a large number of rules imposed
over a database system becomes extremely challenging. The end
result is typically a complex web of integrity constraints and hand
written triggers derived from business requirements imposed by
different operational areas of the business [5][9].
The absence of a centralized policy and constraint management
system within traditional database systems leads to several
problems, the foremost being lack of transparency. With a large

number of interdependent business rules and an equally large
number of constraints in a database system, it becomes difficult to
manage and audit whether the overall goals of a business policy
are being met within the set of implemented constraints. Whether
these constraints are functional dependencies or manually written
triggers, it becomes extremely challenging to identify particular
policy level objectives being accomplished by each one.
Conversely, identifying the set of constraints that are relevant to a
particular policy becomes equally difficult, and these hurdles can
impose significant maintenance costs. Furthermore ad-hoc
implementation of business policies can significantly reduce the
overall manageability of the system. One of the goals of this work
is to allow privileged users (enforcement officers who are not
necessarily database administrators) to specify business level rules
using a simple and easy to understand language and then
automatically enforce the translated integrity constraints within
the corporate relational database system. By decentralizing policy
creation there exists the opportunity to reduce the management
overhead imposed on a database administrator by removing the
need to implement database level constraints manually.
Most importantly, without a formal layer for reasoning with
constraints, the set of policies for which compliance guarantees
can be offered is very limited. Modern auditors can often demand
a significant level of assurance (a meta-proof) that the claimed
business policies are being executed and enforced at the database
level. Satisfying the technically savvy auditor in such cases means
more than simply demonstrating that there are no policy violations
in the current database state. The focus of the modern process
auditing techniques has shifted to verifying rules that are in place
to ensure business policies are being met, and we believe that in
the future it will be very likely that comprehensive process audits
will include analyses of database level constraints. Classical
integrity constraints have the shortcoming of being able to express
only a very limited class of business rules, and more complex
temporal business policies often force administrators to
implement an intricate set of Event-Condition-Action (ECA)
based rules. The increasing awareness of data legislation imposed
on DBMSs and the need for reliable and provable enforcement
methods naturally brings up questions regarding confluence,
termination, and enforceability guarantees of these rules.
Unfortunately analyzing and reasoning about hundreds of hand-
crafted triggers on various parts of the database is simply
infeasible.
The core contribution of this work is to show that a policy
modeling framework can addresses the problems of transparency,
manageability, and compliance when business rules are
embedded within a database system as generalized constraints. As
we shall discuss in Section 2, there are several modeling
techniques for business policies that are currently being used.
However none of these languages are able to reason at the
implementation level and offer a mechanism that combines the
work done in active rule processing with policy design and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 37th International Conference on Very Large Data Bases,
August 29th - September 3rd 2011, Seattle, Washington.
Proceedings of the VLDB Endowment, Vol. 4, No. 11
Copyright 2011 VLDB Endowment 2150-8097/11/08... $ 10.00.

921

constraint management. Our approach bridges this gap between
the policy/business rule level and the database query/constraint
level to present a framework that provides significant compliance
guarantees over a broad class of business rules mapped as data
level constraints. We show how to convert high level business
workflows and object lifecycle restrictions into database level
constraints and to use classical results to reason about their
execution to detect run-time policy conflicts preemptively,
allowing the policy administrator(s) the ability to minimize run-
time exceptions.
The structure of the paper is as follows: In Section 2 we provide a
comprehensive review of past literature on the topic of modeling
policies in database systems and discuss why prior proposed
models are unable to capture modern day business policy
requirements. In Section 3 we present our own framework, and in
Section 4 we demonstrate its extensibility and expressivity.
Finally in Sections 5 we demonstrate how policies can be
validated and checked for internal consistency, and in Section 6
discuss the performance of the constraints derived from policy
models of varying complexity.

2. RELATED WORK
Our work lies at the intersection of business policy modeling and
database integrity constraints. Modeling of business rules within
database systems has been examined in many contexts over the
past four decades. We shall discuss in detail the published
literature that directly addresses our problem and provide only a
general overview of the various topics that touch on policy and
constraint management in databases. The techniques proposed for
rule modeling can be classified into purely logic based models,
purely graphical models, and hybrid models. The overall objective
of policy modeling is to have a representation of business policy
that is both easy to visualize and easy to implement.

The most well known technique for expressing simple business
rules within relational systems is via physical design restrictions.
UML and ER diagrams provide users with the ability to embed
domain and integrity constraints to cater for many operational and
storage level assertions. However, with the solidification of the
SQL-3 standard for triggers and the prevalence of complex Event-
Condition-Action (ECA) style rules being used in the policy
modeling community, triggers and assertions have seen
widespread adoption as a mechanism to enforce business rules
[5][16]. Cochrane et al. [9] provide a detailed description of how
triggers are implemented, and their work summarizes the trigger
related features offered by most commercial DBMSs. It is
interesting to note that, even if not explicitly employed by
administrators, triggers are still widely used constructs, often
transparently placed by a database system to monitor integrity
violations and for the incremental maintenance of materialized
views. Specific contributions for the many active rule systems
such as Ariel, Starburst, SAMOS, HiPAC and ODE are too
detailed to enumerate in this paper. A comprehensive survey of
trigger based rule systems, and their specific termination,
confluence and determinism properties is available [17]. In short,
the theoretical foundations for the analysis of rule systems and
triggers within database systems are well grounded, and their use
in policy and assertion monitoring is ever more popular.

Graphical modeling of rules has seen significant interest from the
software engineering and business policy modeling communities.

UML (Unified Modeling Language) is commonly used for
modeling objects as well as relational databases. It has recently
been extended to include the Object Constraint Language [22] by
which simple constraints on objects can be specified. However the
actual enforcement of these constraints is left to the
implementation. Demuth et al. [11] have proposed an extension
to OCL for automatic translation of object level constraints in the
modeling language to database level triggers, provided “object-to-
table” mappings are available. Badaway and Richta [4] presented
a similar technique and Zimbrão et al. proposed a mechanism for
translating OCL constraint to SQL assertion [21]. Tanaka et al.
took a slightly different approach to graphical modeling,
introducing an extension to entity-relationship modeling (ER2

[14]

)
that allows users to use diagrams to model events related to
entities and conditions under which these events can take place

[19].

Constraints on objects in the above models are inseparable from
the notion of object invariants (universally true statements for all
business objects of a specific type) and can rarely capture
complex policies. Specifically, policies that involve temporal
constructs, or repetitive application of rules, can neither be
modeled by nor translated into implementation specific actions
using these techniques. Because of their static nature, these
modeling languages do not store the state of an object nor keep
track of the history of past occurrences of a rule being applied.
For a example, consider an object called “employee” with an
integer valued property called “salary” and a constraint that states
that an employee’s salary can only be increased by a maximum of
10% in any increment. While this policy itself can be
implemented via a simple constraint and can be modeled well, a
more complex policy stating that an “employee’s salary cannot
increase by more than 25% over any three consecutive
increments” cannot be modeled in a language that does not
represent intermediate states of individual objects (employees)
between rule applications.

The intent of currently proposed modeling techniques is to offer a
simplified world view of business rules for the database
programmer and the policy designer. However if a graphical
modeling language is not capable of expressing constraints of a
reasonable complexity or does not support a direct
implementation path in a database system, then its usability is
seriously diminished. When examining proposed graphical
models in the context of relational database systems, it becomes
apparent that unless the rules being modeled are extremely simple
and straightforward (in terms of “object-to-table” mappings
[4][11]), high level modeling does not make the task of writing
and implementing triggers and database level constraints any
simpler. Instead the simplification is usually for the benefit of
business policy administrators, who are able to get a bird’s eye
view of the system design. The benefits of such models are largely
superficial for the database programmers, who still have to
determine how the constraints can be implemented and manually
attempt to simplify and combine them for efficiency and
manageability. Furthermore the notion of “objects” in ECA rule
modeling does not acknowledge that relational objects might not
always be easily identifiable in a database and that a data model
used to describe business rules might not be accurately
represented by an optimized (normalized) database schema.
Consequently it is unclear whether these techniques have seen any

922

adoption by database administrators and how well these model
work in practice.

The apparent difference between the world view of business
policy makers and database administrators has received very little
mention in the database community. In our prior work we have
observed that complex business records, such as invoices and
sales reports, are often viewed as objects by policy makers, but the
data contained therein may reflect the execution of a complex set
of queries involving temporal parameters [2]. Consequently any
reasonably powerful policy modeling system that is able to
express constraints over business records stored in a database
should be aware of not only the underlying database schema but
also the actual data definitions and the queries used to generate
these records. Research related to artifact centric process
modeling has only recently attempted to integrate policy modeling
and implementation [15][12]. Our work does not directly concern
itself with an underlying business process that modifies the
contents of a database but is similar in spirit, and it provides a
complete implementation path for integrity constraints described
on artifacts as arbitrary relational views.

There is clearly a tradeoff between low level specifications and
higher level models; the closer a rule model is to lower level
database constructs such as queries, integrity constraints, and
triggers, the more straightforward it is to deploy; and a model that
is more abstract will generally be ambiguous but easier for policy
makers to create, exchange, and comprehend. In this paper we
propose a modeling language that strikes a balance in this
spectrum, with its goal being seamless automatic generation of
database level ECA constraints as well as ease of use for policy
administrators. Our contribution is not to offer yet another rule
modeling language. The tens of business process modeling
techniques such as state transition diagrams, flowcharts, data flow
modeling, and work flow modeling are sufficiently adequate in
their own context. However because of the lack of a modeling
language that uses database constructs, we have proposed a model
and graphical semantics for translating business level workflow to
database (object) level workflows [3]. In this paper our aim is to
demonstrate how workflow level restrictions (paths in business
processes and data objects lifecycles) can be translated,
implemented, and optimized over a relational database system
using first order temporal integrity constraints. Our notion of
policy is critically dependent on the state of an object and is
fundamentally different from a traditional object level constraint
as considered in prior work. While we offer graphical semantics
for modeling, we emphasize that these can easily be adopted and
integrated into any generic modeling language with support for
database systems or object level modeling.

3. POLICY MODELING CONSTRUCTS
In order to circumvent the problem of establishing “object-to-
table mappings” [11] our model requires policy level objects and
artifacts to be declaratively defined on the underlying database
schema. More specifically, policy relevant business objects can
only be defined as a logical mapping, that is, a business object in
our model is defined as a tuple in a relational view over a database
with a fixed schema. This is the fundamental difference between
UML/OCL modeling and our proposed framework in that we
adopt a bottom up approach in modeling constraints using
database level constructs. We rely on expert users, specifically

those familiar with the business and the relational database
schema, to identify records of interest as views within a corporate
RDMBS. Although relational views could also be used to
accomplish many other policy relevant goals, for instance to
identify complex business artifacts [10][17], we consider the term
“view” and the term “object-definition” to be the same and
interchangeable.

The examples we use in this paper will be of simple relational
views that capture one distinct object per tuple. However we must
emphasize that the enforcement model can capture policies
revolving around any business object, multiple objects, a
complete process, or more generally a business artifact (see
Appendix D for details).

3.1 Relational Objects and Object States
For the remainder of this paper we will consider a relational view
very much like a UML object definition that defines a particular
type of object (its attributes and data types). Tuples contained in
the view will be called “objects” of that particular type. A state is
identified by a label assigned to a condition on the attributes of an
object definition. An object belongs to a particular labeled state if
its attributes satisfy the condition associated with the state. In
general the state of an object is dependent on the particular
assignment of its attributes. For example let us say x is an object
of type V or equivalently x = (a1,a2…an) ∈ V, where V is a view
over our database schema; then for a labeled state S with its
appropriate conditional function, if S(a1,a2,…an

For a particular object definition V, S

) is true then x is
said to be in state S. To simplify our notation we will consider
S(x) as the boolean result (true or false) of applying the state
condition to the attributes of the object x.

V = {SV1,SV2…,SVn}is the
set of all user-defined states for tuples in V. In essence each of the
SV1 through is SVn can be considered a function that returns a
true/false value for any object of type V. At any given point in
time an object may belong to multiple labeled states if it satisfies
more than one of these state conditionals. To quickly determine to
which states an object x of type V belongs, we will denote the
state configuration of x, SC(x) to be a canonically ordered binary
string of length |SV|. A zero at position i in the state configuration
of an object x implies that SVi(x) is false and that the object does
not belong to state SVi. Similarly a one at position i in the state
configuration of an object x implies that SVi(x) is true and that the
object belongs to state SVi. Note that a state configuration of all
zeros does not imply that the object does not exist but rather that
it is in none of the user specified states SV

A state change for an object refers to a change in one of the state
conditions. Since a single update may change the results of
several conditionals, an object can leave and enter many states
between two consecutive timestamps. Thus a state change is
generally evident by the state configuration of an object at two
consecutive timestamps being unequal. A policy in our model is a
(multi) state restriction or path constraint on the sequence of state
changes that we will show to be equivalent to a temporal integrity
constraint modeled in past temporal logic

. Such a state
configuration implies that the object is not currently constrained
by any policy relevant to the users of the system.

[18]. Rule execution
(state transition monitoring) for policy enforcement is done on a
tuple-by-tuple (object) basis, and database transactions that lead

923

to undesirable sequence of state changes for tuples/objects are
rejected.

3.1.1 Example
Let us say a business user defines the following view to capture a
typical business object (an invoice) in a database system:
Invoice = (INV_ID, CREATE_DATE, PAID, AMOUNT,
PAID_DATE, LATE_FEE)
The user further defines two states, one to signify an invoice being
paid together with its corresponding function S1: PAID = true,
and a second to represent invoices that are high valued with its
state function S2: AMOUNT > 1000. The flexibility of our model
allows many users to work concurrently to define states that they
require for policy based decision making. For example a different
user could independently define a state with a more complex
conditional function such as S3

This abstraction allows us to reason about the policy-relevant
conditions that an object meets at a particular point in time
without being concerned with the actual attributes values.
Assuming that the above S

: DateDifference(now -
CREATE_DATE) < 7 to capture the condition of a invoice being
created recently (i.e, within the past 7 days).

1, S2 and S3 are the only states defined
system-wide for policy modeling on invoices, a tuple in the view
with the state configuration of (0,1,1) denotes a recently created,
unpaid invoice with an amount greater than $1000. Moving from
state configuration (0,1,1) at timestamp t1 to (1,1,1) at timestamp
t2

[8]

, is an event that signifies the payment of a low valued invoice
within seven days of its creation. For this three-state scenario it
may be helpful for readers familiar with formal verification and
model checking to visualize changes in the state configuration
as a temporally ordered changes in the state space denoted by a set
of triples{(0,0,0),…,(1,1,1)}.
In our model events can be logical (simple passage of time, for
example, without any change to the underlying data) or user-
initiated physical modifications to the data. Policies are
considered to be multipath restrictions specified in linear temporal
logic (LTL) over the state configuration space. The reader should
observe that there is duality between the state configuration
changes and how a business object evolves over its lifespan and,
in a given workflow, the business level interpretation of a
particular state configuration change is implicitly provided by the
state conditionals.

3.2 Data and Constraint Model
To support the modeling of process-centric temporal integrity
constraints, we consider a model of data where the history of
every policy-relevant object is maintained by the system and
accessible for decision making. This is a standard assumption in
situations where the decision to reject/allow updates (integrity
checking) requires the examination of past attribute values of an
object. To explain our modeling language better, we make the
simplifying assumption that instead of a typical audit trail
x t=(t,a1,a2…an), where each ai represents an attribute of the
object at time t, we will instead view the audit trail for objects as
x t=(t, SC(x t

We present a diagrammatic method of specifying constraints over
business objects, however there is a strict one-to-one
correspondence between state transitions in our models and
logical implications (assertions) specified in first order temporal
logic of the past over the state configuration history of objects. To
explain our model we rely on two classical temporal operators

)). More specifically, instead of being concerned with
the attribute values that an object held at a particular time stamp,
we will only be concerned with the list of states that the object
belongs to at a particular point in time. This simplified view of the
audit trail of the object will be called the state configuration
history.

[18]:

1. Previously (●): If A is a first order temporal formula then ●A

is true at time t > 0 if and only if, A is true at time t-1

2. Sometime in the past (♦): If A is a first order temporal
formula then ♦A is true at time t if and only if, there exists a
time k < t, when A was true

Before we fully establish the duality between state transitions and
integrity constraints specified in first order temporal logic
(FOTLICs) let us build an example that uses our framework and
demonstrates its usability.

3.3 Example
A business penalizes customers for late payments on their
invoices, and an invoice is considered late if it is not paid within
30 days of being created. A company policy dictates that
payments are only accepted in full, and if a payment for an
invoice is received late, a late fee is recorded on the invoice and
carried forward. The accounting department of the company
requires the deletion of paid invoices that were created more than
seven years ago, but the customer relations department wants to
ensure that details of invoices that were paid late by customers are
never deleted.

3.4 Modeling Constructs
We will use the definition of the invoice object as discussed
earlier in Section 3.1. A state NewAndUnpaid can be defined as
“DateDifference(now – CREATE_DATE) < 30 AND PAID =
false”. Observe that the state is simply a testing condition and an
invoice object belongs to this state if satisfies the given condition.
Also note that we require policy makers to define for us both the
business object as a view and all the policy relevant states as
conditions using the attributes of the view. By having both object
definitions and necessary conditions to identify objects present in
particular states we can subsequently tie state transitions together
as restrictions between how an object is (or is not) allowed to
progress in a given workflow.

Table 1: Basic set of state transitions and temporal assertions.
State Representation Logical Restriction

A B

Exit Restriction
(●A(x) ⋀ ¬A(x)) ⇒ B(x)

A B

Entry Restriction
(B(x) ⋀ ¬●B(x)) ⇒●A(x)

A B

Never Eventually
Transition

♦A(x) ⇒ ¬B(x)

A

Disallow Exit
●A(x) ⇒ A(x)

924

As a simple example, consider a state “paid” with its associated
condition “PAID = true”. A business level constraint that requires
that once an invoice is paid, it cannot be “unpaid” is essentially
equivalent to the temporal assertion ●paid(x) ⇒ paid(x), which
requires that if an object was in the paid state in the prior
timestamp, it must also be paid in the current timestamp. In a
typical ECA based system, for every update to the object this
assertion must hold true. If this assertion is violated the
transaction updating the object is rejected and rolled back.
To cover all aspects of an object’s lifecycle a special state ϕ is
introduced to signify moving to/from “nothingness”. Transitions
from ϕ to any state S refer to insertions in the view such that the
newly inserted objects satisfy the state conditional of S.
Symmetrically, transitions to ϕ from any state can be considered
deletions (removal from the view). Although ϕ can be considered
as a “null state configuration,” it is different from a state
configuration containing all zeros: an object in state ϕ does not
exist, whereas an object with an all-zero state configuration does
exist, but it does not meet the conditions to be in any user defined
state. To start, we propose four state oriented constraints in Table
1 with their logical temporal assertions shown alongside.
Using these transitions and appropriately defined states, a policy
maker can easily create a diagram that depicts the policy
objectives presented in Section 3.3. Figure 1 attempts to do so and
capture the business requirements for the previously described
invoice management scenario. We have included three states in
addition to the previously defined NewAndUnpaid and established
five basic restrictions among them. The model presented in Figure
1 is simply a means of restricting how an object can behave
during different stages in its lifecycle. The logical interpretation of
constraint 1 is that all newly created objects must satisfy the
condition to be in the NewandUnpaid state. Observe that this
interpretation only has meaning in the context of the given view.
The reader is reminded that a new row becoming part of a view
may not always correspond to a new object being physically
created in the system. That correspondence is strictly dependent
on the view (object) definition. Constraint 5 requires that once an
object reaches the PaidLate state, it must never be removed from
the view. Any transaction that attempts to remove (from the view)
an object that has reached this state in the past is rejected.
Constraints 2,3 and 4 are much simpler in that they restrict the
arrival of an object in a particular state to specific states in the
immediately preceding timestamp. Such constraints lay out a strict
path that an object must follow in its workflow.
Every constraint diagram can be broken down to a set of temporal
implications between the conditions specified by the states. For

example, constraint 2, which mandates that all invoices that begin
to satisfy the PaidOnTime condition must in the immediately
preceeding timestamp have been satisfying the NewandUnpaid
condition. We can easily find a template in Table 1 to provide a
logical representation of the constraint as: PaidOnTime (x) ⋀ ¬●
PaidOnTime (x) ⇒ ●NewandUnpaid(x). Each of the implications
is of the form precondition(x) ⇒ postcondition(x) and there is
clearly no need for a single administrator to define every object
and/or state conditions in a single diagram. For example to
accomplish the final retention objectives of our scenario a
different policy maker could separately draw out a single
restriction as shown in Figure 2 to ensure that any record is to
leave the view if it was either never paid or paid more than 7 years
ago. Finally we note that because of the bijection between first
order temporal integrity constraints and logical restriction in the
graphical model, users can also see their constraint diagrams as a
simple list of their temporal assertions of the form precondition(x)
⇒ postcondition(x) specified over the state configuration of the
object.
The choice of viewing all state oriented restrictions and detailed
state conditions on an object definition in a single diagram, as
separate graph components, or as a list of logical assertions in first
order temporal logic is left to the user, and the ability to change
from one to the other is a strength of the model. From an
operational perspective, we believe, that not only will policy
makers benefit from a company-wide unified definition of
business objects in a relational database, but also that such
definitions already exist within high level corporate workflows.
Business users are generally aware of the necessary conditions for
objects to be in particular states and can independently map
complex workflows that are pertinent to their business functions.
Whether they choose to focus on a particular path in the corporate
level object workflow to model or the association between two
arbitrary states depends largely on what policy objectives they are
trying to accomplish.

3.5 Multipath policy restrictions
In our examples an invoice can be in multiple states at the same
point in time. Specifically an invoice in the
LegacyPaidorNeverPaid state (Figure 2) can also satisfy the
conditions associated with the state LateandUnpaid (Figure 1).
As a consequence objects can traverse multiple conceptual
lifecycles at the same time, allowing multiple workflow paths to
be simultaneously traversed if necessitated by policy level
requirements. This complicates the enforcement model
conceptually in that when an object in states START = {SS1,
SS2,…SSn} moves atomically (in a single time stamp) to states
END = {ES1, ES2,…ESn}, then all transitional paths traversed
between these states (START × END, the cross product of these
states) are subject to policy rules and restrictions implied by all
models in which these states were defined. However the most
significant benefit of this approach is the added flexibility for any
policy maker to define his or her policy independently from other
users of the system.

LateAndUnpaid

DATE_DIFF (NOW –
CREATE_DATE, days) ≥ 30 AND

PAID_FLAG = FALSE

NewAndUnpaid

DATE_DIFF (NOW –
CREATE_DATE, days) < 30 AND

PAID_FLAG = FALSE

PaidOnTime

LATE_FEE = 0 AND
PAID_FLAG = TRUE AND

DATE_DIFF (NOW –
CREATE_DATE, years) < 7ϕ

PaidLate

DATE_DIFF (NOW –
CREATE_DATE, days) ≥30

AND LATE FEE > 0 AND
PAID_FLAG = TRUE

1 2

3

4
5

Figure 1: A constraint diagram where each transition specifies a

logical temporal assertion between two states of an object.

LegacyPaidorNeverPaid
DATE_DIFF (NOW –

CREATE_DATE, years) ≥ 7 OR
PAID = FALSE

ϕ

Figure 2: A constraint diagram where and object is only allowed to
be removed from the view if it was in the specified state.

925

3.6 Enforceability
A classical problem associated with temporal integrity is that of
enforceability. In general, forcing a temporal function to remain
constant over time is not possible, and the use of temporal logic
brings the risk of introducing policies that may not be enforceable.
For example, let us say that a user has defined a state condition
that returns true for all invoices created in the last seven days. In
general any newly created invoice will only stay in this state for
seven days. Therefore whether we want it or not, by simple
passage of time, an invoice created today will no longer be in that
state seven days later. Consequently attempts to prevent
transitioning out of this state are not enforceable. In our work we
focus on implementing only enforceable policies against user
initiated transactions and provide a brief discussion of detecting
non-enforceable policies in Section 5.

4. Modeling Complex Workflows
Given that we have established a mechanism by which simple
state oriented restrictions can be tied together by FOTLICs, we
introduce a few extensions to this model that demonstrate its
expressivity. We shall shortly see that these extensions are by no
means definitive or limiting, and users are virtually free to model
any arbitrary temporal formula that they wish to use for
constraining an object’s lifecycle.

4.1 Path Constraints and Sub-formulas

A common requirement in enforcing workflow policies is that of
specifying conditional paths that require a sequence of events to
happen. For example consider the constraint, “an object should
never reach state C, if it has sometime in the past reached state B
from state A.”
Graphically we propose that this be modeled as generalizing a
transition into a state. Observe that transitions, as introduced in
Table 1, are rules specified on how objects must change. However
we can also consider these rules as requirements that must have
happened in the past to make other rules. Consider constraint (2)
in Figure 3 as an example. It uses constraint (1), B(x) ⋀ ¬●B(x)
⇒●A(x), as a sub-formula to specify a conditional constraint that
essentially requires that if the transition from A to B took place
for an object in the past, then that object should then never reach
state C. More formally (2) specifies the following temporal
assertion:

♦(B(x) ⋀ ¬●B(x) ⇒●A(x)) ⇒ ¬C(x)

This elegance of FOTLICs allows the use of a conditional
assertion as a sub-condition to create larger more complex
assertions and to repeat the process as many times as necessary to
create conditional paths in policies or workflows.

4.2 Exploiting Auditing Meta-data
In most databases where audit trails of business records are being
maintained, there is also significant auditing related transactional
meta-data that is kept alongside. This metadata can include
information about the user who initiated the update, the purpose

and the context of the transaction that changed the database
contents. Consequently object-level audit trails can usually be
viewed as more robust event logs that not only contain the
attribute values of the object being modified but several additional
attributes pertaining to the transaction itself:
x t= (timstamp,a1,a2…an

An example of the benefits of transactional meta-data being
available for policy-level decision making is that we can model
constraints that require conditional access control based on
specific workflow paths being traversed by an object. Consider an
example of a policy, in which an invoice can only be modified to
be in the paid state by a user who belongs to the finance user
group, and only so, if it has previously been marked as approved
for payment by an employee in the admin user group.

, user, user_group, purpose,
application_context, transaction_type, txn_starttime …)

Traditional modeling of such a business rule would require
significant transaction and/or application level logic to be
implemented. However, by using our model all a policy maker
would have to do is to modify the state conditions such that they
include restrictions on the transaction related meta-data to
accomplish their objectives. For example he or she could easily
redefine the state “paid” and add the additional constraint that the
user group of the user moving an object to this state must be
finance as an additional condition to being in that state.
Modeling access temporal control at the business work-flow level
has significant advantages as it allows complex access control
conditions (and sub-conditions as exemplified in Section 4.1) to
be very easily understood by policy makers. Furthermore our
framework provides a direct implementation path for such
workflow based access control requirements by modeling them to
traditional integrity constraints specified on the object meta-data
trail. The implementation still enforces what can be considered a
classical temporal integrity constraint, by rejecting a transaction
that does not comply with the assertions derived from our model,
but the end result would accomplish the objectives of conditional
or workflow based access control modeling.

5. Conflict Detection and Policy Optimization

Using FOTLICs as the logical representation for enforcement of
business level policies allows us to reduce policy verification and
validation to well known problems related to static query analysis.
For example, let us say that (for some reason) the condition
specified by a policy maker that defines state S is not satisfiable.
Consequently there cannot exist an object x that satisfies S(x),
thereby making the state redundant and all related constraints
removable from the system of derived logical assertions.
Since the graphical model and its logical representation have a
strict one-to-one correspondence, any reasoning that can be
applied to first order temporal formulas, can also be reflected in
the graphical model and vice versa. Consider the graphical
constraint model presented in Figure 4. Constraint (1) specifies

A B C
1 2

Figure 4: An indirectly specified containment restriction.

A B
1

2

Figure 5: Temporal inconsistency (dead end).

A B C
1

2
Figure 3: Constraint 1 being used as a “state” or a condition that

needs to have happened in the passed.

926

the assertion that B(x) ⋀ ¬●B(x) ⇒●A(x), while constraint (2)
specifies the assertion ●C(x) ⋀ ¬C(x) ⇒ B(x). If we analyze these
implications we come to the conclusion that an object that leaves
state C must arrive in state B and any object that arrives in state B
must have previously been in state A, and therefore, objects in
state B must have previously been in both state A and state C at
the same time. If the analysis of the conditions of A and C shows
otherwise (for example that A ∩ C = ϕ) then we have an error in
the form of a logical inconsistency, that makes state B
unreachable, and it should be reported to the policy maker.
Another example is presented in Figure 5, where constraint (1)
mandates that all objects in A when exiting the state must reach
state B, ●A(x) ⇒ B(x), and (2) specifies that after reaching state A,
an object should never reach state B, B(x) ⇒ ¬♦A(x). By chaining
the implications we get, ●A(x) ⇒ ¬

Two important observations about logical reasoning that concern
business level policy modeling need to be made here. First we
note that it is unlikely that any single policy maker will make
egregious modeling errors such as the ones described above. This
is because each individual constraint diagram will most likely be a
mapping of a business process that does not suffer from these
problems. However as constraint diagrams from various policy
makers are merged together to create a final implementation
model (set of logical assertions), the need to resolve such conflicts
by automated reasoning is ever present. Furthermore there are
significant avenues of optimization through eliminating and
combining constraints derived by different policy makers in a
business to ensure the resulting set of assertions being continually
checked in a database system is minimal.

♦A(x), which itself is an
inconsistent temporal formula and represents a dead end in the
workflow for the object if it ever reaches state A. In general such
inconsistencies are typically the result of badly designed or
conflicting policy requirements.

Second, we note that our ability to reason over these logical
constraints is directly restricted by the view (object) definitions
and their query complexity, as well as the domains over which
these queries are specified. For arbitrary queries and state
conditions, the problems of determining containment, closure, and
intersection are well known to be undecideable. However we
believe that a significant number of business object definitions
will involve the use of simple conjunctive queries. Logical
analysis of assertions in these situations will not only be a
tractable problem but will also lead to significant optimization
and reduction of the number of constraints that need to be
checked per transaction. A complete discussion of the
computational cost and tools available to optimize a given set of
assertions in first order logic is beyond the scope of this paper.
However it is important to note that this optimization is a one-
time cost and needs to be incurred only when a new constraint is
introduced in the system.
We conclude by reminding the reader that our objective in this
section was to demonstrate the one-to-one correspondence
between logical constraints and the proposed graphical framework
for modeling business processes. Analysis of first order formulas
can not only lead to conflict detection and implementation level
optimizations but also graphical simplifications in the model
(collapsing, removal, and separation of states) that may not be
obvious when a large number of constraint from various sources
are integrated.

6. Implementation and Performance
6.1 Generating ECA rules
The lack of direct support for temporal integrity constraints within
commercial database systems invariably requires that such
constraints be implemented as active rules or triggers. The most
widely cited reference implementation of first order temporal
integrity constraints implemented as SQL triggers, that reject
(roll-back) transactions if a first order temporal integrity
constraint is not met, was presented by Chomicki and Toman [7].
The work introduced the use of result memoization for complex
formulas, through storing the results of sub-formulas, to check
past temporal integrity constraints in O(1) time and avoid
examining the entire history of an object.
The class of past temporal restrictions that our graphical
framework model generates falls within the class of temporal
integrity constraints that Chomicki and Toman showed to be
preservable in O(1) time at an extra space cost of O(f) where f is
the length of the formula involved (see Appendix A for details).
Recall that in our model we viewed the object’s history as a time-
stamped sequence of binary strings (state configurations), and
each entry at position i of a state configuration, denoted by a zero
or one whether an object belonged to state Si

6.2 Performance Analysis

 at a given time or
not. If we consider this historical view of the state transitions
made by an object to be readily available for querying, and treat
each temporal assertions specified by the model as a query, then
checking the validity of the assertion is simply a matter of
comparing two bit strings representing the previous and the
current (to be committed) state configurations of an object, every
time it is updated. In fact any implementation of temporal
integrity constraints will very closely resemble the check-
constraint functionality provided by modern DBMS systems
where the actual constraint is specified over the state transition
history of the object type being modified.

Due to space restrictions we offer only a summary of our test
results in this section and invite the reader to see Appendix B for
a comprehensive examination of the various costs associated with
temporal integrity constraints derived using our model in
synthetically created business scenarios of varying complexity.
The overhead of implementing integrity constraints derived from
our model can be split into space and computational costs. In our
tests we were able to demonstrate that for typical business objects,
specifically invoices as specified by the TPC-H benchmark, the
worst case cost of storing and maintaining a state transition
history has virtually no impact in a high-update transactional
database. Even in the most extreme case business workflows with
1024 distinct states, the additional overhead of storing the state
configuration alongside the audit trail was minimal. This is simply
because the size of a 1024 bit state configuration history pales in
comparison to the size of typical business objects that contain
large text/comment fields. As for the computational costs, a
system that already incurs the cost of additional disk writes while
maintaining an audit trail will incur a comparatively insignificant
cost of performing 1024 in-memory arithmetic/string operations
(such as status = “paid”) that determine the current/new state
configuration to be stored alongside the audit trail.
Finally we note that there may be situations where a database
system cannot tolerate even the most insignificant of performance

927

penalties (storage or computations). Our framework can still be
used to audit the database periodically by running the audit logs
(i.e. creating the state transition history) over a copy of the
database and verifying it over the set of constraints generated by a
model written by an auditor. This process would essentially
simulate the states explored by each business object in the system
and identify violations that have taken place since the last full
audit of the system. Although this method cannot prevent invalid
transitions (because they were already executed), the core benefit
in this would be that of making the process of business process
auditing much simpler and it offers the possibility of simulating
the results of a change in business policy before constraints are
actively enforced.

7. Conclusion
In this paper we presented a policy framework for database
systems that relies on modeling temporal integrity constraints as
relationships between states contained in a business level
workflow. Our methodology resembles that of model checking
and formal verification by examining how business objects
change over time through state transitions. The most significant
benefit of our framework is that it allows policy makers to map
out their corporate workflows for business objects stored in
relational systems and seamlessly implement constraints to
enforce their process centric requirements.
Our objective was to demonstrate through the use of examples,
how assertions specified in first order temporal logic can be
applied to a graphical representation of a state oriented business
workflow. Policy enforcers may extend this model by introducing
generalized temporal operators reflecting their preferred
interpretation of state transition restrictions while still maintaining
a direct path to efficient implementation of integrity constraint
monitoring triggers. Most importantly by using our framework
businesses can seamlessly convert their existing object lifecycles
and workflows diagrams, that may involve temporal and
conditional access control requirements, into database level
constraint with very little effort. It is because of this extensibility,
expressivity, and ease of use provided by our framework that we
believe that it can used effectively to mitigate the problems
associated with management of business policy within database
systems.

8. REFERENCES
[1] Amghar, Y., Meziane, M., and Flory, A. Using business

rules within a design process of active databases. In Data
Warehousing and Web Engineering, IRM Press, 161-184,
2002.

[2] Ataullah, A. A., Aboulnaga, A., and Tompa, F. W. Records
retention in relational database systems. In CIKM 2008.
873-882, 2008.

[3] Ataullah, A. A., Tompa, F. W. Lifecycle management of
relational records for external auditing and regulatory
compliance. In IEEE Symposium on Policies for
Distributed Systems and Networks, 2011.

[4] Badaway, M. and Richta, K. Deriving triggers from
UML/OCL specification. Information Systems
Development: Advances in Methodologies, Components
and Management, 305-315, 2003.

[5] Ceri, S., Cochrane, R., and Widom, J. Practical applications
of triggers and constraints: success and lingering Issues. In
VLDB 2000, 254-262, 2000.

[6] Chomicki, J. Efficient checking of temporal integrity
constraints using bounded history encoding. ACM TODS.
20, 2, 149-186, 1995.

[7] Chomicki, J. and Toman, D. Implementing temporal
integrity constraints using an active DBMS. IEEE TKDE. 7,
4, 566-582, 1995.

[8] Clarke, E. M., Grumberg O. and Peled, D. A. Model
Checking, MIT Press, 1999.

[9] Cochrane, R., Pirahesh, H., and Mattos, N. M. Integrating
triggers and declarative constraints in SQL database
systems. In VLDB 1996, 567-578, 1996.

[10] Cohn, D., and Hull, R. Business artifacts: A data-centric
approach to modeling business operations and processes.
IEEE Bulletin on Data Engineering. 32, 3-9, 2009.

[11] Demuth, B., Hussmann, H. and Loecher, S. OCL as a
specification language for business rules in database
applications. In UML 2001, 114-117, 2001.

[12] Fritz, C., Hull, R. and Su, J. Automatic construction of
simple artifact-based business processes. In ICDT 2009,
225-238, 2009.

[13] Gehani, N. H., Jagadish, H. V., and Shmueli, O. Composite
event specification in active databases: model &
implementation. In VLDB 1992, 327-338, 1992.

[14] Navathe S. B., Tanaka A. K., and Chakravarthy S. Active
database modelling and design tools: issues, approach and
architecture. IEEE Bulletin on Data Engineering, 15(1-4),
6-9,1992.

[15] Nigam, A. and Caswell, N. S. Business artifacts: an
approach to operational specification. IBM Syst. J.

[16] Simon, E. and Dittrich, A. K. Promises and realities of
active database systems. In VLDB 1995, 642-653, 1995.

 42, 3,
2003.

[17] Paton, N. W. and Díaz, O. Active database systems. ACM
Computing Surveys 31, 1, 63-103, 1999.

[18] Prior, A. Past, Present and Future, Oxford University
Press, 1967.

[19] Tanaka, A. K. On Conceptual Design of Active Databases.
Doctoral Thesis. Ref #GAX93-15916, Georgia Institute of
Technology, 1992.

[20] Widom, J. and Ceri, S. Active Database Systems. Morgan
Kauffmann, 1995.

[21] Zimbrão, G., Miranda1, R., de Souza, J., Estolano, M.H,
Neto, F. P. Enforcement of business rules in relational
databases using constraints. In Advances in Databases and
Information Systems, 2009.

[22] UML/OCL v2.0 specifications available at:
http://www.omg.org/technology/documents/formal/ocl.htm.

928

Appendix A
Equivalence of queries, constraints and
assertions
Constraints specified in first order logic over a set of attributes
can be written in several different ways. The methodology
adopted in [6] is that of specifying a negated existential formula
of the form: ¬ (∃x) (formula(x)), or simply that there should not
exist an object x in the relation that satisfies formula(x). Checking
this constraint is simply a matter of executing a query to find
tuples that satisfy formula(x). If a transaction takes a database into
a state where there exists a tuple x such that formula(x) is true,
then the transaction should be rejected.
In our model we consider constraints on business objects of the
form: precondition_formula(x) ⇒ postcondition_formula(x), or
simply that all objects which satisfy the precondition must also
satisfy the given post condition. Formally we can write the
constraint as:

(∀x) precondition_formula(x) ⇒ postcondition_formula(x)
and subsequently rewrite the implication as a disjunction:

(∀x) postcondition_formula(x) ∨ ¬ precondition_formula(x)
Finally we can negate the disjunction and write the original
assertion as a negated existential formula:
¬ (∃x) ¬ (postcondition_formula(x) ∨ ¬ precondition_formula(x))

¬ (∃x) ¬ postcondition_formula(x) ⋀ precondition_formula(x)

Consequently any assertion derived from our model over the state
configuration history has a direct path to execution as a SQL
query for integrity constraint checking.

Alternative interpretations to reaching a state
In our work we are proposing an extensible approach to constraint
modeling for relational objects. If a designer’s view of the
implication (formula) imposed by our interpretation of a graphical
construct is different from ous, then s/he is free to create new
constructs for the specific needs of a business scneario. Our work
establishes a formal equivalence between graphical construct
(such as a double-headed arrow) and logical temporal assertion.
The modeling language can itself be easily extended: as any
number of new graphical constructs can be introduced provided
they translate into well defined logical formulas on the state
conditionals.

 For example, to introduce the temporal constraint specifying “if
A(x) is true then always in the past B(x) must also have been
true”, one could choose the arrow style and interpretation shown
in Figure 6. Since an object can be in many different states at the
same time users can create complex temporal formulas via
graphical constructs that involve multiple states. To keep our
presentation simple, by not introducing tens and possibly
hundreds of different arrows, we restrict ourselves to a few

constructs that translate to essential restrictions for business
processes moving towards a conclusion.

Appendix B
Performance Analysis and Testing
Observe that in our framework business objects are defined as
views that may not be physically materialized. However,
maintenance of a materialized object state configuration history,
can easily be bootstrapped on top of the database auditing
framework which itself is often implemented as a set of triggers
on base tables. Whether the actual state configuration history is
independently materialized or separate components of it are
appended to base tables is an implementation level choice. In
general when an object changes and an audit log needs to be
written, the state configuration at that point in time can be
calculated and appended alongside the audit record in the relevant
base tables or as an independent materialized view.
There are two sources of overhead that are imposed by
maintaining a complete state configuration history. Foremost is
the trade-off between space and time, that is, the design decision
to store the complete history or to recreate it from the audit logs of
objects whenever needed. Our tests show that in most
transactional databases in which real-time constraints need to be
enforced, the space overhead incurred by materializing a state
configuration history alongside the audit trail of an object is
negligible. We considered the business definition of a Purchase
Order as specified in the TPC-H benchmark to guide our tests. We
tested against business scenarios of varying complexity by
considering corporate workflow (pertaining to a single object) of
size 128 states, 512 states and 1024 states. We utilized TPC-H
databases of sizes 1GB and 10GB, on an Intel Core 2 Duo based
machine with 4GB RAM running Microsoft SQL Server 2008.

Storage Overhead
Although having 1024 states in a corporate workflow pertaining
to a single object is very unlikely, it does represent a plausible
upper bound on the number of states that may need to be
maintained in a state configuration history. Observe that the state
configuration history is a very compact representation of an
object’s membership in all user defined states. Even in the worst
case, 1024 true/false results are essentially 1024 bits of
information (128 bytes), and this is still less space than a text-
based comment field associated with a typical object such as a
purchase order (144 character/byte comment field in the TPC-H
specifications). Furthermore we believe that since TPC-H is a
synthetic performance benchmark, the size of an invoice or line
item row in the TPC-H benchmark is an extremely conservative
representation of real life business objects and their storage
requirements, especially in the presence of large text fields.
Consequently having a corporate workflow of 1024 independent
states with no conditional variables common in any of them
represents an extreme case that will perhaps never be encountered
in real life situations.
Our tests showed that in the presence of row level auditing,
appending an additional binary field of up-to 1024 bits to the line
item audit trail, causes no performance degradation for random
updates. Our objective was to test whether a system under a
transactional load (high-update situation) is stressed by the
additional overhead of writing the state configuration alongside

A B

Figure 6: “A implies always in the past B”, with its logical
interpretation as A(x)⇒ ■B(x) or equivalently as A(x)⇒ ¬♦¬B(x).

929

the audit trail. The transactional cost associated with committing
an update including the state configuration history to an object
was not significantly different (statistically), from the baseline
cost of simply writing the audit log.
The rationale behind there being no additional cost is as follows.
A random update to a row in the line item table causes at most
two pages to be physically committed to disk, one for the actual
modification to the row and another for writing the audit trail in a
separate auditing table. As long as the state configuration can be
accommodated within the same page as the object, the cost of
writing this page will not increase. Thus we argue that, even for
the most complex workflows, the state configuration can be stored
efficiently and is relatively small compared to the size of the
actual object such that there will be no additional storage costs
(other than space) incurred by database systems in practical policy
situations.

Computational Overhead
For each transaction that modifies an object, our framework
requires that the new state configuration of the object be
calculated, and then compared against the old state configuration
to ensure that all specified constraints are being met. We
anticipate that in most business situations where states for
business level policy conditions share common variables, we will
not have to incur the cost of checking each and every state
conditional independently. For example, consider a workflow for
invoices with two states called, paid and not_paid, with the
conditions, paid = true and paid = false respectively. Observe
that we only need to check one of these condition to conclude the
state configuration for both states. In business situations where a
large number of states exist in the policy model, it is very likely
that many of them will share the same variables, and thus
checking whether an object belongs to several states may be
accomplished much more quickly than performing the test for
each condition independently. Similarly while the state
configuration is being computed we can simultaneously check
whether a particular constraint is violated or not and prune the
space of constraints that need to be checked dynamically.
Nonetheless, in our tests, we took a pessimistic stance by
assuming that there are no avenues of optimization available for
us to exploit.
We now summarize the results of the tests conducted to measure
the computational overhead of dealing with varying numbers of
constraints in a policy model. We noted earlier that there are many
mechanisms present in database systems that can be used to
monitor the implications of an update such as check constraints on
base tables, triggers, assertions, and even check constraints on
materialized views. Our objective in this section is to provide a

reference for comparing the practical computational costs of two
of these possible techniques in light of a varying number of
assertions specified in first order temporal logic.
For our tests we utilized various degrees of workflow complexity:
0 states (to represent no computational overhead as a measure of
baseline costs), 128 states, 512 states and 1024 states. Adding an
extra state essentially means an additional (synthetically designed)
check to see whether an object belongs to that state or not in
addition to a fixed overhead of checking whether a constraint has
been violated or not. These checks were designed to simulate
traditional business level string and arithmetic comparisons (such
as “status = paid”, “shipcode = ‘M’ ” or “amount > 0”) that a
system will be expected to do to determine an object’s presence in
each state. These tests were performed sequentially and the results
of being present in one state provided no information to determine
whether the object will (or will not) be present in any other state.
Not surprisingly the cost per arithmetic/string operation within an
SQL trigger is significantly higher when compared to an external
more efficiently written program in a language such as C++.
Consequently a plain brute force approach of performing a large
number of state related checks within an SQL trigger is not the
recommended approach for a high performance database system.
Figure 7 shows a comparison of the cost incurred when increasing
the number of states in a workflow from 0 to 1024. Although most
organizational workflows will be in 0-128 state range, it is still
less expensive to perform these computations as part of an
efficient non-SQL memory resident procedure. In the case of
Microsoft SQL Server 2008 this functionality is provided by the
ability to execute a pre-compiled DLL (extended stored
procedure) and most major database systems offer comparable
features for executing external programs. Importantly, when such
an approach is adopted there is no discernable increase in the time
to test 1024 states than to perform no tests at all.

Appendix C
Maintaining Temporal State Configuration
Histories
During the interval between two consecutive committed audit
entries with timestamps ta and tb, where ta < tb, an object stored
on disk consistently retains the last committed values (of those at
ta

To elaborate the above problem in detail, let us consider an object
x that is being updated at time t

). Given that timestamps are of finite length (not a dense
domain), it is possible to iterate through all intermediate
timestamps and recalculate all intermediate state configurations
using the last committed attribute values of an object. Although
not very practical, it is possible in general to detect intermediate
state changes caused by the passage of time at the time where a
new object value is being committed. Therefore we can essentially
use a brute force method to solve the problem of phantom state
changes. Note that these “hidden” or implicit points of state
configuration changes (in our example the point in time when the
state of an invoice changes from NEW to NOT NEW) need only
be discovered once, and can subsequently be made persistent for
efficient monitoring of constraints.

b and assume that the last
committed state configuration history entry for the object, SC(x,t),
was at time ta. We need to ensure that all intermediate state
configuration changes are known to us so that we can enforce the
path restrictions specified in the model. Note that for all

0

1

2

3

4

0 128 512 1024

Number of States (Complexity of Workflow)

N
or

m
al

iz
ed

 C
os

t
pe

r U
pd

at
e

SQL Trigger C++ Procedure

Figure 7: Comparing the computational overhead of a SQL-Trigger
based implementation and a C++ implementation.

930

timestamps i where, ta < i < tb-1, we know that the object was
unchanged (still xa) and therefore we can calculate all
intermediate state configurations SC(x i,t i) because they will be
equivalent to SC(xa,t i) and recreate a full extended object history
if necessary. However the key points of interested in the range
will be where a state configuration change takes place, that is,
where SC(xa,t i) ≠ SC(xa,t i+1

In practice we do not need to explore the entire temporal state
space between two timestamp values to find these points of
interest (points where logical state changes took place) but only
need to examine the history at the granularity/timeframe of the
policy being enforced, which would typically be in the order of
days or weeks for most business policies. In fact for most cases,
the time at which the logical state change will occur can be pre-
determined or scheduled by an analysis of the state conditional
specified by the user. The only significant negative consequence
of delaying identifying intermediate logical changes in the state
configuration until an object is being physically updated is that
potential violations will not be found at the earliest possible
timestamp.

).

Appendix D
Business Records and Views
Business records (objects or artifacts) are essentially collections of
data involved in any business process. In our model, we define

records on which policies need to be enacted as relational views.
The abstraction of views provides the flexibility to not only
identify typical business objects like invoices and purchase orders
but also business artifacts that may not be considered objects in
the traditional sense, for example a view that computes a single
value denoting "the total sales of a company in the past 24 hours"
can also easily be declared for enforcing a policy.
With the expressive power of SQL we can build views that can
aggregate and group data across multiple traditional objects (even
the entire database) and literally "view" the data in such a way that
a policy oriented yes-or-no decision to allow a transaction can be
made based on specific values in that view. A view can represent
an object, multiple objects, a process in progress or as shown
above a single data item relevant to a policy maker. Consequently
we consider the notion of view to be all-encompassing and argue
that views relevant to policy making will resemble what have been
referred to in the literature as "business artifacts" [10]. Business
records such as invoices, expense claims and sales reports
typically have an intuitive meaning for managers and everyday
users. Similarly workflows associated with these objects often
already exist and can easily be converted into constraint diagrams
to implement meaningful integrity constraints over the entire
workflow of the object [3].

931

	1. INTRODUCTION
	2. RELATED WORK
	3. POLICY MODELING CONSTRUCTS
	3.1 Relational Objects and Object States
	3.1.1 Example

	3.2 Data and Constraint Model
	3.3 Example
	3.4 Modeling Constructs
	3.5 Multipath policy restrictions
	3.6 Enforceability

	4. Modeling Complex Workflows
	4.1 Path Constraints and Sub-formulas
	4.2 Exploiting Auditing Meta-data

	5. Conflict Detection and Policy Optimization
	6. Implementation and Performance
	6.1 Generating ECA rules
	6.2 Performance Analysis

	7. Conclusion
	8. REFERENCES
	Appendix A
	Equivalence of queries, constraints and assertions
	Alternative interpretations to reaching a state

	Appendix B
	Performance Analysis and Testing
	Storage Overhead
	Computational Overhead

	Appendix C
	Maintaining Temporal State Configuration Histories

	Appendix D
	Business Records and Views

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

