
Summary Graphs for Relational Database Schemas

Xiaoyan Yang
National Univ. of Singapore

Republic of Singapore, 117543

yangxia2@comp.nus.edu.sg

Cecilia M. Procopiuc
AT&T LabsResearch

Florham Park, NJ 07932 USA

magda@research.att.com

Divesh Srivastava
AT&T LabsResearch

Florham Park, NJ 07932 USA

divesh@research.att.com

ABSTRACT

Increasingly complex databases need ever more sophisticated tools
to help users understand their schemas and interact with the data.
Existing tools fall short of either providing the “big picture,” or of
presenting useful connectivity information.

In this paper we define summary graphs, a novel approach for
summarizing schemas. Given a set of user-specified query tables,
the summary graph automatically computes the most relevant ta-
bles and joins for that query set. The output preserves the most in-
formative join paths between the query tables, while meeting size
constraints. In the process, we define a novel information-theoretic
measure over join edges. Unlike most subgraph extraction work,
we allow metaedges (i.e., edges in the transitive closure) to help
reduce output complexity. We prove that the problem is NP-Hard,
and solve it as an integer program. Our extensive experimental
study shows that our method returns high-quality summaries under
independent quality measures.

1. INTRODUCTION
Given the current trend of increasingly large enterprise systems,

with explosive growth in both the data size and the complexity
of the underlying schemas, database management systems provide
ever more advanced tools for helping users understand and interact
with the data. Current approaches include custom-made forms and
applications [6, 12], database browsers [3], and clustering of tables
based on their information content [20, 21, 22].

Forms and query applications provide significant assistance in
accessing the underlying data, but the user must be already fa-
miliar with the schema; or else, they restrict the queries to a pre-
computed set of typical tasks. Database browsers are most use-
ful for databases with partial or missing schema information: they
provide tools for discovering primary and foreign keys [3, 14, 23].
However, such detailed information can be overwhelming in an un-
familiar, complex schema.

The recent work in [20, 21, 22] focuses on clustering database ta-
bles based on semantic similarity, and presenting cluster represen-
tatives to the user. This results in small, easy to understand sum-
maries that help new users get an overall picture of the database.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 37th International Conference on Very Large Data Bases,
August 29th September 3rd 2011, Seattle, Washington.
Proceedings of the VLDB Endowment, Vol. 4, No. 11
Copyright 2011 VLDB Endowment 21508097/11/08... $ 10.00.

However, essential information, such as the most significant for-
eign/primary key constraints, is not present in the summary. In
addition, users who have prior experience with the database may
be interested in tables that may not appear in the summary.
Our goalWe propose a novel summarization technique that ad-

dresses the shortcomings of previous approaches. Our method au-
tomatically computes an adaptive schema summary,which includes
the most relevant tables and their connections with respect to a user-
specified set of query tables. We call this graph the optimal sum-
mary graph of the database with respect to the query set. In the
following, we discuss the main challenges we must meet in order
to compute succinct and informative summary graphs.

1.1 Informative Join Paths
One of the most frequent scenarios we face in querying enter-

prise systems is as follows: “What are good join paths connecting
the tuples in tables R, S and T ?”

Consider, for example, the benchmark TPC-E schema, which
simulates the On Line Transaction Processing (OLTP) workload
of a brokerage firm. It contains 32 tables, grouped into 3 main
categories: Customer, Market and Broker. The database contains
information about financial transactions: customer accounts and
their respective holdings, types of traded securities, information on
traded companies, broker fees, etc.1

Let tables R, S, T be Customer, Security and Trade. There are
combinatorially many join paths connecting each pair. Figure 1(a)
shows the union of three possible paths, one for each pair of ta-
bles. E.g., the join path Customer−Status Type−Security returns,
for a given customer id, all the securities that have the same status
(active, pending etc). Clearly, an analyst is more likely to be inter-
ested in the securities held by a customer than in those that share the
same status. Implicitly, the user wants the join path with the most
relevant information. For this example, a much better join path is
Customer−Customer Account−Holding Summary−Security, i.e.,
the path that returns the securities held by a customer.

Therefore, we need a measure of how informative each schema
edge is. None of the measures studied in prior work is particu-
larly appropriate for this task, as we discuss in Section 1.3. One of
the contributions of this paper is the definition of an information-
theoretic weight function over schema edges: smaller weights cor-
respond to more informative edges.

1.2 Succinct and Informative Summaries
What constitutes a “good” summary? An obvious answer is size:

the smaller the summary, the better. However, this cannot come
at the expense of utility. Compare the potential summaries in Fig-

1Figure 14 in the Appendix shows the complete details of the TPC-
E schema.

899

Graph weight=4.5572034455

trade

security

customer

status_type

Graph weight=1.6917276155

trade

security

customer

customer_account

holding_summary

(a) (b)

Figure 1: Possible output graphs for TPC-E. Query tables are

shown as oval nodes. (a) graph of size 4; (b) more informative

graph of size 5.

ures 1(a) and (b). The graph in Figure 1(a) is smaller, but it contains
join paths with little information content, as discussed above. The
graph in Figure 1(b) is clearly more informative. In fact, it consists
of the union of shortest paths between the query tables (using the
weight function mentioned above).

However, returning the union of shortest paths between query
nodes is not the answer, either, as it may lead to large graphs. Fig-
ure 2(a) shows such a case: Alice must generate a report about cus-
tomer costs associated with trading different types of stocks. She
is unfamiliar with the TPC-E schema, but based on their names,
she specifies the 4 query tables drawn as oval nodes. The union
of shortest paths among these 4 tables contains 13 nodes (out of
a total of 32) - which is not much help to Alice. Instead, our ap-
proach is to start from such a union of shortest paths and reduce its
complexity to a user-specified level. More precisely, we restrict the
number of non-query tables in the summary graph - denoted bud-
get tables - to be at most a summary budget B (B is user-defined).
This, of course, means that we have to drop some of the tables from
the output, and replace some paths by metaedges (i.e., edges in the
transitive closure of the schema graph). We define and solve an
optimization problem over the set of possible summary graphs.

Figure 2(b) shows the output of our algorithm for B = 2. Note
that the budget tables we include are “hubs” that belong to multiple
join paths. As we show in Section 3, this is a consequence of the
way we define our optimization problem. Alice can now deduce
that, e.g., the most informative connection between tables Broker
and Customer Taxrate is via table Customer Account. If necessary,
she can drill down and request more nodes on this path from the
original graph. This is possible because we store the underlying
path of each metaedge offline. We also store all edges adjacent to
summary nodes (along the shortest paths), so Alice can drill down
starting from a summary node, as well. This increases the utility of
the summary, while keeping it uncluttered.

By contrast, the graph in Figure 2(c) loses this hub routing in-
formation. The graph was obtained by randomly choosing 2 bud-
get tables from among the 9 non-query nodes in Figure 2(a). For
query nodes Broker and Customer Taxrate, the summary provides
no connecting information. The fact that the graph in Figure 2(b)
is more informative than the one in Figure 2(c) is also reflected by
their total weights: the former has only 73% of the latter’s weight.

1.3 Prior Work
Weight functions: Early work on defining edge weights for data

graphs focused on instance-level graphs, where the nodes are ei-
ther tuples or values: [17, 9] study graphs with homogenous edge
semantics (e.g., co-authorship of papers); [13] proposes heuristic
weights for RDF graphs; in the keyword search literature, edge
weights are typically 1. However, graphs defined over database tu-
ples are inherently heterogenous (edges represent different kinds of
joins). It is neither trivial, nor particularly scalable, to define mean-

ingful edge weights for tuples, then aggregate them in a principled
way at table level.

More recently, two table-similarity measures have been proposed
in [22, 21], for clustering schema tables. The distance used by [22]
is asymmetric, and can have negative values (Section 7.4 in [21]).
We used the measure in [21] in our experiments, and concluded that
it was less accurate and consistent than our proposed approach.
Subgraphs: A large body of work focuses on extracting “good”

subgraphs that connect query nodes: In keyword search [5, 11], the
goal is to compute trees connecting keyword occurences. Connec-
tion subgraphs [4] connect two query nodes. The work on center-
piece subgraphs [17, 16], and on entity-relationship subgraphs [8]
is closest to our goal: for a given set of query nodes and a budget
constraint, output a connecting subgraph that meets the budget and
maximizes some ‘goodness’ measure. However, since the output
cannot contain metaedges, this means that shortest paths are not
guaranteed to be preserved (although most results try to minimize
path lengths by incorporating them in the definition of the goodness
measure).

Related problems are studied in graph theory, e.g., minimum
spanning trees, Steiner forests, Steiner networks [19] - but none ap-
ply to our setting. Algorithms for computing t-spanners [2] come
closest: t-spanners preserve all shortest paths, within a factor t.
However, they may violate an order-preserving condition that is
important for join paths. See details in Section 2.

1.4 Our Contributions
We propose a new relational schema summarization approach

that is adaptive to user-specified tables of interest, and provides
linkage information between tables. Given a set of query tables
and a summary budget, we define an optimization problem that se-
lects the most relevant budget tables as part of the summary. In
addition, the summary preserves the most informative join paths
between query tables. We prove that this problem is NP-Hard, and
cast it as an integer program (under some simplifying assumptions).
The integer program has an elegant structure, and can be solved ef-
ficiently by IP software. See Section 3.

In Section 4 we define a novel weight function over schema
edges, using information theoretic measures that quantify the no-
tion of informative joins.

Finally, we conduct an extensive experimental study in Section 5
and show that our approach computes highly relevant summaries.
The relevance is measured via two independent quality measures
based on query logs. We also compute summary graphs using
the weight function in [21], and conclude that summaries using
our information-theoretic weights are both more relevant and more
consistent.

2. DEFINITIONS
The schema graph G = (R, E) of a relational database is de-

fined in the usual manner: the nodes correspond to tables R ∈ R,
and the edges to foreign/primary key constraints (joins). Edges are
undirected.

Let wt : E → R
+ be a weight function over the edges of E , such

that wt(R,S) ≥ 0 for all (R,S) ∈ E . Function wt is a dissimilar-
ity measure, i.e., the smaller the weight wt(R,S), the more impor-
tant the join connection between tables R and S. A detailed discus-
sion of how to choose wt is deferred to Section 4. We extend wt to
a distance function d, defined as the shortest (weighted) distance in
the graph between a pair of tables. More precisely, for any path Π :
R = R0−R1−· · ·−Rα= S, let wt(Π) =

Pα−1
i=0 wt(Ri, Ri+1).

For any pair of tables R, S ∈ R, the distance in graph G between

900

Graph weight=6.9441302964

broker

customer_account

0.0000000286

commission_rate

trade_type

0.0000000654 exchange

0.0000000122

customer_taxrate

industry

trade

0.0000000800

holding_summary

0.0000000138

customer

0.00000005200.0000000972

0.0000000672

security

0.0000000559

company

0.04758193380.00000000470.0000000576

address

0.3351064562

0.9973404512

Graph weight=7.5147101957

broker

customer_account

0.7298749340

commission_rate

exchange

0.7470561327

customer_taxrate

1.4236398511

industry

1.2674994678

1.9574738210 0.2947410428 1.0944249463

Graph weight=10.2929252873

broker

customer_taxrate

1.0246159768

trade

1.0944992428

company

1.4154214312

commission_rate

1.6056771514

2.1706959838

0.9802875400

industry

1.5928495122

0.4088784491

(a) (b) (c)

Figure 2: Summary graphs for TPC-E. Query tables are shown as oval nodes. (a) Union of shortest paths between query tables; (b)

Optimal summary graph for B = 2; (c) Non-optimal summary graph with B = 2.

S

R
0.3

0.5
0.1 0.5 0.3

0.3

(b) (c)

R

S

R

S

0.1

Total weight = 1.2 Total weight = 0.7 Total weight = 1.1

TTTB

0.2

0.1
A

0.1
A

0.2
B

0.3

(a)

Figure 3: (a) Graph G; (b) Optimal summary graph of G, with
respect to query-set {R, S, T} and budget 1; (c) A non-optimal
summary graph of G.

R and S is defined as:

dG(R, S) = min
Π=R−···−S

wt(Π).

In the summary graph, edges between nodes correspond to paths
from the original schema graph. We refer to them as metaedges, to
distinguish them from the join edges E . Formally, Em={(R, S) |
∃Π = R − · · · − S path in G } is the set of metaedges, and Gm =
(R, Em) is the transitive closure of G (if G is connected, Gm is a
clique). The summary graph is a subgraph of Gm. We extend the
weight function to metaedges, as follows:

Definition 1. Let G = (R, E) be a schema graph, and (R, S) ∈
Em be a metaedge. We define wt(R, S) = dG(R,S).

Example 1. Figure 3(c) shows a subset of metaedges for the
graph in Figure 3(a). Note that the metaedge (R,B) has weight
0.3, which is the sum of weights along the shortest path R−A−B.
This is distinct from the weight of 0.5 on the edge (R, B) from Fig-
ure 3(a). Hence, although tables R and B have a join edge, their
most informative connection is via joins with table A.

Our goal is to compute a summary graph with minimum sum
of metaedge weights (recall that smaller weights imply stronger
connections between tables). We now discuss the properties that
summary graphs must satisfy. Let S = (Rs, Es) be a summary
graph of G with respect to a query set Q and budget B. We want
Q ⊆ Rs ⊆ R and Es ⊆ Em; also, to meet the budget, we need
|Rs| ≤ |Q| + B. The summary must preserve shortest paths be-
tween query tables, i.e., dS(R, S) = dG(R, S).

In addition, we also need an order-preservation condition, as ex-
plained below: For each R, S ∈ Q, and for any shortest path Π in
S , there must exist a shortest path Π′ in G such that the sequence
of tables in Π is a sub-sequence of the sequence of tables in Π′.

Example 2. Figure 4 illustrates why we need such a condition.
Suppose that we want to summarize the graph G from Figure 4(a),

0.3 0.2 0.3 1.2 0.5 1.20

R A C S R C B SR A B C D S

(a) (b) (c)

0 0.7 0.50.2

Figure 4: (a) Graph G; (b) One of several summary graphs of
G, with budget 2; (c) Invalid summary graph of G: path order
violation.

where Q = {R, S} and B = 2. There are many possible sum-
maries, e.g., the path R−A−C−S depicted in Figure 4(b). How-
ever, the path R−C−B−S in Figure 4(c) is not a valid summary,
even though it preserves the shortest distance between R and S: ta-
bles R, C, B and S appear in a different order in Figure 4(c), than
in Figure 4(a). Presenting a user with the graph from Figure 4(c)
would give a false idea about the semantics of the database, since
the logical order of the joins is violated.

Order preservation conditions are not common in graph algo-
rithms, and make the problem more challenging. In particular, t-
spanners [2] do not guarantee order preservation.

The following definition summarizes the above discussion.

Definition 2. Let G = (R, E) denote a schema graph with weight
function wt over its edges, and let Em denote its metaedges. Let
Q ⊆ R be a query set and let B ≥ 0 be the summary budget. A
graph S = (Rs, Es) is a summary graph of G with respect to Q if
it satisfies the following conditions:

(i) Q ⊆ Rs ⊆ R and |Rs| ≤ |Q| + B.

(ii) For any pair of query nodes R, S ∈ Q, dG(R, S) = dS(R,S).

(iii) For any shortest path Π between R, S in S , there exists a
shortest path Π′ between R, S in G such that the sequence of
tables in Π is a sub-sequence of the sequence of tables in Π′.

Given Q and B, a summary graph S is optimal if it minimizes
wt(S) =

P

e∈Es
wt(e) over all summary graphs of G with respect

to Q and B.

Example 3. Figure 3 illustrates the importance of choosing an
optimal summary graph. Both graphs in Figures 3(b) and (c) are
valid summary graphs of the graph in Figure 3(a), with respect to
the query set Q = {R, S, T} and for budget B = 1. However,
by retaining node A, which lies on all three shortest paths (i.e.,
between pairs (R,S), (R, T) and (S, T)), the graph in Figure 3(b)
has significantly lower weight. Thus, there is a direct connection
between optimizing the weight of a summary graph and choosing
those nodes that are “hubs” in the summary.

901

3. COMPUTING SUMMARY GRAPHS
Computing the optimal summary graph is NP-Hard, as we show

in Section 3.1. Moreover, even approximate solutions seem elusive
because of the order preservation condition. The most common
case of violating the order occurs because of 0-weight edges, as in
Figure 4(c). Other cases may occur because of multiple shortest
paths between two nodes. We have encountered both cases in our
experiments with the TPC-E database. To reduce the complexity
of the problem, we add small random noise to each edge, so that
all weights are positive and ties between multiple shortest paths
are broken. Details on generating noise values are in Appendix A,
along with an explanation of why we expect this heuristic not to
affect the quality of results.

3.1 Properties of Summary Graphs
For the remainder of this paper, we therefore assume that all

weights are non-zero, and that for every pair of nodes R,S ∈ R,
there is a unique shortest path connecting them in G. Even with
these restrictions, the problem remains NP-Hard. The following
result follows by reduction from CLIQUE IN (n − 4)-REGULAR

GRAPHS; see proof in the Appendix B.

THEOREM 1. Let G be a schema graph. Computing the optimal
summary graph of G with respect to Q and B, where Q is a set of
query nodes from G and B is the summary budget, is NP-Hard.

However, we show that it is sufficient to compute the optimal
summary graph for a smaller graph P ⊆ G, which consists only
of the shortest paths between nodes of Q. We also prove a nice
property of the optimal solution. The proof is in Appendix B.

PROPOSITION 1. Let Q be a set of query nodes in a schema
graph G. Let P be the union of shortest paths between pairs of
nodes inQ. Then:
(i) Any optimal summary graph of G with respect toQ is also an

optimal summary graph of P with respect toQ, and vice versa.
(ii) Every metaedge (A, B) in an optimal summary graph of G

(with respect to Q) satisfies the property that A and B appear to-
gether on at least one of the shortest paths in P (i.e., there are no
cross-over metaedges connecting nodes from different paths).

This allows us to formulate an elegant integer program over P ,
for which existing IP solvers like CPLEX can quickly compute a
solution. Moreover, the size of shortest paths in P is often con-
stant (hence, independent of the size of G). Whenever this holds,
|P| = O(|Q|2) and our solution is highly scalable. (Recall that Q
is a query set reflecting user interest and/or display capacity, so we
expect |Q| ≤ 10.)

3.2 Integer Program
Let P denote the union of shortest paths between nodes in Q, as

above. We formulate the integer program over graph P .
Let xuv, u, v ∈ R, be metaedge variables, and yu, u ∈ R, be

node variables; xuv = 1, resp. yu = 1, if and only if metaedge
(u, v), resp. node u, is in the summary graph. For technical rea-
sons, we define the metaedges to be directed. However, we require
xuv = xvu for all (u, v), i.e., the summary graph contains either
both directed metaedges, or neither. This allows us to get rid of
directionality at the end, and return an undirected summary graph.

For each pair of query nodes i and j, we denote by Πij ∈ P
the shortest path between i and j. For each node u ∈ Πij , let
Predij(u), resp. Succij(u), denote the set of nodes that pre-
cede, resp. succeed, node u along path Πij , when traversed from
i to j. For example, in Figure 3(a), PredRT (B) = {R, A} and

SuccRT (B) = {T}. Let MetaNbrs(u) =
S

i,j∈Q(Predij(u) ∪

Succij(u)) denote the set of all nodes preceding or succeeding u
on any shortest path of P . We define the following integer program:

Minimize
P

u,v
xuvwt(u, v)

Subject to :
(1)

P

w∈Succij(v) xvw ≥ xuv, ∀Πij ∈ P , ∀u, v ∈ Πij

(2)
P

w∈Predij(u) xwu ≥ xuv, ∀Πij ∈ P , ∀u, v ∈ Πij

(3)
P

u,v∈Πij
xuv ≥ 1, ∀Πij ∈ P

(4)
P

v∈MetaNbrs(u) xuv ≤ yu|MetaNbrs(u)|, ∀u

(5)
P

u 6∈Q yu ≤ B

(6) xuv = xvu, ∀u, v

(7) yu = 1, ∀u ∈ Q

(8) xuv, yu ∈ {0, 1}, ∀u, v

The following result states that the integer program is correct;
the proof is in Appendix B.

PROPOSITION 2. The optimal solution of the above integer pro-
gram is an optimal summary graph of G with respect to query set
Q and summary budget B.

4. EDGE WEIGHTS
In this section, we propose a weight function over schema edges

that quantifies how informative they are using well-known concepts
from information theory.

To arrive at a principled definition for a weight function, let us
first consider a subtle distinction. Let S − R − T be a path in the
schema graph. There are two possible paths corresponding to it at
the column level, depending on whether or not the two join edges
of R involve the same column. For example, Figure 5(a) shows a
join path S −R−T that involves two different columns of R, i.e.,
R.B and R.C. In this case, there is at least one more (implicit) re-
lationship that, while not depicted at schema level, is nevertheless
used for computing the join result: a co-occurence relationship for
columns R.B and R.C. More precisely, a tuple of values (x, y)
satisfies such a relationship if the tuple appears in the projection
of R on {R.B, R.C}. Figure 5(a) depicts, in fact, two such rela-
tionships inside table R (edges (R.B, R.A) and (R.A,R.C)) for
reasons that we explain below. By contrast, if path R − T − S
enters and exits table T on the same column, so there is no need to
process any co-occurences.

Our goal is to define the weights of schema edges in a way that
accurately reflects which of the two cases applies at column-level.

4.1 ColumnLevel Graph
We define the column-level graph corresponding to a schema

graph, as follows. All nodes in the graph are either primary keys in
their respective tables, or foreign keys with respect to primary keys
of other tables. (Joins between tables are issued over columns for
which a foreign/primary key constraint is specified in the schema.)
There is an edge between any foreign key and its primary key -
denoted inter-table edge; and between the foreign key and the pri-
mary key of the table to which it belongs - denoted intra-table
edge. For example, in Figure 5(a), the inter-table edge (R.B, S.D)
is included because there is a foreign/primary key constraint be-
tween the two columns; while the intra-table edge (R.A,R.B) is
included because R.A is the primary key of R. However, the edge
(R.B, R.C) is not in the graph.

Note that, for the sequence of joins S.D−R.B; R.C−T.F , the
path between S.D and T.F in the column-level graph contains two
intra-table edges: (R.A,R.B) and (R.A, R.C). Why not connect

902

D

A

E

FR T

S

0.1
0.05

B

0.6

C
0.5

0.28

0.21
0.26

0.38

1.1

S

T
R

(a) (b)

Figure 5: (a) Example column graph: dashed rectangles repre-

sent tables; circled nodes are primary keys; (b)Corresponding

edge weights of the schema graph.

R.B and R.C directly? Recall that an intra-table edge represents a
co-occurence relationship. Since R.A is the primary key of R, the
semantics of the join S.D − R.B; R.C − T.F remains the same,
whether we regard it as traversing the single edge (R.B, R.C), or
the two edges (R.A, R.B) and (R.A, R.C). However, the com-
binatorial structure of the two possible paths in the column-level
graph is different. Moreover, the edge weights can be impacted by
whether or not one endpoint is a primary key; see Appendix C. For
a fair comparison with inter-table edges (which always have one
endpoint a primary key), we require all edges to have one endpoint
a primary key.
Multi-column keys Every multi-column key is a node in the col-

umn level graph, with a multi-column foreign key connected to the
primary key of its table. Multi-column foreign/primary key con-
straints are represented as edges between the respective nodes.

We define edge weights in the column-level graph using infor-
mation-theory measures, then extend them to weights in the schema
graph.

4.2 Defining Weights
We assume familiarity with information theory concepts. See

Appendix C for a quick primer. For a joint distribution (X, Y),
let I(X,Y) and H(X,Y) denote its mutual information, resp. its

entropy. Then D(X, Y) = H(X,Y)−I(X,Y)
H(X,Y)

= 1 − I(X,Y)
H(X,Y)

is a

distance function [10].
Column-level graph We define the weight of an edge (C1, C2)

in the column-level graph to be D(C1, C2), where D(·, ·) is the dis-
tance function defined above. Columns C1 and C2 are regarded as
distributions of values (or distributions of tuples, if they are multi-
columns). However, to apply function D, we also need to specify
the joint distribution of C1 and C2.

When C1 and C2 belong to the same table R, we define their
joint distribution (C1, C2) to be the projection of R on {C1, C2},
consistent with prior work [7, 15]. For the case when C1 and C2

belong to different tables, we are not aware of any prior result that
defines a joint distribution based on their join. We propose using
the output of the full outer join as their joint distribution. The rea-
son is that, unlike the inner join, the outer join contains values that
do not match, i.e., pairs of type (val, NULL). We want our weight
function to be aware of such pairs, and penalize those joins with ex-
cessive numbers of unmatched values.

We discuss two examples of joint distributions. For convenience,
we also show their pointwise mutual information i(·, ·); see Ap-
pendix C for the definition.

Example 4. Suppose that in Figure 5, the projection of R on
(A, B) is as follows:

A 1 2 3 4 5 6 7 8

B 2 2 1 2 3 5 5 6

i(a,b) log 8
3

log 8
3

3 log 8
3

3 2 2 3

Then I(A,B)=
P

(a,b)∈(A,B) p(a, b)i(a, b)= 1
8
(13 + 3 log 8

3
)

≈2.155, and H(A,B)=−
P

(a,b)∈(A,B) p(a, b) log p(a, b)=

log 8 = 3. We have D(A, B) ≈ 0.28.

Example 5. Suppose that in Figure 5, the foreign key column
E has values {1, 1, 2}, and the primary key column F has values
{1, 2, 3, 4}. The result of the full outer join is:

F 1 1 2 3 4

E 1 1 2 NULLNULL

i(e,f) log 5
2

log 5 log 5
2

log 5
2

Then I(E,F)=
P

(e,f)∈(E,F) p(e, f)i(e, f)= 1
5
(2 log 5

2
+ log 5+

log 5
2
+log 5

2
)≈1.52, and H(E,F)= 1

5
(2 log 5

2
+3 log 5)≈1.922.

We have D(E, F) ≈ 0.21.

Schema graph We are now ready to define the weight function
for table-level edges, as follows. Let (R, S) be an edge in the
schema graph. Then wt(R, S) is the (minimum) sum of weights
between the primary keys of tables R and S, along the column-
level path that contains only columns from R and S. For exam-
ple, in Figure 5(a), we compute wt(R, S) = wt(R.A, R.B) +
wt(R.B, S.D) = 0.38. In general, there may be another column-
level path between R and S - say, if a foreign key column of S was
connected to R.A. In that case, wt(R, S) would be the minimum
of the two path weights. Figure 5(b) shows the weights of schema
edges corresponding to Figure 5(a).

5. EXPERIMENTAL EVALUATION
We conduct our experimental evaluation over the TPC-E [18]

benchmark database, which simulates the On-Line Transaction Pro-
cessing (OLTP) workload of a brokerage firm. We chose a bench-
mark database for two reasons: First, it has a well-specified schema,
including all foreign/primary key constraints. Second, it has a trans-
action log, which we use to define independent quality measures for
our summary graphs.
Experimental Setup We generate two database instances for the

TPC-E schema, using EGen v3.142, with parameters as listed in
Table 1, Appendix D. The instances, which we call TPCE-1 and
TPCE-2, have significantly different table sizes. Thus, we verify
the robustness of our method over different datasets, but for the
same schema. All methods are implemented in Java, and evaluated
on a PC with 2.33GHz Core2 Duo CPU and 3.25G RAM.

5.1 Quality Measures
To evaluate the quality of our results, we propose two measures

that quantify how well a summary graph represents the tables and
edges occuring most frequently in a query log. The intuition is that
the most informative tables and edges in a database are also the
most frequently queried. Exceptions may occur; see, e.g., [21].

Let f(T) denote the frequency with which a table T appears in
the transaction log. Similarly, let f(R, S) be the frequency of edge
(R, S) in the log. Details about the TPC-E transaction log are in
Appendix D.

Definition 3. Let G = (R, E) be a schema graph and S =
(Rs, Es) be a summary graph of G with respect to query set Q and
budget B. A table T is covered by S , denoted T ≺ S , if T ∈ Rs.
An edge (R, S) ∈ E is covered by S , denoted (R, S) ≺ S , if
(R, S) appears on a shortest path between query tables in Q, and
at least one of the tables R or S is covered by S .

2EGen is a software package provided by TPC [18].

903

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

Q3 Q4 Q5 Q6 Q7

T
a
b
le

 C
o
v
e
ra

g
e

Summary Graphs

TPCE-1

MI
MAF

(a)

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

Q3 Q4 Q5 Q6 Q7

T
a
b
le

 C
o
v
e
ra

g
e

Summary Graphs

TPCE-2

MI
MAF

(b)

Figure 6: Table coverage of summary graphs (B=2) based on

MI and MAF weights.

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

Q3 Q4 Q5 Q6 Q7

J
o
in

 C
o
v
e
ra

g
e

Summary Graphs

TPCE-1

MI
MAF

(a)

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

Q3 Q4 Q5 Q6 Q7

J
o
in

 C
o
v
e
ra

g
e

Summary Graphs

TPCE-2

MI
MAF

(b)

Figure 7: Join coverage of summary graphs (B=2) based on MI

and MAF weights.

The reason for the above definition of covered edges is as fol-
lows. First, recall that the edges Es of S are metaedges of G. Some
of them may coincide with edges from E , but in general this is
unlikely. Therefore, it would be pointless to say that an edge is
covered if it appears in S . The next best thing is to define an edge
as covered if it appears on a shortest path between a pair of query
tables in Q. However, this does not help us compare different sum-
mary graphs for the same query set Q. We therefore add the addi-
tional requirement that at least one endpoint of the edge appears in
the summary. This is consistent with the summary usage discussed
in Section 1, where users can request edges adjacent to summary
nodes.

We define our independent quality measures as follows.

Definition 4. Let G = (R, E) be a schema graph and S =
(Rs, Es) be a summary graph of G.

(i) The table coverage of S is Φt =
P

T≺S
f(T)

P

R∈R
f(R)

.

(ii) The join coverage of S is Φj =
P

(R,S)≺S
f(R,S)

P

(A,B)∈E f(A,B)
.

(iii) The density of S is
|Es|
|Rs|

.

Assuming that the transaction log frequency of tables and edges
is proportional to their importance, then the first two measures re-
flect the fraction of table, resp. join edge, importance captured by
the summary. The last measure reflects the complexity of the out-
put: the smaller the density, the easier the graph is to understand.

For TPC-E, the distribution of join edge frequencies is signif-
icantly more skewed than that of table frequencies, with a few
edges having very high frequency. Therefore, as we see throughout
this section, differences in table coverage among various summary
graphs are more pronounced than for join coverage (whenever sum-
mary graphs include the same heavy edges, they have nearly iden-
tical join coverage, despite being otherwise quite different).

Given the above observation, we consider table coverage to be
the more informative measure.

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

B0 B1 B2 B3 B4

T
a
b
le

 C
o
v
e
ra

g
e

Summary Graphs

TPCE-1

MI
MAF

(a)

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

B0 B1 B2 B3 B4

T
a
b
le

 C
o
v
e
ra

g
e

Summary Graphs

TPCE-2

MI
MAF

(b)

Figure 8: Table coverage of summary graphs (Q=4) based on

MI and MAF weights.

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

B0 B1 B2 B3 B4

J
o
in

 C
o
v
e
ra

g
e

Summary Graphs

TPCE-1

MI
MAF

(a)

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

B0 B1 B2 B3 B4

J
o
in

 C
o
v
e
ra

g
e

Summary Graphs

TPCE-2

MI
MAF

(b)

Figure 9: Join coverage of summary graphs (Q=4) based onMI

and MAF weights.

5.2 Comparing Weight Functions
We compare the quality of summary graphs obtained from two

different weight functions: The first function, which we refer to
as MI, is the one we defined in Section 4. The second function,
denoted MAF, is based on the distance measure proposed in [21]
(the abbreviations stand for Mutual Information, resp. Matched
Average Fanout). See the Appendix for the definition of the MAF
weight.

Let Q = |Q|. We vary Q from 3 to 7 and generate, for each
value, 100 different sets of query tables, randomly chosen from the
32 tables of TPC-E. For each set of query tables, we then generate
up to 5 summary graphs by varying B from 0 to 4. In some cases,
the union of shortest paths between query tables contains less than
4 non-query nodes, so we generate fewer summary graphs. (We
have run experiments with higher values for Q and B, but as Q +
B approaches the total number of tables 32, all coverage values
converge to 1 and differences between different settings become
insignificant. We therefore report results for Q + B ≤ 9 ≈ 28%
of tables, which we believe is a reasonable summary size.)

For a fixed setting of Q and B, we compute the average coverage
of all summary graphs generated for those values. Figures 6 and 7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

Q3 Q4 Q5 Q6 Q7

G
ra

p
h
 D

e
n
s
it
y

Summary Graphs

TPCE-1

MI
MAF

(a)

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

Q3 Q4 Q5 Q6 Q7

G
ra

p
h
 D

e
n
s
it
y

Summary Graphs

TPCE-2

MI
MAF

(b)

Figure 10: Density of summary graphs (B=2) based on MI and

MAF weights.

904

 0.9

 1

 1.1

 1.2

 1.3

B0 B1 B2 B3 B4

G
ra

p
h
 D

e
n
s
it
y

Summary Graphs

TPCE-1

MI
MAF

(a)

 0.9

 1

 1.1

 1.2

 1.3

B0 B1 B2 B3 B4

G
ra

p
h
 D

e
n
s
it
y

Summary Graphs

TPCE-2

MI
MAF

(b)

Figure 11: Density of summary graphs (Q=4) based on MI and

MAF weights.

Address

Customer

Company

Holding_Summary

Industry

Security

Customer

Company

Holding_Summary

Industry

(a) MAF: B=0

(b) MAF: B=2

Customer

Company

Holding_Summary

Industry

(a) MI: B=0

(b) MI: B=2

Security

Customer

Company

Holding_Summary

Industry

Customer_Account

Figure 12: Summary graphs based on MAF, resp. MI weights.

show how the table and join coverage vary for different values of Q
and for B = 2. We then fix Q = 4 and report the coverage when
varying B from 0 to 4, in Figures 8 and 9. Clearly, summary graphs
based on MI weights achieve higher table and join coverage than
those based on MAF weights, for both TPCE-1 and TPCE-2. Note
that we use the same query sets Q in both TPCE-1 and TPCE-2,
and for both MI and MAF.

Not only is the quality of summary graphs higher under the MI
weights, but their complexity is smaller. Figures 10 and 11 show
that the density of summary graphs for MI weights is consistently
smaller than the density of summary graphs under MAF weights.
The densities in Figure 10 are computed for the graphs in Figure 6,
while those in Figure 11 correspond to graphs in Figure 8. Since
graph density is directly correlated to ease of understanding, we
conclude that MI-based summary graphs are both more informative
and more concise than their MAF-based counterparts.

Clearly, the differences in the quality of results are due to the
fact that the input values for the corresponding integer programs
are different. The most striking difference is that for some sets
Q, the shortest paths between query tables are different under the
two weight functions. We illustrate such an example in Figure 12,
which shows several summary graphs obtained for query tables
Customer, Holding Summary, Company and Industry.

When B = 0, the MAF-based summary graph has one more
edge between Customer and Company. This is because the short-
est path between these tables is different from that based on MI.
The difference becomes more clear when B = 2: For MI-based
weights, the shortest path between Customer and Company goes
through tables Customer Account, Holding Summary and Security.
Hence, when B = 0, this path is summarized as Customer−Hold-
ing Summary−Company. By contrast, for MAF-based weights,
the shortest path between Customer and Company goes through
table Address. For B = 0, it can only be summarized as the
metaedge Customer−Company. This example also illustrates how
a user could drill down for details: e.g., requesting details on the

metaedge Customer−Company in the summary graph for MAF and
B = 0 brings up the path Customer−Address−Company.

However, the main difference in these graphs is qualitative. The
MAF-based shortest path Customer−Address−Company is almost
meaningless. It connects customers and companies that share an
address - which may be coincidental. By contrast, the MI-based
shortest path between Customer and Company conveys significant
information about the operations of the brokerage firm simulated
by TPC-E.
Consistency The values reported in Figures 6 and 8 indicate that

summary graphs based on the MI weight achieve consistent cov-
erage for both TPCE-1 and TPCE-2. By contrast, results based on
MAF weights are more instance-dependent, with graphs in TPCE-1
having worse table coverage than those in TPCE-2.

For the remainder of this section, we focus only on MI weights.
Given their consistency, and due to space constraints, we report
only results for TPCE-1.

5.3 Choosing Budget Tables
In this section, we evaluate the effect that our strategy for choos-

ing budget tables has on the coverage and density of summary
graphs. Clearly, one strategy we could compare against is choosing
the budget nodes randomly from graph P , which is the union of
shortest paths that connect query tables. However, for many of the
query sets we have generated, the corresponding graphs P contain
fewer than 5 nodes. Choosing, e.g., 2 nodes randomly out of 5 is a
high variance experiment, which cannot be mitigated by reporting
the average over many trials (there are only 10 possible outcomes,
one of which coincides with that of the integer program).
Coordinated Summary Graphs Instead, our experiments are con-

ducted under the following scenario. Let the vertex size S = Q+B
of the summary graph be fixed. A baseline strategy we compare
with is to randomly choose all S nodes in the output. On the other
hand, we can choose only the Q query nodes randomly, for some
fixed Q, and the remaining S −Q budget nodes based on our inte-
ger program method. Varying Q from some minimum value Qmin

up to the maximum value S results in summary graphs with in-
creasingly random vertex sets. To control the effects of randomness
and have consistent comparisons, we enforce the condition that the
query set of size Q is a subset of the query set of size Q + 1, for
Qmin ≤ Q ≤ S. We say that such query sets, and their corre-
sponding summary graphs, are coordinated.

In our experiments, we set S = 7 and Qmin = 4. For Q =
Qmin, we generate 100 different query sets of size Q, each chosen
independently at random from the tables in TPC-E. For each such
query set in turn, we generate a series of coordinated query sets
for Q = 5, 6, 7, and compute coordinated summary graphs using
budget B = S − Q. Some of these series are incomplete; e.g.,
there may be no summary graph with Q = 4 and B = 3 because
there are only 2 non-query vertices in the union of shortest paths.
We dropped the incomplete series from our experiments, leaving
us with 85 series of coordinated graphs. (This is the reason we set
Qmin = 4 and S = 7: over all the choices we tried, this resulted
in the largest number of complete series).

We report the quality measures on the resulting summary graphs
in Figure 13. We show the averages over the 85 summary graphs
corresponding to each value Q. Figure 13(a) shows the trend in
graph density. Because Q + B = 7, the total number of nodes in
all summary graphs is the same. However, the graph density (and
therefore, the number of edges) increases with decreasing budget
nodes. The average graph density for Q = 7, B = 0 is almost
twice that for Q = 4, B = 3. As the total number of nodes remains
the same, the total number of edges in the summary increases. This

905

 0

 0.5

 1

 1.5

 2

Q4 Q5 Q6 Q7

G
ra

p
h
 D

e
n
s
it
y

Coordinated Summary Graphs

TPCE-1

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

Q4 Q5 Q6 Q7

C
o
v
e
ra

g
e

Coordinated Summary Graphs

TPCE-1

Table Coverage Φt
Join Coverage Φj

(b)

Figure 13: Density and coverage for coordinated summary

graphs, for Q + B = 7.

indicates that the budget nodes we choose help reduce the complex-
ity of summary graphs considerably.

Next, we evaluate the effect of budget nodes over the table and
join coverage of summary graphs. Increasing the number of ran-
domly chosen tables from Q = 4 to Q = 7 makes the average
table coverage Φt drop from 34% to 20%; see Figure 13(b). This
indicates that our strategy for choosing budget nodes increases the
quality of the graphs (while reducing their complexity, as discussed
above). The join coverage Φj has a different trend: it first increases
slightly with Q, then decreases. We believe this can be explained
as follows: Adding a new query table to the set means adding more
shortest paths connecting it to other query tables. Thus, the set of
edges over which the integer program is defined is larger, and we
have a higher chance of increasing the join coverage. However, this
chance is dampened by the fact that for higher Q we have lower B,
and therefore fewer choices of budget nodes (recall that only edges
adjacent to nodes in the summary count towards the join coverage).
Of these two opposite forces, the former seems to have slightly
higher impact, resulting in the trend in Figure 13(b). However, for
Q = 7, i.e., for the case when we have no choice in budget nodes,
the join coverage drops to the lowest value in the graph.

We conclude that our strategy for choosing budget nodes has
meaningful effects on both the complexity and the quality of the
resulting summary graphs.

5.4 Choosing Query Tables
We also studied how the quality of the summary graphs is im-

pacted by several deterministic strategies for choosing query sets.
These choices can be regarded as the system’s recommendations
for users who do not have any specific query plans. Rather, such
users may want a quick understanding of the most significant func-
tionality of the database.

Computing the summary graphs for such system-chosen query
sets can be regarded as an extension of the results from [22, 21].
More precisely, we choose the query sets based on the important
tables and cluster outputs from [21]. However, by computing sum-
mary graphs based on them, we provide significant additional in-
formation on the schema.

We studied four deterministic strategies for query table selec-
tion, based on the notions of table importance, cluster centers,
and weighted cluster distance developed in [21]. All four strate-
gies achieve similar coverage, which is significantly higher than
the coverage for a random choice of query tables. The improve-
ment is more than 100%, for all 3 ≤ Q ≤ 7. For example, for
Q = 7, deterministic strategies achieve table coverage of ≈ 50%,
with summary graphs that contain only ≈ 22% of the tables. Due
to space constraints, the graphs are in Appendix D.1.

We conclude that the deterministic strategies are extremely effi-
cient in generating summary graphs with high relevance.

6. CONCLUSION
We have introduced a novel concept for summarizing complex

schema graphs, called summary graph. The summary is adaptive
to user-specified query tables, and preserves the most informative
join paths between them. We proved that the problem of computing
an optimal summary graph is NP-Hard, and solved it as an integer
program. We have also defined an information-theoretic weight for
join edges, which may prove of independent interest. Our extensive
experimental study validates our weight definition as well as our
summary model, and shows that our method returns high-quality
summaries under independent quality measures.

Acknowledgment

We wish to thank Howard Karloff, who was instrumental in proving
the NP-Hardness result.

7. REFERENCES
[1] Standard specification of TPC benchmark. pages 57–172.

[2] E. Cohen. Fast algorithms for constructing t-spanners and paths with
stretch t. SIAM J. Comput., 28(1):210–236, 1998.

[3] T. Dasu, T. Johnson, S. Muthukrishnan, and V. Shkapenyuk. Mining
database structure; or, how to build a data quality browser. In
SIGMOD, pages 240–251, 2002.

[4] C. Faloutsos, K. S. McCurley, and A. Tomkins. Fast discovery of
connection subgraphs. In KDD, pages 118–127, 2004.

[5] H. He, H. Wang, J. Yang, and P. S. Yu. Blinks: ranked keyword
searches on graphs. In SIGMOD, pages 305–316, 2007.

[6] M. Jayapandian and H. V. Jagadish. Expressive query specification
through form customization. In EDBT, pages 416–427, 2008.

[7] J. Kang and J. F. Naughton. On schema matching with opaque
column names and data values. In SIGMOD, pages 205–216, 2003.

[8] G. Kasneci, S. Elbassuoni, and G. Weikum. Ming: mining
informative entity relationship subgraphs. In CIKM, pages
1653–1656, 2009.

[9] Y. Koren, S. C. North, and C. Volinsky. Measuring and extracting
proximity graphs in networks. TKDD, 1(3):245–255, 2007.

[10] A. Kraskov and P. Grassberger. Mic: Mutual information based
hierarchical clustering. In Information Theory and Statistical
Learning, pages 101–123, 2009.

[11] G. Li, J. Feng, B. C. Ooi, J. Wang, and L. Zhou. An effective 3-in-1
keyword search method over heterogeneous data sources. Inf. Syst.,
36:248–266, April 2011.

[12] B. Liu and H. V. Jagadish. A spreadsheet algebra for a direct data
manipulation query interface. In ICDE, pages 417–428, 2009.

[13] C. Ramakrishnan, W. H. Milnor, M. Perry, and A. P. Sheth.
Discovering informative connection subgraphs in multi-relational
graphs. SIGKDD Explor. Newsl., 7:56–63, December 2005.

[14] A. Rostin, O. Albrecht, J. Bauckmann, F. Naumann, and U. Leser. A
machine learning approach to foreign key discovery. In WebDB,
2009, http://webdb09.cse.buffalo.edu/program.html.

[15] D. Srivastava and S. Venkatasubramanian. Information theory for
data management. In SIGMOD Conference, pages 1255–1256, 2010.

[16] H. Tong and C. Faloutsos. Center-piece subgraphs: problem
definition and fast solutions. In KDD, pages 404–413, 2006.

[17] H. Tong, C. Faloutsos, and Y. Koren. Fast direction-aware proximity
for graph mining. In KDD, pages 747–756, 2007.

[18] TPC-E. http://www.tpc.org/tpce/tpc-e.asp.

[19] V. V. Vazirani. Approximation Algorithms. Springer, 2003.

[20] W. Wu, B. Reinwald, Y. Sismanis, and R. Manjrekar. Discovering
topical structures of databases. In SIGMOD, pages 1019–1030, 2008.

[21] X. Yang, C. M. Procopiuc, and D. Srivastava. Summarizing relational
databases. In VLDB, pages 634–645, 2009.

[22] C. Yu and H. V. Jagadish. Schema summarization. In VLDB, pages
319–330, 2006.

[23] M. Zhang, M. Hadjieleftheriou, B. C. Ooi, C. M. Procopiuc, and
D. Srivastava. On multi-column foreign key discovery. In VLDB,
pages 805–814, 2010.

906

APPENDIX

A. COMPUTING EDGE NOISE
To reduce the complexity of the summary graph problem to more

manageable levels, we propose the following heuristic preprocess-
ing, which breaks ties among shortest paths by adding random
noise: Let ∆ denote the smallest difference, over all pairs (R,S),
between the weights of the second-shortest, resp. shortest, paths
connecting R and S. Let n = |R| be the number of tables, and
ε = ∆/n. For each edge e ∈ E , we define wt′(e) = wt(e)+ν(e),
where ν(e) is a noise value drawn uniformly at random from (0, ε).
It is easy to see that any shortest path under wt′ is also a shortest
path under wt: the weight of a shortest path is increased by at most
(n − 1)ε < ∆. The reverse is not true: with high probability,
for each pair of nodes only one of the shortest paths under wt is
a shortest path under wt′ (we re-run the procedure in those rare
events when this fails).

a

b

c

d

a

b

c

d Xe
1

1

1

1

f

X

1.2

1.1

1.2

1.21.2

1

1
1

1

1.1
1.1

1.1

e
f

(a) (b)

Figure 15: Impact of noise on summary graphs. Query nodes

are filled circles: Q = 4. (a) original graph has summary of
weight Θ(Q); (b) noisy graph has summary of weight Θ(Q2).

In our experiments, ε ≈ 10−8. The resulting weights are all
strictly positive. Such changes could impact the combinatorial struc-
ture of the optimal summary graph, as well as its weight. Figure 15
shows an example where unlucky choices of noise may lead to a
significantly worse summary graph. For the graph in Figure 15(a),
all edge weights are 1. Query nodes are filled circles, so Q = 4.
There are 2 shortest paths between each pair of query nodes; e.g.,
a − X − c and a − e − c are shortest paths of weight 2 between a
and c. Similarly, a−X−b and a−f−b are shortest paths between
a and b. For budget B = 1, the optimal summary graph chooses X
as the budget node, and achieves weight Q.

Suppose that after adding noise, all edges incident to X have
weight 1.2, and all other edges have weight 1.1. Then X is no
longer on any shortest path between query nodes. Assume that
the summary graph chooses, e.g., f as the budget node (all other
cases are symmetric). Then all query nodes, except a and b, are
connected by direct metaedges of weight 2.2. The summary graph
is almost a clique, of weight Θ(Q2).

Despite the above example, we believe that in practice adding
edge noise leads to good results, for the following two reasons:

- First, the effects of noise addition can be mitigated by conduct-
ing several independent experiments, and reporting the best sum-
mary graph overall (where the summary graphs are compared in
terms of their original, noise-less weights).

- Second, the most informative connections between tables should
be resilient to the addition of small noise, so that they still appear in
the summary graphs. In other words, we do not expect real schema
graphs to exhibit the same sensitivity to noise as our made-up ex-
ample in Figure 15. This intuition is borne out by our experiments.

B. PROOFS

Proof of Theorem 1

The corresponding SUMMARY GRAPH DECISION problem is as
follows: Given query set Q, budget B and α > 0, is there a sum-
mary graph S of G with respect to Q and B such that wt(S) ≤
α? The reduction is from the following NP-Hard problem, called
CLIQUE IN (n−4)-REGULAR GRAPHS: Given graph J = (V, F)
on n vertices, each vertex having degree n − 4, and a number r, is
there a clique in J of size r?

a

a’

a"

(a) (b)

Figure 16: The reduction in the proof of Theorem 1: (a) an

(n − 4)-regular graph J; (b) the corresponding graph G: solid
edges have weight 1, dashed edges have weight 1.5, and dotted

edges (e.g., a − a′ and a − a′′) have weight 0.

We rephrase the summary graph decision problem as a choice of
budget nodes, which induces a summary graph. For any budget set
B ⊆ R \ Q, |B| ≤ B, let S(B) = (Q ∪ B, E1) be the minimum
weight summary graph induced by Q∪B. We now define f(B) =
wt(S(B)). The decision problem is to determine if there existsB ⊆
R \ Q, |B| ≤ B, such that f(B) ≤ α.
Reduction: Let J = (V, F) be an arbitrary instance of CLIQUE

IN (n− 4)-REGULAR GRAPHS. Build a clique K on V , with edge
weights wt(e) = 1 if e ∈ F , and 1.5 otherwise. Now triple the size
of the vertex set by adding, for each node u ∈ V , two new nodes
u′, u′′, and edges {u, u′} and {u, u′′}, both of weight 0. See Fig-
ure 16. Let the schema graph G = (R, E) be the resulting graph
(which is not a clique) on 3n vertices, with edge weights 0, 1, or
1.5. Choose Q = ∪u∈V {u′, u′′}, i.e., all the 2n newly-added ver-
tices. Choose budget B = r (r is the parameter of the clique prob-
lem), and define the threshold α=(β−(n− 4)(n− r))−(1/2)

`

r

2

´

,

where β=1.5
`

r

2

´

+3r(n − r)+6
`

n−r

2

´

.
We show that solving the summary decision problem for param-

eters Q, B and α leads to a solution of Clique in (n − 4)-Regular
Graphs. For all i, j ∈ Q, Πij is as follows:
Case 1. If {i, j} = {u′, u′′} for some u, then Πij = u′ − u − u′′

and wt(Πij) = 0.
Case 2. Otherwise, (i, j) ∈ {(u′, v′), (u′, v′′), (u′′, v′), (u′′, v′′)},
for some u 6= v, and Πij is the unique 3-edge path from i to j; its
first and last edges have cost 0 and its middle edge has cost 1 or
1.5, according to whether {u, v} is in F or not, respectively.

In all cases, the Πij ’s are unique shortest paths. Furthermore,
every edge of G is on one of the shortest paths.

Let B be a set of vertices in J of size B = r. We compute
f(B): Pairs in Case 1 contribute 0. For pairs in Case 2: if neither
u nor v is in B, we get a contribution of 4wt(u, v); if exactly one
is, the contribution is 2wt(u, v); and if both are, the contribution
is wt(u, v). Let a be the number of edges in J both of whose
endpoints are in B; let b be the number of edges in J , exactly one
of whose endpoints are in B; and let c be the number of edges in J
neither of whose endpoints are in B. A set B that minimizes f(B)

907

COMPANY_COMPETITOR

PK,FK1 CP_CO_ID

PK,FK2 CP_COMP_CO_ID

PK,FK3 CP_IN_ID

NEWS_XREF

PK,FK1 NX_NI_ID

PK,FK2 NX_CO_ID

BROKER

PK B_ID

FK1 B_ST_ID

COMPANY

PK CO_ID

FK1 CO_ST_ID

FK2 CO_IN_ID

FK3 CO_AD_ID

TRADE-REQUEST

PK,FK1 TR_T_ID

FK2 TR_TT_ID

FK3 TR_S_SYMB

FK4 TR_CA_ID

TRADE

PK T_ID

FK1 T_ST_ID

FK2 T_TT_ID

FK3 T_S_SYMB

FK4 T_CA_ID

SECTOR

PK SC_ID

STATUS_TYPE

PK ST_ID

FINANCIAL

PK,FK1 FI_CO_ID

PK FI_YEAR

PK FI_QTR

NEWS_ITEM

PK NI_ID

INDUSTRY

PK IN_ID

FK1 IN_SC_ID

DAILY_MARKET

PK DM_DATE

PK,FK1 DM_S_SYMB

SECURITY

PK S_SYMB

FK1 S_ST_ID

FK2 S_EX_ID

FK3 S_CO_ID

TAXRATE

PK TX_ID

CUSTOMER_TAXRATE

PK,FK1 CX_TX_ID

PK,FK2 CX_C_ID

WATCH_ITEM

PK,FK1 WI_WL_ID

PK,FK2 WI_S_SYMB

TRADE_TYPE

PK TT_ID

CHARGE

PK,FK1 CH_TT_ID

PK CH_C_TIER

COMMISSION_RATE

PK CR_C_TIER

PK,FK1 CR_TT_ID

PK,FK2 CR_EX_ID

PK CR_FROM_QTY

SETTLEMENT

PK,FK1 SE_T_ID

CUSTOMER_ACCOUNT

PK CA_ID

FK2 CA_B_ID

FK3 CA_C_ID

CUSTOMER

PK C_ID

FK2 C_AD_ID

FK3 ST_ID

WATCH_LIST

PK WL_ID

FK1 WL_C_ID

ACCOUNT_PERMISSION

PK,FK2 AP_CA_ID

PK AP_TAX_ID

LAST_TRADE

PK,FK1 LT_S_SYMB

EXCHANGE

PK EX_ID

FK1 EX_AD_ID

ADDRESS

PK AD_ID

FK1 AD_ZC_CODE

ZIP_CODE

PK ZC_CODE CASH_TRANSACTION

PK,FK1 CT_T_ID

HOLDING

PK,FK1 H_T_ID

FK2 HS_CA_ID

FK2 HS_S_SYMB

TRADE_HISTORY

PK,FK1 TH_T_ID

PK,FK2 TH_ST_ID

HOLDING_HISTORY

PK,FK1 HH_H_T_ID

PK,FK2 HH_T_ID

HOLDING_SUMMARY

PK,FK1 HS_CA_ID

PK,FK2 HS_S_SYMB

Broker

Customer

Market

Dimension

Figure 14: TPC-E Schema Graph.

is obtained by minimizing:

[1·a+1.5(
“r

2

”

−a)]+[2·1·b+2·1.5(r(n−r)−b)]+[4·1·c+4·1.5(
“n − r

2

”

−c)]

= [1.5
“r

2

”

+ 3r(n − r) + 6
“n − r

2

”

] − a/2 − b − 2c.

Let β = 1.5
`

r

2

´

+ 3r(n − r) + 6
`

n−r

2

´

. Hence the goal is to
minimize β − (a/2 + b + 2c). Since the input graph is ∆-regular
for ∆ = n − 4, a + b + c = (∆/2)n, so c = (∆/2)n − a − b.
Our goal is now to minimize (β − ∆n) + (1.5a + b).

But 2a+ b is the sum of degrees of the vertices in B with respect
to graph J , so 2a + b = ∆r. Therefore 1.5a + b = ∆r − a/2.
The goal now is to minimize (β −∆n + ∆r)− a/2, which means
maximizing a. Therefore we can choose a =

`

r

2

´

, i.e., achieve cost

f(B) = (β − ∆n + ∆r) − (1/2)
`

r

2

´

= α, if and only if J has a
clique of size r.

Proof of Proposition 1

By definition of P , dP(R, S) = dG(R, S) for any pair of query
nodes R, S ∈ Q.

We prove (ii) first: Let S be an optimal summary graph of G with
respect to Q, and let (A,B) be an arbitrary edge in S . Then (A,B)
must appear on at least one shortest path Π = R− · · · −A−B −
· · · − S in S , for some pair of nodes R, S ∈ Q; otherwise, we
could delete (A, B) and lower the total weight of S . By definition,
the shortest path Π must belong to P .

To prove part (i), we first show that S is a summary graph of P .
From the discussion above, any edge (A,B) of S is a metaedge
in P (not just in G). In addition, Definition 2, with P playing the
role of G, is trivially verified. (Note that dS(R, S) = dG(R, S)
= dP(R,S) for any two query nodes R, S ∈ Q.) Conversely,

let S ′ be an optimal summary graph of P with respect to Q. We
show that S ′ is a summary graph of G. Clearly, all edges in S ′ are
metaedges of G and Definition 2(i) is true. Let R, S ∈ Q be two
arbitrary query nodes. Then dS′(R,S) = dP(R, S) = dG(R,S),
so Definition 2(ii) holds. Let Π1 be a shortest path in S ′ between
R and S. Since S ′ is a summary graph of P , there must exist a
shortest path Π2 in P , between R and S, so that all nodes in Π1

appear in the same order in Π2. By definition of P , and since the
shortest path between R and S is unique, Π2 is also the shortest
path in G.

Since S is an optimal summary graph of G, and S ′ is a summary
graph of G, we deduce wt(S) ≤ wt(S ′). Similarly, the optimal-
ity of S ′ with respect to P implies wt(S ′) ≤ wt(S). Therefore
wt(S) = wt(S) and claim (i) is verified.

Proof of Proposition 2

We prove that any feasible solution of the integer program is a
summary graph of P with no cross-over metaedges, and viceversa.
By Proposition 1(ii), the optimal solution of the integer program is
an optimal summary graph of P . Proposition 1(i) then implies that
the optimal solution is also an optimal summary graph of G.

Consider a feasible solution [x, y]. Inequalities (1)-(3) ensure
that each pair of query nodes i, j remains connected in the sum-
mary graph, via metaedges along Πij : constraint (3) requires that
we choose at least one metaedge (u, v) along each path Πij . Con-
straints (1) and (2) require that, once (u, v) is chosen, we must also
choose some metaedges (w1, u) and (v, w2) along Πij . Appplying
constraints (1) and (2) iteratively to (w1, u) and (v, w2), we obtain
that i and j are connected by metaedges along path Πij . Clearly,
this implies that Definition 2(ii)-(iii) is satisfied for graph P .

Constraints (4), (5) and (7) ensure that Definition 2(i) is satis-
fied: constraint (4) ensures that, if we choose any metaedge with

908

endpoint u in the summary, then we also choose u in the summary,
i.e., we count u towards the budget. Constraint (5) is the budget
restriction, and constraint (7) ensures that Q is in the summary.

Conversely, if S is a summary subgraph of G with no crossover
metaedges, define xuv = 1, yu = 1 and yv = 1 for all metaedges
(u, v) in S . Inequalities (1)-(8) are clearly satisfied, so [x, y] is a
feasible solution.

C. MUTUAL INFORMATION
We briefly review the relevant definitions from information the-

ory (for more details, see [15]). Let (X, Y) denote a joint distri-
bution. For each tuple (x, y) ∈ (X, Y), let p(x, y) define the fre-
quency with which the tuple (x, y) appears in the joint distribution.
The marginal probability on X is pX(x) =

P

y
p(x, y),∀x ∈ X,

i.e., the frequency with which x appears as the first value in a tuple
from (X, Y). The marginal probability pY (y) is similarly defined.
The pointwise mutual information for any tuple (x, y) ∈ (X, Y) is
defined as

i(x, y) = log
p(x, y)

pX(x)pY (y)
.

The mutual information of X and Y , denoted I(X, Y), is the ex-
pected value of the pointwise mutual information, i.e.,

I(X, Y) =
X

(x,y)∈(X,Y)

p(x, y)i(x, y).

For any probability distributon X, the entropy of X is defined as
H(X)=−

P

x∈X
p(x) log p(x). It is well known that I(X,Y) =

H(X, Y) − H(X|Y) − H(Y |X). Hence, I(X,Y) ≤ H(X,Y).
Moreover, the function

D(X, Y) =
H(X,Y) − I(X, Y)

H(X,Y)
= 1 −

I(X,Y)

H(X,Y)

is a metric distance [10] with D(X, X) = 0 and D(X, Y) ∈ [0, 1].
It is easy to see that D(X, Y) = 0 if and only if H(Y |X) =
H(X|Y) = 0, i.e., distribution X completely determines distribu-
tion Y and vice-versa.

Thus, if X and Y are database columns (and we define their
joint distribution appropriately), distance D meets our goal for edge
weights: it is a dissimilarity measure, i.e., the smaller the D, the
closer the columns are. Note that if, e.g., Y is a primary key col-
umn, then H(X|Y) = 0 and I(X,Y) = H(X, Y) − H(Y |X) is
generally larger than if neither X nor Y is a primary key. For a fair
comparison, we require all edges to have one endpoint a primary
key.

D. ADDITIONAL EXPERIMENTS
Transaction log The TPC-E benchmark comes with 12 transac-

tions [1], including one clean-up transaction, simulating customer
and broker interactions with the system and the behavior of real
market. As these transactions reflect the usage of the database, we
view them as a special form of query log for TPC-E. The database-
footprint [1] of each transaction lists all the tables and columns
involved, as well as the corresponding operations over them. We
conduct an analysis on all the database footprints and record the
number n(T) of operations performed on each table T over differ-
ent columns or entire rows. Then f(T) = n(T)/

P

R∈R n(R).
We also analyze the pseudo-code of all transactions and record the
number of times a join between a pair of tables R and S is issued.

Let n(R,S) be this number. Then f(R, S) = n(R,S)
P

(A,B)∈E
n(A,B)

.

These values are used to compute the table and join coverage as in
Definition 4.

Parameters TPCE-1 TPCE-2

Number of Customers 1,000 5,000

Initial Trade Days 20 10

Scale Factor 1,000 36,000

Table 1: Parameters of EGen for TPC-E.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

Q3 Q4 Q5 Q6 Q7

T
a
b
le

 C
o
v
e
ra

g
e

Summary Graphs

TPCE-1

TI
CC
CTI
CID

Random

(a)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

Q3 Q4 Q5 Q6 Q7

J
o
in

 C
o
v
e
ra

g
e

Summary Graphs

TPCE-1

TI
CC
CTI
CID

Random

(b)

Figure 17: Coverage of summary graphs (B=0) for different

strategies of choosing query sets.

D.1 Choosing Query Tables
Our previous experiments were conducted over randomly cho-

sen sets of query tables. This simulates the way a large variety of
queries would be asked of the system, by users with different needs
or expertise.

In this section, we study how the quality of the summary graphs
is impacted by several deterministic strategies for choosing the query
sets. These choices can be regarded as the system’s recommenda-
tions for users who do not have any specific query plans. Rather,
such users may want a quick understanding of the most significant
functionality of the database. Computing the summary graphs for
such system-chosen query sets can be regarded as an extension of
the results from [22, 21]. More precisely, we choose the query sets
based on the important tables and cluster outputs from [21]. How-
ever, by computing summary graphs based on them, we provide
significant additional information on the schema.

We studied four deterministic strategies for query table selection,
as follows (see [21] for related definitions):

-TI: Select tables in decreasing order of Table Importance.
-CC: Select tables in the sequence in which they are chosen as

Cluster Centers.
-CTI: Group tables into k clusters. In the ith (1 ≤ i ≤ Q)

iteration, select the table with current maximum Table Importance
among clusters with fewer than ⌈i/k⌉ selected tables.

-CID: Group tables into k clusters. In the first k iterations,
choose the cluster centers. In the ith (k + 1 ≤ i ≤ Q) itera-
tion, choose the table with current maximun weighted distance to
its cluster center, among clusters with fewer than ⌈i/k⌉ selected
tables.

We study the effect of these strategies on the coverage and graph
complexity of summary graphs, and compare them with the random
method. For the latter, we choose 100 random query sets for each
given size Q, and report the average measures over the results.

Figure 17 shows the table and join coverage, when the query
sets are chosen via the 4 deterministic strategies and the random
method. We report the results for B = 0, i.e., the quality of the
graphs is determined only by the choice of query tables. Note
that the 4 deterministic strategies achieve similar table coverage,
which is significantly higher than the table coverage of the random
method. In fact, the improvement of any deterministic strategy over
the random method is more than 100% across the board; e.g., in
Figure 17(a) and for Q = 5, the table coverage of the random

909

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

B0 B1 B2

T
a
b
le

 C
o
v
e
ra

g
e

Summary Graphs

TPCE-1

Deterministic
Random

(a)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

B0 B1 B2

J
o
in

 C
o
v
e
ra

g
e

Summary Graphs

TPCE-1

Deterministic
Random

(b)

Figure 18: Coverage of summary graphs (Q=4) for different

strategies of choosing query sets.

 0

 0.5

 1

 1.5

 2

Q3 Q4 Q5 Q6 Q7

G
ra

p
h
 D

e
n
s
it
y

Summary Graphs

TPCE-1

TI
CC
CTI
CID

Random

(a)

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

B0 B1 B2

G
ra

p
h
 D

e
n
s
it
y

Summary Graphs

TPCE-1

Deterministic
Random

(b)

Figure 19: Graph density of summary graphs.

method is less than 20%, while the deterministic methods achieve
more than 40%. Notice also that for Q = 7, deterministic strate-
gies achieve table coverage of ≈ 50%, with summary graphs that
contain only ≈ 22% of the tables. We conclude that the determin-
istic strategies are extremely efficient in selecting the tables with
highest query log frequencies.

For the join coverage, the differences between deterministic and
random strategies are smaller, with the random method achieving
comparable coverage for higher Q.

Finally, we compare the combined effect of query and budget
choices. We fix Q = 4 and vary B from 0 to 2 (the largest
possible value in the deterministic case). The results for all de-
terministic methods are virtually identical, so we report only one
set, dubbed Deterministic, in Figure 18. As before, the de-
terministic methods achieve higher table coverage, as well as join
coverage, compared to the random method. Note, however, that the
difference in coverage decreases with increasing B. This indicates
that the random method benefits from our strategy of choosing bud-
get nodes.

The corresponding graph densities of the summary graphs in
these experiments are shown in Figure 19. For B = 0, determinis-
tic strategies achieve lower graph complexity than random method,
with the differences becoming more significant as Q increases. For
fixed Q = 4 and varying B, graph densities decrease with increas-
ing B, for the random method. For the deterministic methods, the
density is 1 (the smallest possible) for all B. See Figure 19(b).

D.2 Coverage Measures without Query Log
Our definitions of coverage use the frequency of tables and joins

in the query log, to arrive at independent quality measures. How-
ever, for many databases, such query logs are not available. To
compare summary graphs over databases in the absence of logs,
we need alternative, instance-based measures.

In this section, we propose a different definition for table cover-
age, based on the notion of table importance from [21]. In addition,
we propose a definition for join coverage based on a combination of

Query Set Choice TI CC CTI CID Random

∆t 0.041 0.044 0.051 0.039 0.040

∆j 0.030 0.018 0.051 0.020 0.053

Table 2: Average differences between Φ and µ over query sets
chosen by different strategies (for all 3 ≤ Q ≤ 10 and 0 ≤ B ≤
10.)

table importance and mutual information on edges. Clearly, the lat-
ter is related to our weight function, so it is not completely indepen-
dent of our methods for generating summary graphs. Nevertheless,
we show that these measures are very close to the corresponding
measures based on the query log, for TPC-E. Therefore, they can
provide a valid picture on the quality of our outputs, and are a good
proxy for the cases when no query logs are available.

Definition 5. Let G = (R, E) be a schema graph and S =
(Rs, Es) be a summary graph of G. Let I(T) denote the impor-
tance of table T (as in [21]). For any edge (R, S) ∈ E , let I(R,S)
and H(R,S) denote the mutual information, resp. the entropy, of
the joint distribution along join (R, S) as defined in Section 4.2.

We define I(R, S) = I(R)+I(S)
2

· I(R,S)
H(R,S)

.

(i) The instance-based table coverage of S is µt =
P

T≺S
I(T)

P

R∈R
I(R)

.

(ii) The instance-based join coverage of S is µj =
P

(R,S)≺S
I(R,S)

P

(A,B)∈E
I(A,B)

.

The above definition of table coverage is straightforward: the
most relevant tables are those with highest table importance (in-
stead of highest query frequency). For the join coverage, the in-
tuition is as follows. It is natural to define the relevance of an
edge as proportional to the average relevance of its endpoints, i.e.,

I(R, S) ∼ I(R)+I(S)
2

. However, we dampen this value by the

strength of the connection along the join edge. Note that I(R,S)
H(R,S)

=

1 − D(R, S) is a similarity measure, and 0 ≤ I(R,S)
H(R,S)

≤ 1 (recall

the definition of D(·, ·) from Section 4.2).
For any summary graph, we define ∆t = |Φt − µt| and ∆j =

|Φj − µj |, where Φt and Φj are the query log-based measures
from Definition 4. Table 2 shows the average ∆t and ∆j over
all summary graphs computed in Section D.1. All differences are
small, both in absolute and in relative terms; i.e., ∆t/Φt ≤ 15%).
Hence, the instance-based coverage measures are a valid alternative
in the absence of query logs.

E. MAF WEIGHTS
The following notions were defined in [21]. Let R be a ta-

ble with tuples τ1, . . . , τn and e = (R, S) be an adjacent join
edge. For each τi, fanoute(τi) is the number of tuples in S that
τi joins with along e. Let q be the number of tuples in R with
fanoute(τi) > 0. The matching fraction of R with respect to e
is fe(R) = q/n, and the matched average fanout of R with re-

spect to e is mafe(R) =
Pn

i=1 fanoute(τi)

q
. The strength of edge

(R, S) was defined as strength(R,S) = fe(R)fe(S)
mafe(R)mafe(S)

. It is a

similarity measure.
In this paper, we define the MAF weight as wtMAF (R, S) =

log(1/strength(R,S)), which is a dissimilarity measure. This
extends to a distance function in G that is different from the one
in [21], but the shortest paths are identical under both distances:
For a path π : A = R0 − R1 − . . . − Rα = B, wtMAF (π) =
−

Pα

i=1 log(strength(Ri−1, Ri)). Then dG(A,B) is achieved on
the path that maximizes the product Πistrength(ei) over its edges
- the same as in [21].

910

