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ABSTRACT
Retrieving graphs containing a query graph from a large graph
database is a key task in many graph-based applications, includ-
ing chemical compounds discovery, protein complex prediction,
and structural pattern recognition. However, graph data handled
by these applications is often noisy, incomplete, and inaccurate be-
cause of the way the data is produced. In this paper,we study sub-
graph queries over uncertain graphs. Specifically, we consider the
problem of answering threshold-based probabilistic queries over
a large uncertain graph database with the possible world seman-
tics. We prove that problem is #P-complete, therefore, we adopt
a filtering-and-verification strategy to speed up the search. In the
filtering phase, we use a probabilistic inverted index, PIndex, based
on subgraph features obtained by an optimal feature selection pro-
cess. During the verification phase, we develop exact and bound
algorithms to validate the remaining candidates. Extensive experi-
mental results demonstrate the effectiveness of the proposed algo-
rithms.

1. INTRODUCTION
In this paper, we study the problem of subgraph matching over

large uncertain graphs. A large variety of applications work on
graph structured data, and in many cases, the graph data they deal
with are uncertain or noisy by nature [1, 4, 5, 8, 14, 24, 21, 20, 31].

For example, in bioinformatics, protein-protein interaction (PPI)
networks obtained through experiments are noisy – they may con-
tain interactions that do not really exist and at the same time they
may miss real interactions [8, 26, 31]. It is thus more natural to
represent a PPI network as an uncertain graph where nodes (pro-
teins) are connected by uncertain edges associated with numerical
values which indicate the possibility of interaction between the pro-
teins. As another example, in visual pattern recognition, graphs are
used to model visual objects, and since information is incomplete
or noisy, such representations are uncertain [4, 21, 24]. It has been
shown that methods finding probabilistic matches outperform exact
matching algorithms [34] in many aspects. Uncertainty also arises
in social networks: links between two persons are often associated
with probabilities that represent the uncertainty of the link [20] or
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Figure 1: Uncertain graph database & Query graphs.

the strength of influence a person has over another person in virtual
marketing [12].

In the aforementioned applications, graph matching is a typi-
cal query for many interesting tasks, such as identifying scenes
(graphs) in visual pattern recognition [4, 21], predicting complex
biological interactions (graphs) [8, 31], and finding social commu-
nities (graphs) [12]. Therefore, it is important to study subgraph
matching over large uncertain graphs.

1.1 Probabilistic Subgraph Matching
In this paper, we focus on threshold-based probabilistic sub-

graph matching (T-PS) over a large set of uncertain graphs. Specif-
ically, let D = {g1, g2, ..., gn} be a set of uncertain graphs, let
q be a query graph, and let ϵ be a probability threshold, a T-PS
query retrieves all graphs g ∈ D such that the subgraph isomor-
phic probability (SIP) between q and g is not smaller than ϵ. We
will formally define SIP in Section 2.

Example 1. Figure 1.1 shows a database that contains two un-
certain graphs (001 and 002) and two query graphs (q1 and q2).
Vertices and edges are labeled (A, B, C, ...; a, b, c, ...), and a real
number associated with each vertex and each edge represents the
existence probability of the vertex or edge.

The first question we must answer is, what constitutes a match in
uncertain graphs? To answer this question, we employ the possible
world semantics [30, 11], which has been used for modeling query
processing over probabilistic databases. A possible world graph
(PWG) of is a possible instance of an uncertain graph. It contains
a subset of vertices and edges of the uncertain graph, and it has a
weight which is the product of the probabilities of all the vertices
and edges it has. Then, for a query graph q and an uncertain graph
g, the probability that q matches g is the summation of the weights
of those PWGs of g that are subgraph-isomorphic to q.

Example 2. Figure 1.1 lists all the PWGs of uncertain graph
001 and their weights. Altogether there are 18 PWGs for graph
001, and the sum of all the weights is 1. To decide if q1 matches
uncertain graph 001, we first find all of 001’s PWGs that contain
q1 as a subgraph. Note that, “g contains q as a subgraph” means
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Figure 2: Possible world graphs of uncertain graph 001.

that q is subgraph-isomorphic to g. The results are PWGs 7, 14,
15, 17 and 18. Next, we add up the probabilities of these PWGs:
0.054+ 0.00648+ 0.13608+ 0.05832+ 0.01512 = 0.27072. If,
for example, the query specifies a threshold of 0.4, then q1 fails to
match uncertain graph 001 since 0.27072 < 0.4.

The above example gives a naive solution to T-PS query process-
ing. We call it SCAN , as it needs to enumerate all PWGs of an
uncertain graph, and conducts the subgraph isomorphism test for
each PWG. SCAN is very inefficient due to the exponential num-
ber of PWGs and the hard problem of subgraph isomorphism test.
In fact, it is not difficult to see that SCAN is NP-complete [13].
Clearly, an efficient solution is preferred. In this paper, we propose
a filtering-and-verification method to solve this problem.

1.2 Our Method and Our Contributions
For a dataset of uncertain graphs D = {g1, ..., gn} and a query

graph q, we perform T-PS query in three steps, namely, structural
pruning, probabilistic pruning, and verification.

Structural Pruning
The idea of structural pruning is straightforward. If we remove the
uncertainty1 in an uncertain graph, and the resulting graph still does
not contain q, then the original uncertain graph cannot contain q.
Formally, for g ∈ D, let gc denote the corresponding deterministic
graph after removing the uncertainty information from g. We have

Theorem 1. If q * gc, Pr(q ⊆ g) = 0.

where ⊆ denotes graph isomorphic relationship, and Pr(q ⊆ g)
denotes the subgraph isomorphism probability for q in g.

Based on this observation, given D and q, we can prune the
database Dc = {gc1, ..., gcn} using conventional exact graph match-
ing methods. In this paper, we adopt the method in [29] to scan the
index once to compute the final results. Though there are many
works [29, 33, 7, 16, 15] that can be used for structural pruning,
theoretical and evaluation results in [7] show that [29] has more ef-
ficient runtime than other works. Assume the result after structural
pruning is SCc

q = {gc|q ⊆ gc, gc ∈ Dc}. Then, its corresponding
uncertain graph set, SCq = {g|gc ∈ SCc

q}, is the input for un-
certain graph matching in the next step. Note that we need to build
a tree index [29] for all deterministic graphs. In query processing,
we only scan the tree index once to compute final results, which is
quite efficient.
1That is, set the probability of each uncertain edge and vertex to 1.

Probabilistic Pruning
To further prune the results, we propose a probabilistic inverted in-
dex (PIndex) for probabilistic pruning. For a given set of uncertain
graphs D and its corresponding set of deterministic graphs Dc, we
create a feature set F from Dc, where each feature is a determin-
istic graph, i.e., F ⊂ Dc. For each f ∈ F , we create an inverted
index Df :

Df = {⟨g, Pr(f ⊆ g)⟩|f ⊆ gc, g ∈ D}

where Pr(f ⊆ g) is the subgraph isomorphism probability. A
challenging issue in this step is selecting features for PIndex. As
we will show in Section 3.2, any frequent subgraphs may have good
pruning power. However, it would be unrealistic to index all of
them. One of our contributions in this work is cost model-based
feature selection. We start with frequent subgraphs denoted as F0

and devise a model to estimate query cost. Then, we select the best
feature set F ⊂ F0 that optimizes the cost model. We prove that
solving the exact optimization problem is hard and we propose an
approximate approach, which enables us to derive an inverted index
of small size and powerful pruning capability.

To avoid computing Pr(f ⊆ g) directly (#P-complete), we ap-
proach Pr(f ⊆ g) with its lower and upper bounds: LowerB(f)
and UpperB(f). Both LowerB(f) and UpperB(f) can be cal-
culated efficiently. Furthermore, we convert the problem of com-
puting bounds into the maximum clique problem so that we can
obtain tight bounds. Most important of all, we derive two pruning
conditions to filter out uncertain graphs for a query q as follows.

Pruning 1. Given a query q and a threshold ϵ, if ∃f ∈ F such
that q ⊇ f and Pr(f ⊆ g) < ϵ, then g can be safely pruned.

Pruning 2. Given a query q and a threshold ϵ, if ∃f ∈ F such
that q ⊆ f and Pr(f ⊆ g) ≥ ϵ, then g is in the final answers.

Verification
In this step, we calculate Pr(q ⊆ g) for query q and candidate
answer g to make sure g is really an answer, i.e. Pr(q ⊆ g) ≥ ϵ.
Our contribution in this step is that we utilize a very tight bound
on the output of each step during the computation of the exact SIP,
which enables us to stop the computation as early as possible.

1.3 Paper Organization
The rest of this paper is organized as follows. We formally define

T-PS queries over uncertain graphs in Section 2. Section 3 presents
algorithms for probabilistic pruning, where an optimal feature se-
lection strategy is used to maximize probabilistic pruning. We pro-
pose exact and bound algorithms for calculating SIP in Section 4.
We discuss the results of performance tests on real data sets in Sec-
tion 5 and the related work in Section 6. We conclude our work in
Section 7.

2. PROBLEM DEFINITION
In this section, we define some necessary concepts and show the

complexity of our problem. Table A in Appendix summarizes the
notations used in this paper.

Following the proposed uncertain graph models in pervious works
[17, 25, 35, 36], we define the uncertain graph as follows.

Definition 1. (Uncertain Graph) Let gc = (V,E,Σ, L) be an
undirected deterministic graph2 where V is a set of vertices, E is
a set of edges, Σ is a set of labels, and L : V ∪ E → Σ is a
function that assigns labels to vertices and edges. An uncertain
2In this paper, we consider undirected graphs, although it is straightforward
to extend our methods to other types of graphs.
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graph is defined as g = (gc, PV , PE), where PV : V → [0, 1] is a
function that assigns existence probabilities to vertices in V , and
PE : E → [0, 1] is a function that assigns existence probabilities3

to edges in E.

This model is complete, since it can represent any pdf of a prob-
abilistic graph. We denote gc as g’s corresponding deterministic
graph. Clearly, gc is a special uncertain graph with PV = 1 and
PE = 1. We refer the size of gc or g as the size of its edge set.

Definition 2. (Possible World Graph) A possible world graph
g′ = (V ′, E′,Σ′, L′) is an instantiation of an uncertain graph
g = ((V,E,Σ, L), PV , PE), where V ′ ⊆ V , E′ ⊆ E∩(V ′×V ′),
Σ′ ⊆ Σ, and L′ is the function obtained by restricting L to V ′∪E′.
We denote the relationship between g′ and g as g ⇒ g′.

Both g′ and gc are deterministic graphs. But an uncertain graph
g corresponds to one gc and multiple possible world graphs. We
use PWG(g) to denote the set of all possible world graphs derived
from g. For example, Figure 1.1 listed all the 18 possible world
graphs of the uncertain graph 001 in Figure 1.1.

Following the convention in [4, 8, 24, 21, 23, 26, 31, 34], we
assume the existences of different edges or different vertices in an
uncertain graph are independent. Then, the probability of a possible
world graph g′ is given by [35, 36]:

Pr(g ⇒ g
′
) =

∏
v∈V ′

PV (v)
∏

v∈V \V ′
(1 − PV (v))

∏
e=(u,v)∈E′

PE(e|u, v)

∏
e=(u,v)∈E∩(V ′×V ′)\E′

(1 − PE(e|u, v)).
(1)

Clearly, for any possible world graph g′, we have Pr(g ⇒ g′) >
0 and

∑
g′∈PWG(g) Pr(g ⇒ g′) = 1, that is, each possible world

graph has an existence probability, and the sum of these probabili-
ties is 1.

We are not the first to assume the independence of vertices or
edges in an uncertain graph [17, 35, 36, 25]. Furthermore, we make
the assumption based on many real applications [31, 8, 26, 24, 21,
4, 34, 23]. For example, in PPI networks, biologists first estab-
lish elementary links with probabilities between proteins, then use
machine learning tools to predict other possible links based on the
elementary links. The elementary links are assumed to be indepen-
dent of each other, and models are trained over the marginal prob-
abilities. Their empirical studies show the assumption works well
and the result is consistent with the ground truth4. As another ex-
ample, in uncertain social networks [1] modeled by a probabilistic
relational database, nodes are assumed to be independent as well.

Definition 3. (Subgraph Isomorphism) Given two graphs g1 =
(V1, E1,Σ1, L1) and g2 = (V2, E2,Σ2, L2), we say g1 is sub-
graph isomorphic to g2 (denoted by g1 ⊆ g2), if and only if there
is an injective function f : V1 → V2 such that:

• for any (u, v) ∈ E1, (f(u), f(v)) ∈ E2;

• for any u ∈ V1, L1(u) = L2(f(u));

• for any (u, v) ∈ E1, L1(u, v) = L2(f(u), f(v)).

The subgraph (V3, E3) of g2 with V3 = {f(v)|v ∈ V1} and E3 =
{(f(u), f(v))|(u, v) ∈ E1} is called the embedding of g1 in g2.

When g1 is subgraph isomorphic to g2, we also say that g1 is a
subgraph of g2 and g2 is a super-graph of g1.
3These are conditional probabilities given that endpoints of the edges exist.
4More details can be found in http://string-db.org.
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Definition 4. (Subgraph Isomorphism Probability) For a given
query graph q and an uncertain graph g, we define their subgraph
isomorphism probability as

Pr(q ⊆ g) =
∑

g′∈SI(q,g)

Pr(g ⇒ g′) (2)

where SI(q, g) is g’s possible world graphs that are subgraph iso-
morphic to q, that is, SI(q, g) = {g′ ∈ PWG(g)|q ⊆ g′}.

Definition 5. (Probabilistic Subgraph Query) Given a set of
uncertain graphs D = {g1, ..., gn}, a query graph q, and a prob-
ability threshold ϵ (0 < ϵ ≤ 1), a subgraph query returns a set of
uncertain graphs {g ∈ D|Pr(q ⊆ g) ≥ ε}.

From Definition 5, we know that in order to answer probabilis-
tic subgraph queries efficiently, we must be able to calculate SIP
(subgraph isomorphism probability) efficiently. We now give the
complexity of calculating SIP.

Theorem 2. It is #P-complete to calculate the subgraph iso-
morphism probability.

Proof. The proof is included in Appendix A.1. �

3. PROBABILISTIC PRUNING
As we mentioned in Section 1.2, we first conduct structural prun-

ing to remove uncertain graphs that do not contain the query graph
g. In this step, we remove the uncertainty in an uncertain graph
and adopt the method proposed in [29] for pruning the determinis-
tic graphs. Thus, the focus of this paper lies on the second and the
third steps: probabilistic pruning and verification. We discuss prob-
abilistic pruning and verification techniques in detail in this and the
next sections, respectively.

3.1 Upper and Lower Bounds
We introduced two probabilistic pruning conditions in Section

1.2. However, to use these two conditions, we have to compute
Pr(f ⊆ g), which is proven to be #P-complete. Therefore, we
approach Pr(f ⊆ g) using its upper and lower bounds and conduct
pruning using the two bounds.

3.1.1 Pruning Conditions
Assuming we already have the lower bound LowerB(f) and

the upper bound UpperB(f) of Pr(f ⊆ g), we can rewrite the
pruning conditions given in Section 1.2 as follows.

Pruning 1. Given a query q, a threshold ϵ, if ∃f ∈ F such that
q ⊇ f and UpperB(f) < ϵ, then g can be safely pruned from
SCq .

Pruning 2. Given a query q and a threshold ϵ, if ∃f ∈ F such
that q ⊆ f and LowerB(f) ≥ ϵ, then g is the final answers, i.e.,
g ∈ Aq , where Aq is the final answer set.
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Before proving the correctness of the above two pruning condi-
tions, we first introduce a lemma about Pr(q ⊆ g), which will
be used for the proof. Let Eq = {q1, .., q|Eq|} be the set of all
embeddings of q in the deterministic graph gc, Bqj be a boolean
variable for 1 ≤ j ≤ |Eq|, and Pr(Bqj) be the probability that
the embedding qj exists in g. We have

Lemma 1.

Pr(q ⊆ g) = Pr(Bq1 ∨ ... ∨Bq|Eq|). (3)

Proof. The proof is included in Appendix A.2. �
With Lemma 1, we can prove the two pruning conditions.

Theorem 3. Given a query q and threshold ϵ, if ∃f ∈ F such
that q ⊇ f and UpperB(f) < ϵ, then g can be safely pruned from
SCq .

Proof. The proof is included in Appendix A.3. �

Theorem 4. Given a query q and a threshold ϵ, if ∃f ∈ F such
that q ⊆ f and LowerB(f) ≥ ϵ, then g is in the final answers,
i.e., g ∈ Aq .

Proof. The proof is included in Appendix A.4. �
Note that the pruning process needs to address the traditional

subgraph isomorphism problem (q ⊆ f or q ⊇ f ). In our work,
we implement the state-of-the-art method VF2 [9] that gives a fast
solution to subgraph isomorphism.

3.1.2 Deriving the Upper and Lower Bounds
In this subsection, we discuss how to efficiently compute the two

bounds LowerB(f) and UpperB(f).
From Lemma 1, we have:

Pr(f ⊆ g) = Pr(Bf1 ∨ ... ∨Bf|Ef |)

= 1− Pr(Bf1 ∧ ... ∧Bf|Ef|).
(4)

Boolean variables Bfi, 1 ≤ i ≤ |Ef |, may have common
parts, thus Bfi, 1 ≤ i ≤ |Ef |, are not independent, which means
Pr(Bf1 ∧ ...∧Bf|Ef |) ̸=

∏|Ef|
i=1 Pr(Bfi). If we choose a group

of features, among |Ef | boolean variables, that cannot have com-
mon parts, their corresponding boolean variables are independent
each other. For example, consider uncertain graph 002 and feature
f1 in Figures 1.1 and 3. Figure 3.1.2 shows 3 embeddings, of f1
in 002, in which EM3 does not have common parts with EM1 or
EM2. Thus the boolean variable of EM3 is independent with the
boolean variable of EM1 or EM2.

Let Bfj , 1 ≤ j ≤ IN ≤ |Ef |, be IN independent boolean
variables. Since ∨IN

j=1Bfj ⊆ ∨|Ef|
i=1 Bfi, then we can obtain a

lower bound of Pr(f ⊆ g) as follows,

Pr(f ⊆ g) = Pr(∨|Ef|
i=1 Bfi) ≥ Pr(∨IN

j=1Bfj)

= 1 −
IN∏
j=1

(1 − Pr(Bfj))

= LowerB(f).

(5)

Equation 5 gives a lower bound of Pr(f ⊆ g). As shown in
Theorem 2, it is hard to calculate Pr(f ⊆ g). However we need
to compute the LowerB(f) efficiently, which is important to con-
struct PIndex efficiently. Fortunately, as shown in Equation 5, if

1

2 3
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5 6

(EM 1) (EM 3)

1

2 3

(EM 2)

EM 1

EM 2 EM 3

Embeddings of f1 in 002 Graph bG  of embeddings

Figure 4: Embeddings & bG of feature f1 in uncertain graph 002.

we can compute Pr(Bfi) efficiently, we can easily get the lower
bound. Therefore, the following theorem states how to compute
Pr(Bfi).

Theorem 5.
Pr(Bfi) =

∏
v∈fi

PV (v)
∏

e=(u,v)∈fi

PE(e|u, v) (6)

Proof. The proof is included in Appendix A.5. �
Obtain Tightest Lower Bound. Among all |Ef | boolean vari-

ables, there are many groups which contain independent boolean
variables, which leads to different lower bounds. However, we want
to get a tight lower bound in order to increase the pruning power.
We can solve the problem as follows:

We construct an undirected graph, bG, with each node represent-
ing a boolean variable Bfi, 1 ≤ i ≤ |Ef |, and a link connecting
two independent boolean variables (nodes). Note that, in this paper,
to avoid confusions, nodes and links are used for bG, while vertices
and edges are for uncertain graphs. In bG, a clique is a set of nodes
such that any two nodes of the set are adjacent. The size of a clique
is the number of nodes it contains. A maximum clique is a clique
that has the largest size among all cliques. According to Equation
5, we assign each node a weight, − ln(1 − Pr(Bfi)), and define
the weight of a clique as the sum of node weights in the clique.
Clearly, given a clique in bG with weight v, the lower bound of
Pr(f ⊆ g) is 1 − e−v . Thus, the larger the weight, the tighter
(larger) the lower bound. To obtain a tight lower bound, we should
find a clique whose weight is the largest, which is exactly the maxi-
mum weight clique problem. It is known that the maximum weight
clique problem is NP-hard [13]. In [3], the maximum weight clique
problem is formulated as a 0-1 integer programming. The integer
programming is relaxed to be a linear programming whose dual
linear program, called weighted fractional minimum node color-
ing problem. The dual linear program returns a very tight upper
bound, z, on the weight of maximum weight clique and there is an
efficient algorithm that can solve the weighted fractional minimum
node coloring problem [3]. Therefore, we use 1 − e−z computed
by the efficient solution [3] as the lower bound for Pr(f ⊆ g).

Example 3. Consider an uncertain graph 002 and a feature f1
in Figures 1.1 and 3. Figure 3.1.2 shows 3 embeddings, of f1 in
002, in which EM3 does not have common parts with EM1 or
EM2. Based on the above discussion, we construct bG, for the
3 embeddings, shown in Figure 3.1.2. There are two maximum
cliques namely, EM1 and EM3, EM2 and EM3. According to
Equation 5, the lower bounds derived from the 2 maximum cliques
are 0.272 and 0.275 respectively. Therefore we select the larger
(tighter) value 0.275 to be the lower bound of f1 in 002.
Recall that Pr(f ⊆ g) ̸= 1 −

∏|Ef|
i=1 (1 − Pr(Bfi)) due to non-

independent boolean variables Bfi for 1 ≤ i ≤ |Ef |. However,
the boolean variables satisfy inequality:

Pr(Bf1 ∧ ... ∧Bf|Ef |) ≥
|Ef|∏
i=1

Pr(Bfi)
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Then, Equation 4 can be written as

Pr(f ⊆ g) ≤ 1 −
|Ef|∏
i=1

Pr(Bfi)

= 1 −
|Ef|∏
i=1

(1 − Pr(Bfi))

= UpperB(f).

(7)

Equation 7 gives an upper bound of Pr(f ⊆ g).
Please refer to Appendix A.7 for values and calculation time of

upper and lower bounds of SIP.
Note that the above techniques need to compute embeddings of

q or f in gc. In this paper, we implement the efficient algorithm in
[32] to compute embeddings of a query in a deterministic graph.

3.2 Optimal Feature Selection for Probabilis
tic Inverted Index

As introduced in the last subsection, there are two conditions,
i.e., CND , (q ⊇ f∧UpperB(f) < ϵ) ∨ (q ⊆ f∧LowerB(f)
≥ ϵ), considered in the probabilistic pruning phase.

According to the conditions, it is not difficult to see that any fre-
quent feature, no matter its size, should be indexed to maximize
the pruning power of probabilistic inverted index (PIndex). How-
ever, there can exist thousands or millions of features, and it would
be unrealistic to index all of them. Thus, our goal is to maximize
the pruning capability of PIndex with a small number of indexed
features. Motivated by machine learning methods for query pro-
cessing [28, 6], in this section, we employ a model, which uses a
query log Γ as the training data, to select features offline. Based on
the model, we develop an optimal selection mechanism to remove
useless features so that PIndex can have a great pruning capability.

For an initial set of features F0 = {f1, f2, ..., fm}, we would
like to select a subset F ⊂ F0 to maximize the pruning capabil-
ity. Frequent subgraph mining algorithms, i.e., [32] can be used to
generate the initial feature set. Next, we employ an optimization
model to select the feature set F using a query log set Γ as the
training data.

Let Cq be the candidate set after probabilistic pruning.
Recall that the naive solution, SCAN , to the T-PS search prob-

lem examines the uncertain database SCq sequentially and com-
putes SIP for each uncertain graph to decide whether its SIP is not
smaller than ϵ. Given a single query q, we first do the structural
pruning and get corresponding SCq . Then, we define the gain, J ,
of indexing a feature set F as the number of SIP computations that
can be saved from SCAN :

J = |SCq| − |Cq| − |F |
= | ∪q

.
=CND {g|g ∈ SCq}| − |F |

(8)

where CND , (q ⊇ f ∧ UpperB(f) < ϵ) ∨ (q ⊆ f ∧
LowerB(f) ≥ ϵ).

To obtain more effective features, we use a set of queries {q1, q2,
..., qw} instead of a single query in Γ. In this case, an optimal index
should maximize the total gain

Jtotal =

w∑
l=1

| ∪ql
.
=CND {g|g ∈ SCql}| − w|F | (9)

which is a summation of the gain in Equation 8 over all queries.
According to Equation 9, we should index a feature as long as q

satisfies CND, and f covers at least one uncertain graph which has
not yet been covered by other features (a feature covers an uncertain
graph g if gc contains it).

001 002

f1 (0.19,0.19) (0.27,0.49)

f2 (0.27,0.27) (0.4,0.49)

f3 0 (0.01,0.11)

Figure 5: Feature-graph matrix.
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Figure 6: Probabilistic matrix.

Note that Chen et al. propose a similar cost model [6] to generate
subgraph features for deterministic super-graph search. However,
this model focuses on the pruning condition for the deterministic
super-graph query, while our model considers probabilistic pruning
rules (i.e. CND) for uncertain subgraph search. Thus its solution
cannot be applied to the proposed model in this paper. In the sequel,
we gives an efficient algorithm to select features based on Equation
9.

We first build a feature-graph matrix to display the relationship
between features and uncertain graphs, whose (i, j)-entry gives
{LowerB(f), UpperB(f)} of the ith feature in jth uncertain graph
if the uncertain graph’s corresponding deterministic graph contains
that feature, and otherwise gives value 0. Then, we introduce the
concept of probabilistic graph matrix, which is derived from the
feature-graph matrix but with its (i, j)-entry set to value 0 if the
query does not satisfy CND.

Example 4. For uncertain graphs in Figure 1.1, the feature-
graph matrix of f1, f2 and f3, in Figure 3, is given in Figure 3.2.
Figure 3.2 shows three query graphs and their corresponding prob-
abilistic graph matrix for the 3 features and 2 uncertain graphs.

Recall that in query log, we record total w queries to optimize
Equation 9. For w queries, we build a probabilistic graph matrix M
with row size equaling to the number of initial feature set F0 and
column size equaling to w × |SCq|. For example, in Figure 3.2,
features {f1, f2, f3} compose of the initial feature set. Entries of
M give corresponding {LowerB(f), UpperB(f)} in Figure 3.2
if uncertain graphs 001 and 002 satisfy 3 queries, otherwise give
values 0. With such a probabilistic graph matrix, we can map our
cost model to a well-known NP-complete problem [13], defined as
follows:

Definition 6. (Maximum Coverage, [6]) Given a set of subsets
S = {S1, ..., Sm} of the universal set U = {1, 2, ..., n} and a
weight η associated with any Si ∈ S, find a subset Z of S such that
| ∪Si∈Z Si| − η|Z| is maximized.

For a probabilistic graph matrix M, U corresponds to the col-
umn index of M, S corresponds to non-zero entries in each row of
M, Z corresponds to the selected rows, and η corresponds to the
number of queries w. Take the matrix in Figure 3.2 as an example:
U = {1, 2, 3, 4, 5, 6} because there are 6 columns in the concate-
nated matrix, S = {{1, 2, 4}, {1, 2, 3, 4, 5, 6}, {6}}, i.e., {1, 2, 4}
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Figure 7: Verification time on real dataset.

corresponds to the first row in the matrix η = 3 since there are 3
queries.

Since the maximum coverage problem is NP-complete, we fol-
low its greedy algorithm [13] to approximate the optimal features.
In each iteration, we select a row with the most number of non-zero
entries from the matrix M. Given a probabilistic graph matrix M,
the algorithm first selects a row that contains most non-zero entries,
and then removes the columns covered by these non-zero entries.
This process repeats until all columns are covered by the removed
rows. The greedy algorithm can approximate the optimal index
within a ratio of 1− 1/e [13].

The introduced PIndex algorithm builds a flat index structure,
where each feature is tested sequentially against any input query.
Clearly, such a flat index is inefficient to answer a query. To avoid
the sequence test, we construct a prefix-tree structured index for
PIndex. We give the details about this index in Appendix A.6.

4. VERIFICATION
In this section, we present the algorithms to compute subgraph

isomorphism probability (SIP) of an uncertain graph g in the final
answers, i.e., Aq = {g ∈ Cq|Pr(q ⊆ g) ≥ ε}.

Equation 3 is the formula to compute SIP. By unfolding this
equation, we have:

Pr(q ⊆ g) =

|Eq|∑
i=1

(−1)
i−1

∑
J⊆{q1,..,q|Eq|},|J|=i

Pr(∧|J|
j=1Bqj). (10)

Clearly, we need exponential number of steps to perform the ex-
act calculation. Therefore, we use the threshold ϵ to stop the calcu-
lation as early as possible.

Lemma 2. Let Si =
∑

Pr(∧|J|
j=1Bqj) where J is an embed-

ding subset, J ⊆ {q1, .., q|Eq|} and |J | = i. [22] provides the
bounds for Inclusion-Exclusion Principle such that,

Pr(q ⊆ g)

{
≤ (−1)w−1 ∑i

w=1 Sw if i is odd,

≥ (−1)w−1 ∑i
w=1 Sw if i is even.

where 1 ≤ i ≤ |Eq|, 1 ≤ w ≤ i.

Based on these bounds and ϵ, we have the pruning rule:

Theorem 6. When i is odd, if (−1)w−1 ∑i
w=1Sw < ϵ, g can

be safely pruned. When i is even, if (−1)w−1 ∑i
w=1Sw ≥ ϵ, g is

in the final answers.

5. PERFORMANCE EVALUATION
In this section, we report the effectiveness and efficiency test

results of our new proposed techniques. Our methods are imple-
mented on a Windows XP machine with a 3GHz Pentium IV CPU
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Figure 8: Scalability to # query size.

and 2GB main memory. Programs are compiled by Microsoft Vi-
sual C++ 6.0. In the experiments, we use a real uncertain graph
database and a real deterministic graph database with synthetic un-
certain information.

Real uncertain dataset. The real uncertain graph database was
obtained from the STRING database5 which has known and pre-
dicted protein interactions. We extract 1.5K uncertain graphs from
the database. The uncertain graphs have an average number of 332
vertices and 584 edges. Vertices are deterministic, and each edge
has an average value of 0.367 existence probability. Moreover, we
generate labels for vertices with COG protein functions6. The total
number of distinct vertex labels is 153. Each query set qi has 100
connected query graphs and query graphs in qi are connected size-
i graphs (the edge number in each query is i), which are extracted
from corresponding deterministic graphs of uncertain graphs ran-
domly, such as q50, q100, q150, q200 and q250.

Real dataset with synthetic uncertain information. We gener-
ate uncertain information for AIDS antiviral screen dataset7 (AIDS
for short) that has been widely used in examination of determinis-
tic graph search. We generate 10K connected and labeled graphs
from the molecule structures and omit Hydrogen atoms. The de-
fault database size in experiments is 10K. The graphs have 24.3
vertices and 26.5 edges on average. A major portion of the vertices
are C, O and N. The total number of distinct vertex labels is 62.
We generate existence probability for vertices and edges following
Gaussian distribution N(µ, σ). Using the same method in real un-
certain graph dataset, We generate a query set, that is q16. The
query set has 1K query graphs.

As introduced in Section 1.2, we implement the method in [29]
to do structural pruning. This method is called SFiltering in experi-
ments. We adopt the method in [32] to mine initial frequent features
F0. We select optimal features F from F0 through a query log as
follows: in each experiment, we divide a database set D to a query
log set Γ ( 4

5
|D|) and a testing query set q ( 1

5
|D|). The method

of probabilistic pruning is called PFiltering in experiments. Since
there are no previous works on the topic studied in this paper, we
compare the proposed algorithms with the naive method, SCAN, in-
troduced in Section 1. The methods of exact calculation and bound
of exact SIP in verification are called E-BC and E-Bound in exper-
iments respectively. To compare with PFiltering, we feed initial
features F0 to our probabilistic pruning algorithm without optimal
feature selection. This algorithm is called Non-PF. We report aver-
age results in following experiments.

5.1 Performance on Real Dataset
In this section, we present the performance evaluation on real

uncertain graph datasets. The setting of experimental parameters is
5http://string-db.org
6http://www.ncbi.nlm.nih.gov/COG/
7http://dtp.nci.nih.gov/
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set as follows: the probability threshold is 0.3 - 0.7, and the default
value is 0.5; the number of generated distinct labels is 50 - 200, and
the default value is 150.

In the first experiment, we demonstrate the efficiency of E-Bound
against E-BC in verification step. We first run structural and proba-
bilistic filtering algorithms against the default real dataset to create
candidate sets. The candidate sets are then verified for calculating
SIP using proposed algorithms. Figure 5 reports the results, from
which we know E-Bound is efficient under all parameter settings,
while curves of E-BC grow in exponential. On average, the runtime
of E-Bound is 20 times less than that of E-BC, since E-Bound can
stop calculation as early as possible with tight probability bounds.
We use E-Bound for verification in following experiments.
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Figure 9: Scalability to # distinct labels.

0.01

0.1

1

10

2k 4k 6k 8k 10k

Database size

R
e
s
p

o
n

s
e
 t

im
e
 (

s
e
c
o

n
d

) SFiltering PFiltering E-Bound

(a) Query processing time

0

50

100

150

200

250

300

2k 4k 6k 8k 10k

Database size

C
o

n
s
tr

u
c
ti

o
n

 t
im

e
 (

s
e
c
o

n
d

) SFiltering PFiltering

(b) Construction time

Figure 10: Scalability to database size.

Figure 5.1 reports total query processing time and number of
candidates after probabilistic pruning with respect to different query
sizes. PIndex denotes the entire algorithm, that is, a combination
of SFiltering, PFiltering and E-Bound. All curves decrease with
increasing of query size, as the probability of a large query graph
being subgraph-isomorphic to gc is low. From the result in Fig-
ure 8(a), we know that PIndex has a very short runtime, while
SCAN takes much more time and has gone beyond 100 seconds
at q100. The candidate size after probabilistic pruning is shown in
Figure 8(b), from which we know that both Non-PF and PFiltring
can lead to a very small size candidate set. Non-PF indexed all
frequent features, and thus it has a good pruning power. This con-
clusion is confirmed in Figure 9(a), in which Non-PF has a large
number of features. Also, as shown in this figure, PFiltring in-
dexed a very small size feature set. However, PFiltring has almost
the same number of candidate uncertain graphs as given in Figure
8(b). The results confirm that the selected optimal features have a
very powerful pruning capability. Figure 9(b) gives pruning time
for Non-PF and PFiltring with respect to distinct labels. As shown
in the figure, Non-PF takes quite some time because a query graph
needs an isomorphic test against its large feature set. PFiltring has
efficient pruning time with average value less than 0.1 second.
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Figure 11: Impact of uncertainties on the efficiency.

5.2 Performance on Synthetic Dataset
This section gives the performance study on AIDS datasets. The

setting of experimental parameters is set as follows: the probability
threshold is 0.5; the database size (number of uncertain graphs in
a database) is 2K - 10K, and the default value is 6K. The value of
µ of Gaussian distribution is 0.3 - 0.7, and the default value is 0.5;
the value of σ of Gaussian distribution is 0.1.

As important parameters such as size of the query graph, prob-
ability threshold and number of distinct labels are studied on the
real dataset, we focus on investigating the scalability of the tech-
niques with respect to the database size and uncertainties of data,
in addition, the last section shows a comparison between our algo-
rithm and a naive solution. In this section, we present evaluation
of each step in our algorithm. Figure 5.1 reports the performance
of techniques against the database size. Figures 10(a) and 10(b)
show query processing time and construction time, for probabilis-
tic and structural pruning, from which we see that all curves have
good scalability under two metrics. As shown in Figure 10(b), the
construction time of PFiltering is a little large due to the cost opera-
tions on examining the containment relationship between the initial
feature set F0 and query logs. However this process can select very
powerful features for efficient search shown in Figure 10(a).

Figure 5.2 reported the impact of distributions of uncertainties
on the efficiency with respect to varying µ from 0.3 to 0.7. The
changes of µ result in a change of the average existence probability
of vertices or edges. Both curves of SFiltering do not change, as
it does pruning without consideration of uncertainties. From the
figure, for PFiltering, we observe that both number and size of fea-
tures increase, since the increase of µ leads to the decrease of the
possibility of query satisfying CND. PFiltering has a quite small
set of features, even the largest value is less than 120 when µ = 0.7.

6. RELATED WORK
A systematic introduction to the topic of managing and mining

uncertain data can be found in [2]. One related topic to this pa-
per is probabilistic XML (PXML) that has been studied recently.
Nierman et al. [23] proposed the Probabilistic Tree Data Base
(ProTDB) to manage uncertain data represented in XML. Actually
it belongs to the catalog of PrXML{ind,mux} model. Abiteboul et
al. [27] propose a fuzzy tree model with nodes attached a conjunc-
tion of probabilistic event variables. In [19], Kimelfeld et al. sys-
tematically summarize the probabilistic XML models previously
studied, the expressiveness and tractability of queries on different
models, and give efficient algorithms for different data models. The
above methods all focus on how to calculate probability efficiently
over uncertain trees, which is relatively easy compared to calcula-
tion on uncertain graphs. In this paper, we not only consider effi-
cient computations, but also consider probabilistic inverted index
(PIndex) for pruning. The indexing idea of this paper can be ex-
panded to PXML, with an improvement on computing efficiency.

882



Another related topic is the deterministic subgraph query. There
are a lot of indexing and algorithms proposed for this problem. A
major category is feature-based pruning, for example, GraphGrep
[15], gIndex [33], FG-Index [7], Swift-Index [29], and etc. An-
other category are non-feature-based techniques, namely, Closure-
Tree [16], gString [18] and GCoding [18]. These indexing methods
cannot be applied to uncertain graphs.

With respect to uncertain graphs, Zou et al. [35, 36] study fre-
quent subgraph mining on uncertain graph data under the proba-
bilistic or expected semantics. Following their proposed uncertain
graph models, we study the subgraph search problem in this pa-
per. Potamias et al. [25] study k-nearest neighbor queries (k-NN)
over uncertain graphs, i.e., computing the k closest nodes to a query
node. They define an uncertain graph using possible world model,
and propose three different probabilistic distance functions to de-
fine k-NN queries. They propose sampling algorithms to answer
the #P-complete k-NN queries. The problem in [25] is different
from ours, [25] emphasizes on how to efficiently compute proba-
bilistic distance functions between two vertices, while ours focuses
on calculating subgraph isomorphism probability. [17] studied path
queries in uncertain road networks that are abstracted to uncertain
graphs.

7. CONCLUSION
This is the first work to answering a threshold-based probabil-

ity subgraph query over a large uncertain graph database. Though
it is an NP-hard problem, we employ the filtering-and-verification
methodology to answer the query efficiently. During the filtering
phase, structural and probabilistic indices are used to filter out un-
certain graphs as many as possible. For the probabilistic inverted
index, an optimal feature selection strategy is given to maximize
its pruning capability. The optimal strategy is proved to be NP-
complete, thus, we propose a c-approximate algorithm to select a
set of optimal features. During the verification phase, an exact al-
gorithm with tight bounds is given to compute the final answer.
Finally, we confirm our designs through an extensive experiments.

8. ACKNOWLEDGMENT
This research are supported by the National Science Fund for

Distinguished Young Scholars (Grant No. 61025007), National
Science Fund of China Key Program (Grant No. 60933001) and
National Basic Research Program of China (973, Grant No. 2011C-
B302200-G).

9. REFERENCES
[1] E. Adar and C. Re. Managing uncertainty in social networks. IEEE

Data Eng. Bull., 30(2):15–22, 2007.
[2] C. Aggarwal. Managing and mining uncertain data. Springer, 2009.
[3] E. Balas and J. Xue. Weighted and unweighted maximum clique

algorithms with upper bounds from fractional coloring.
Algorithmica, 15:397–412, 1996.

[4] S. Beretti, A. Bimbo, and E. Vicario. Efficient matching and indexing
of graph models in content based retrieval. IEEE Trans. on Pattern
Analysis and Machine Intelligence, 23:1089–1105, 2001.

[5] S. Biswas and R. Morris. Exor: opportunistic multi-hop routing for
wireless networks. In Proc. of SIGCOMM, pages 101–122, 2005.

[6] C. Chen, X. Yan, P. S. YuE, J. Han, D.-Q. Zhang, and X. Gu. Towards
graph containment search and indexing. In Proc. of VLDB, 2007.

[7] J. Cheng, Y. Ke, and W. Ng. Efficient query processing on graph
databases. ACM Trans. on Database Systems (TODS), 34(1), 2009.

[8] H. Chui, W.-K. Sung, and L. Wong. Exploiting indirect neighbours
and topological weight to predict protein function from protein-rotein
interactions. Bioinformatics, 22(13):47–58, 2007.

[9] L. P. Cordellaand, P. Foggia, and C. Sansone. A (sub)graph
isomorphism algorithm for matching large graphs. IEEE Trans.
Pattern Anal. Mach. Intell., 38(10):1367–1372, 2004.

[10] C.Wang and L. Chen. Continuous subgraph pattern search over graph
streams. In Proc. of ICDE, pages 872–883, 2009.

[11] N. N. Dalvi and D. Suciu. Management of probabilistic data:
foundations and challenges. In Proc. of PODS, pages 223–232, 2007.

[12] P. Domingos and M. Richardson. Mining the network value of
customers. In Proc. of KDD, pages 356–365, 2001.

[13] M. R. Garey and D. S. Johnson. Computers and intractability: a
guide to the theory of NP-completeness. W.H.Freeman, 1979.

[14] J. Ghosh, H. Ngo, S. Yoon, and C. Qiao. On a routing problem within
probabilistic graphs and its application to intermittently connected
networks. In Proc. of INFOCOM, pages 1768–1779, 2007.

[15] R. Giugno and D. Shasha. Graphgrep: a fast and universal method
for querying graphs. In Proc. of the International Conference on
Pattern Recognition, pages 112–115, 2002.

[16] H. He and A. K. Singh. Closure-tree: an index structure for graph
queries. In Proc. of ICDE, pages 426–437, 2006.

[17] M. Hua and J. Pei. Probabilistic path queries in road networks: traffic
uncertainty aware path selection. In Proc. of EDBT, pages 347–358,
2010.

[18] H. Jiang, H. Wang, P. S. Yu, and S. Zhou. Gstring: a novel approach
for efficient search in graph databases. In Proc. of ICDE, pages
566–575, 2007.

[19] B. KIMELFELD, Y. KOSHAROVSKY, and Y. SAGIV. Query
efficiency in probabilistic xml models. In Proc. of SIGMOD, pages
776–787, 2008.

[20] D. Liben-Nowell and J. Kleinberg. The link prediction problem for
social networks. In Proc. of CIKM, pages 87–96, 2003.

[21] B. Messmer and H. Bunke. A new algorithm for error-tolerant
subgraph isomorphism detection. IEEE Trans. on Pattern Analysis
and Machine Intelligence, 9(3):493–504, 1998.

[22] M. Mitzenmacher and E. Upfal. Probability and Computing:
Randomized algorithms and probabilistic analysis. Cambridge
University Press, 2005.

[23] A. Nierman and H. V. Jagadish. Protdb: probabilistic data in xml. In
Proc. of VLDB, pages 1476–1487, 2002.

[24] E. Petrakis and C. Faloutsos. Similarity searching in medical image
databases. IEEE Trans. on Pattern Analysis and Machine
Intelligence, 9(3):435–447, 1997.

[25] M. Potamias, F. Bonchi, A. Gionis, and G. Kollios. k-nearest
neighbors in uncertain graphs. In Proc. of VLDB, pages 863–874,
2010.

[26] S. Rintaro, S. Harukazu, and H. Yoshihide. Interaction generality: a
measurement to assess the reliability of a protein-protein interaction.
Nucleic Acids Research, 30(5):1163–1168, 2002.

[27] P. Senellart and S. Abiteboul. On the complexity of managing
probabilistic xml data. In Proc. of PODS, pages 283–292, 2007.

[28] P. Seshadri and A. N. Swami. Generalized partial indexes. In Proc. of
ICDE, pages 375–386, 1995.

[29] H. Shang, Y. Zhang, X. Lin, and J. X. Yu. Taming verification
hardness: an efficient algorithm for testing subgraph isomorphism. In
Proc. of VLDB, pages 364–375, 2008.

[30] D. Suciu and N. N. Dalvi. Foundations of probabilistic answers to
queries. In Proc. of SIGMOD, pages 274–285, 2005.

[31] S. Suthram, T. Shlomi, E. Ruppin, R. Sharan, and T. Ideker. A direct
comparison of protein interaction confidence assignment schemes.
Bioinformatics, 7(1):360, 2006.

[32] X. Yan and J. Han. gspan: Graph-based substructure pattern mining.
In Proc. of ICDM, pages 721–724, 2002.

[33] X. Yan, P. S. Yu, and J. Han. Graph indexing: a frequent
structurebased approach. In Proc. of SIGMOD, pages 335–346, 2004.

[34] R. Zass and A. Shashua. Probabilistic graph and hypergraph
matching. In Proc. of CVPR, pages 34–41, 2008.

[35] Z. Zou, H. Gao, and J. Li. Discovering frequent subgraphs over
uncertain graph databases under probabilistic semantics. In Proc. of
KDD, pages 633–642, 2010.

[36] Z. Zou, H. Gao, and J. Li. Mining frequent subgraph patterns from
uncertain graph data. TKDE, volume 22, pages 1203–1218, 2010.

883



Symbol Description
D, SCq , Cq , Aq the uncertain database
Dc, SCc

q the deterministic database
Df the inverted list
g the uncertain graph
ϵ the user-specified probability threshold
f , q, g′ gc the deterministic graph
Lower(f), Upper(f) the lower and upper bounds of Pr(q ⊆ g)
Bqi, Bfi the boolean variable of an embedding
Ef , Eq the set of embeddings
SI(q, g) the possible world graph set
F0, F the feature set
CND the probabilistic pruning condition
SCAN the naive method
Pr(q ⊆ g) the subgraph isomorphism probability be-

tween q and g

Table 1: Notations.

APPENDIX
A. PROOFS AND ALGORITHMS

A.1 Proof of Theorem 2
Proof. Consider an uncertain graph g with deterministic vertices

(PV = 1) and uncertain edges.
Firstly, we define query cut: For a query q, a query cut is a set

of edges in gc, and the removing of the set of edges leads to the
absence of all q’s embeddings in gc. A query cut is minimal if no
proper subset of the query cut is a query cut. Here, we assume that
a query cut is minimal.

Next, we assume that all m edges of g have an inexistence prob-
ability 1− p. Then, based on Definition 4, we have

Pr(q ⊆ g) = 1−
m∑
i=0

λi(1− p)ipm−i,

where λi is the number of query cuts of cardinality i, and thus

m∑
i=0

λi(
1− p

p
)i = p−m(1− Pr(q ⊆ g)). (11)

Suppose we could compute Pr(q ⊆ g) efficiently for an ar-
bitrary value p. By substituting m + 1 distinct values of p into
Equation (11), we get a system of m+1 linear equations in m+1
unknowns λi with known right-hand sides. The coefficient matrix
of this system is Vandermonde matrix with nonzero determinant,
and hence we can solve for the λi values in polynomial time. In
particular, we could find λi for the smallest size of the query cut in
gc. Therefore an efficient method for evaluating Pr(q ⊆ g) would
yield an efficient method for computing the number of minimum
cardinality query cuts.

Finally, we build a connection between query cuts in gc and cut
sets for two vertices in a deterministic graph. Suppose q has Eq
embeddings in gc, and each embedding has k edges. Assign k
labels, {e1, ..., ek}, for edges of each embedding (the order is ran-
dom.). Create a corresponding line graph for each embedding by
(1) create k + 1 isolated nodes, and (2) connect these k + 1 nodes
to be a line by associating k edges (with corresponding labels) of
the embedding. Based on these line graphs, we construct a parallel
graph, cG. The node set of cG consists of all nodes of the Eq line
graphs and two new nodes, s and t. The edge set of cG consists of
all edges (with labels) of the Eq line graphs. In addition, one edge
(without label) is placed between an end node of each line graph
and s. Similarly, there is an edge between t and the other end node
of each line graph. As a result, Eq embeddings are transformed

into a deterministic graph cG. Based on this transformation, it is
easy to have the following lemma.

Lemma 3. The query cut set of gc is also the cut set (without
edges incident to s and t) from s to t in cG.

Based on this lemma, we get the following corollary.

Corollary 1. Computing the number of minimum cardinality
query cuts in gc equals determining the number of minimum cardi-
nality cuts between s and t in cG.

Recall that we can compute the number of minimum cardinality
query cuts in polynomial time. However, the problem of computing
the number of minimum cardinality s−t cuts is #P-complete [13],
which leads to a contradiction. �

A.2 Proof of Lemma 1
Proof. From Definition 4, we have

Pr(q ⊆ g) =
∑

g′∈SI(q,g)

Pr(g ⇒ g′) (12)

where SI(q, g) is g’s possible world graphs that are subgraph iso-
morphic to q. We divide SI(q, g) into |Eq| subsets such that a
possible world graph in SIi contains i embeddings where 1 ≤ i ≤
|Eq|. Thus, from Equation 12, we get

Pr(q ⊆ g) =
∑

g′∈SI1∪...∪SI|Eq|

Pr(g ⇒ g
′
)

=
∑

1≤j1≤|Eq|

∑
g′∈SIj1

Pr(g ⇒ g
′
) −

∑
1≤j1<j2≤|Eq|

∑
g′∈SIj1

∩SIj2

Pr(g
′
)

+ · · · + (−1)
i−1

∑
1≤j1<...<ji≤|Eq|

∑
g′∈SIj1

∩...∩SIji

Pr(g ⇒ g
′
) + · · ·

+ (−1)
|Eq|−1

∑
g′∈SIj1

∩...∩SIj|Eq|

Pr(g ⇒ g
′
).

(13)

Consider the ith item on the RHS in Equation 13. Let A be a sub-
graph of gc, composed of i embeddings, and B = Bqj1∧...∧Bqji
be the corresponding boolean variable of A. The set g′ ∈ SIj1 ∩
... ∩ SIji contains all PWGs that have A as a subgraph. Then, for
the ith item, we get,

(−1)
i−1

∑
1≤j1<...<ji≤|Eq|

∑
g′∈SIj1

∩...∩SIji

Pr(g ⇒ g
′
)

= (−1)
i−1

∑
1≤j1<...<ji≤|Eq|

Pr(Bqj1 ∧ ... ∧ Bqji ).
(14)

Similarly, we can get the results for other items. By replacing
the corresponding items with these results in Equation 13, we get

Pr(q ⊆ g) =
∑

1≤j1≤|Eq|

Pr(Bqj) −
∑

1≤j1<j2≤E|

Pr(Bqj1 ∧ Bqj2 )

+ · · · + (−1)
i−1

∑
1≤j1<...<ji≤|Eq|

Pr(Bqj1 ∧ ... ∧ Bqji )

+ · · · + (−1)
|Eq|−1

Pr(Bqj1 ∧ ... ∧ Bqj|Eq| ).

(15)

Based on the Inclusion-Exclusion Principle [22], the RHS of
Equation 15 is just Pr(Bq1 ∨ ...∨Bq|Eq|). �
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Root

fa

ID -list: {<g1, 0.2, 0.6>, < g2, 0.4, 0.7>, ….}

fb

ID -list: {….}

fc

ID -list: {….}

fd

ID -list: {<g2, 0.3, 0.8>, < g4, 0.4, 0.6>, ….}

Figure 12: Prefix-tree structure of probabilistic inverted index.

A.3 Proof of Theorem 3
Proof. From Lemma 1, it is easy to see

Pr(q ⊆ g) = Pr(Bq1 ∨ ... ∨Bq|Eq|),

P r(f ⊆ g) = Pr(Bf1 ∨ ... ∨Bf|Ef |).

where Ef = {f1, ..., f|Ef|} is the set of all embeddings of f in gc.
Since q ⊇ f , we have Bq1 ∨ ...∨Bq|Eq| ⊆ Bf1 ∨ ...∨Bf|Ef|.

Also, based on UpperB(f) < ϵ, we obtain Pr(q ⊆ g) ≤ Pr(f ⊆
g) ≤ UpperB(f) < ϵ. Then g can be pruned. �

A.4 Proof of Theorem 4
Proof. Similar as proof in Theorem 3, we can show that Pr(q ⊆

g) ≥ Pr(f ⊆ g) ≥ LowerB(f) ≥ ϵ. Then g ∈ Aq . �

A.5 Proof of Theorem 5
Proof. Based on possible world semantics, we can obtain

Pr(Bfi) =
∑

g′∈Ωf

Pr(g ⇒ g′). (16)

where Ωf is the possible worlds that contain f as a subgraph.
By substituting Equation 1 into Equation 16, Equation 16 is writ-

ten as

Pr(Bfi) =
∑

g′∈Ωf

∏
v∈g′

PV (v)
∏

v∈g\g′
(1 − PV (v))

∏
e=(u,v)∈g′

PE(e|u, v)
∏

e=(u,v)∈g\g′
(1 − PE(e|u, v)).

Since g′ contains f , we obtain

Pr(Bfi) =
∏
v∈f

PV (v)
∏

e=(u,v)∈f

PE(e|u, v)
∑

g′∈Ωf

∏
v∈g′\f

PV (v)

∏
v∈g\g′

(1 − PV (v))
∏

e=(u,v)∈g′\f

PE(e|u, v)
∏

e=(u,v)∈g\g′
(1 − PE(e)).

(17)

Observe that the item
∑

g′∈Ωf
(·) in the RHS of Equation 17

equals 1. Thus, Equation 6 holds. �

A.6 Probabilistic Inverted Index

A.6.1 Indexing Model
To create a prefix-tree structured index, for each feature f ∈

F , we first adopt the method in [29] to construct a sequence QI-
Sequence, SEQf , that is a string with structural information of

f . Then, based on strings of features, we construct a prefix-tree
in which the path from root to leaf node represents the string of
a feature. The inverted list Df of each feature is attached to the
leaf node of its corresponding path. Figure 12 shows a prefix-tree
structure.

Based on prefix-tree, we have the following pruning condition:
Prefix-pruning[29]. If a prefix SEQi

f of SEQf cannot be mapped
to a query graph q’s QI-Sequence, then SEQf of f cannot be
mapped to a query graph q’s QI-Sequence. In other words, we can
prune away the feature f as long as we find its prefix SEQi

f does
not map to a query q.

Given a query graph q and the prefix-tree, the process of finding
all features in the prefix-tree that are contained in q is conducted by
traversing the prefix-tree from the top to the bottom in a depth-first
fashion. When visiting a node in the prefix-tree, ni, the path from
the root to the node ni represents SEQi

f for all tree features SEQf

that have SEQi
f as their prefix. If SEQi

f is not sub-isomorphic to
q, then there is no need to further examine the subtrees below ni in
the prefix-tree.

The prefix-pruning can save many isomorphism tests. Consider
pruning condition 1: q ⊇ f ∧ UpperB(f) < ϵ. Based on prefix-
pruning condition, it is easy to see that we can save more cost than
the sequence scan for q ⊇ f . Therefore, the prefix-pruning also
saves cost for pruning 1 based on the observation that the cost of
operation on UpperB(f) < ϵ is negligible compared to operation
on q ⊇ f . Consider pruning condition 2: q ⊆ f ∧ LowerB(f) ≥
ϵ. The prefix-pruning condition cannot prune away query before
the query traverses to a leaf node of the prefix-tree due to condition
q ⊆ f . However, for a query q, pruning 2 only returns a set of final
answers whose size is much smaller than that of graph set filtered
out by pruning condition 1. Therefore, the prefix-tree structure can
lead to a much more efficient pruning than the flat structure.

A.6.2 Index Maintenance
The indexing algorithm we have proposed so far is suitable in

a static scenario. When updates take place in the database D or
query graphs deviate away from previously logged entries, we take
following steps:

We keep the same set of selected optimal features and the same
prefix-tree built. Whenever an update to D takes place, we simply
update a corresponding entry of probabilistic index. If the changed
uncertain graph database or query log is not significantly deviated
from the original one, it is reasonable that the maintained index will
continue to perform well. Otherwise, we periodically take small
samples from uncertain databases and query log, mine a set of fre-
quent subgraphs out of uncertain graph samples, and calculate a
new index based on the samples. The mining step can be bypassed,
because frequent patterns represent the intrinsic trends of data and
are relatively stable in spite of updates. The sampling ratios can be
set according to the updating rates of databases and query log.

The above update method relates to statistical information of
query log. Here the global probabilistic matrix M is used to collect
the statistical information. In M, we record the number of non-zero
entries for each feature, so that we can construct a histogram for
the initial feature set F0. Recall that optimal features are selected
based on the non-zero entries in M. Thus the histogram gives accu-
rate statistical information for query log. Another issue is that we
should efficiently monitor a deviation of the query log, so that we
can maintain PIndex flexibly. In this paper, we adopt the approach
proposed in [10] for efficiently querying graph steams to monitor
graph query logs. In uncertain graph applications [31, 8, 26], the
updating rate of query log is much slower than that of graph steam
[10]. Therefore, [10] is efficient enough to handle graph query logs.
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Figure 13: Performance of the index maintenance algorithm.

Figure 13 shows the performance of the index maintenance algo-
rithm. In the experiment, we compare two curves: one curve shows
the performance of the index directly constructed for each database
(DirectBuilt), while the other shows the performance of the in-
dex originally constructed for database with 2K size but maintained
afterwards using the index maintenance algorithm (Update). The
two curves represent pruning power of probabilistic pruning, where
pruning power is defined as |UCq|−|Cq|

|UCq|−|Aq| . It can be seen that two
curves start from the same point, and keep quite close to each other
for all the following updated databases. This result validates the
feasibility of the index maintenance scheme.

A.7 Upper and Lower Bounds of SIP
We show values and calculation time of upper and lower bounds

of subgraph isomorphism probability (SIP) of features mined from
the deterministic graphs of uncertain ones, which are randomly ex-
tracted from the STRING database (http://string-db.org). On aver-
age, each graph has 330 vertices and 584 edges, and the existence
probability of each edge is 0.376. We mined frequent features from
corresponding deterministic graphs and calculated exact SIP prob-
abilities (Exact), lower bound (LowerBound) and upper bound
(UpperBound) of SIPs of the features using methods proposed in
this subsection.

Figure 14 shows the average values of the bounds. From the fig-
ure, we can observe that UpperBound and LowerBound come

very close to the exact SIP, which indicates the bounds obtained
from the proposed methods are very tight. Figure 15 shows that
UpperBound and LowerBound can be computed quite efficiently.
Moreover, the result confirms that the time needed to compute the
exact value is much larger than that to compute the bounds.
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Figure 14: Upper and lower bounds of exact SIP of features.
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Figure 15: Calculation time of upper and lower bounds.
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