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ABSTRACT
Most aggregation queries contain both group-by and join
operators, and spend a significant amount of time evalu-
ating these two expensive operators. Merging them into
one operator (the groupjoin) significantly speeds up query
execution.

We introduce two main equivalences to allow for the merg-
ing and prove their correctness. Furthermore, we show ex-
perimentally that these equivalences can significantly speed
up TPC-H.

1. INTRODUCTION

Most aggregation queries contain joins. For these queries
it is almost inevitable to feature a join followed by a grouping
with an aggregation. In a hash-based implementation, this
results in a cascade of two hash tables: First, a hash table is
built and maintained to compute the join result, and then,
a second hash table is filled to compute the result of the
aggregation.

It is easy to see that in some cases (i.e., when the group-by
attributes and the join attributes are the same) it is sufficient
to maintain only one hash table (see, e.g., [11]):

select a,count(*)
from R1 left outer join R2 on R1.a = R2.b
where R1.c=5
group by a

Here, instead of producing join results immediately, the
hash table can be used to collect and aggregate all join
partners. While Klug concentrated on a special evaluation
technique in which an index-nested loop join is used [11],
we will present equivalences which allow to combine the
group-by and the join into one groupjoin operator. Before
we go any further, let us sketch the history of the groupjoin
operator.
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The groupjoin is more than 20 years old. To the best of
our knowledge, von Bültzingsloewen invented the groupjoin
[19]. He named it outer aggregation. Thereafter, several
new names were invented. For example, Nakano used the
name general aggregate formation [16]. The reason might
be that grouping is called aggregate formation by Klug [12].
Steenhagen, Apers, and Blanken introduced the name nest-
join [17]. Cluet and Moerkotte called it binary grouping
[8]. Lately, Chatziantoniou, Akinde, Johnson, and Kim
introduced the name MD-Join [5].

The groupjoin is quite versatile, and we strongly believe
that no DBMS can do without it. For example, it has
been successfully applied to the problem of unnesting nested
queries in the context of SQL [2, 3, 16, 19, 20], OQL [6, 7, 8],
and XQuery [13]. Chatziantoniou, Akinde, Johnson, and Kim
apply the groupjoin to efficiently evaluate data warehouse
queries which feature a cube-by or group-by grouping sets

clause [5]. They translate these clauses into groupjoins.
As can be seen, previous work concentrated to exploit the

groupjoin to decorrelate nested queries or evaluate advanced
grouping clauses. In this paper, we study the problem of
introducing groupjoins into aggregation queries in a system-
atic way. Our main contribution consists of two equivalences.
The first equivalence allows to replace a sequence consist-
ing of a left outerjoin and a grouping by a groupjoin. The
second equivalence replaces a join followed by a grouping
by a groupjoin. Looking at these equivalences, it should
become clear why we prefer the name groupjoin. Although
these equivalences look simple and are (quite) intuitive, their
proofs are—compared to the proofs of other equivalences—
rather complex and lengthy. We modularize the proof as
much as possible, to have small useful pieces for other, simi-
lar proofs. Some simpler modules (which take of course the
form of equivalences) will be presented in the main part of
the paper. The proof itself, as well as an important lemma,
is presented in the appendix. However, the reader is advised
to read the proof, since it shows how the different pieces of
the puzzle presented in the main body of the paper fall into
their places to give the whole picture.

The rest of the paper is organized as follows. In Section 2,
we review some basic definitions for aggregation functions
and the definitions of the left outerjoin, grouping, and the
groupjoin. Section 3 starts with simple equivalences for
the group operator and the groupjoin. Then, the main
equivalences are presented. In Section 4, we show how to
apply the equivalences to some sample queries from TPC-H.
Section 5 shows the runtimes for those queries to which our
equivalences can be applied. Section 6 concludes the paper.
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2. PRELIMINARIES

2.1 Notations
For some expression e which evaluates to a tuple or relation,

we denote by A(e) the set of attributes e provides. By
F(e) we denote the set of free (unbounded) attributes of
e. For example, the attribute A occurs free in the selection
predicate A = 7. By {·}s we denote a set and by {·}b a
bag (multiset). Π denotes projection and ΠD denotes the
duplicate-eliminating projection. χa:e2(e1) denotes the map
operator, which evaluates an expression e2 for every input
tuple and stores the result in some new attribute a. T denotes
the antijoin, i.e., e1 Tq e2 contains all those tuples from e1
which do not have a join partner in e2.

In SQL, comparing two null values with a regular com-
parison operator (e.g., =) returns unknown. For the group
operator, we need special comparison functions which return
true for null equal null. We denote these comparisons by
stacking a dot (·) on top of them, e.g., the equality predicate
then becomes

.
=.

The identity function is denoted by id. We often denote
null by ⊥. Let A be a set of attributes, then ⊥A denotes
the tuple in attributes A with all their values being null. By
TID we denote the tuple identifier of a tuple in some relation.
We do not demand that it explicitly exists. We only need
it conceptually. For some set of attributes A, we will use
the functional dependency A → TID(e) to denote the fact
that a tuple in some relation e is uniquely determined by
the attributes contained in A. This implies that the relation
is duplicate-free, which is the main purpose of this notation.
This trick was also applied by Yan and Larson [21, 22], where
they used RowId instead of TID.

2.2 Aggregation Functions
A scalar aggregation function agg : {τ}b → N is called

decomposable [9] if there exist functions

agg1 : {τ}b → N ′

agg2 : {N ′}b → N

with

agg(Z) = agg2({agg1(X), agg1(Y )}b)
for all X and Y (not empty) with Z = X∪Y . This condition
assures that agg(Z) can be computed on arbitrary subsets
(-lists, -bags) of Z independently, and the (partial) results
can be aggregated to yield the correct total result. If the
condition holds, we say that agg is decomposable with inner
agg1 and outer agg2.

Table 1 summarizes the decomposition of well-known SQL
aggregation functions. There, we denote by countNN the
aggregation function that counts the number of values which
are not null. An expression of the form avg(a) is evaluated by
first simultaneously calculating the sum(a) and countNN(a)
and subsequently dividing the former by the latter.

We now extend the notion of decomposability to aggrega-
tion vectors. An aggregation vector is an expression of the
form

(b1 : agg1(a1), . . . , bk : aggk(ak))

where the ai and bi are attribute names and the aggi are
aggregation functions. Often, we will leave out the enclosing
parenthesis and simply write

b1 : agg1(a1), . . . , bk : aggk(ak).

agg agg1 agg2

min min min
max max max

count(∗) count(∗) sum
count(a) count(a) sum

sum sum sum
avg sum, countNN sum, sum

Figure 1: Decomposition of aggregate functions.

We use ◦ to denote the concatenation of two aggregation
vectors.

Let F = (b1 : agg1(a1), . . . , bk : aggk(ak)) be an aggrega-
tion vector and all aggregates aggi be decomposable into
agg1

i and agg2
i . Then, we say that F is decomposable into

F 1 and F 2 where

F 1 := (b′1 : agg1
1(a1), . . . , b′k : agg1

k(ak))

F 2 := (b1 : agg2
1(b′1), . . . , bk : agg2

k(b′k)).

Note that in all cases, if F is decomposable into F 1 and
F 2, then F 1 is decomposable into F 1,1 and F 1,2, and F 2 is
decomposable into F 2,1 and F 2,2. Further, we have

F 1,1 = F 1

F 1,2 = F 2

F 2,1 = F 2

F 2,1 = F 2

Let e1 and e2 be arbitrary expressions. We say that an
aggregation vector F is splittable into F1 and F2 with re-
spect to e1 and e2 if F = F1 ◦ F2, F(F1) ∩ A(e2) = ∅,
and F(F2) ∩ A(e1) = ∅ [22]. Assume that F contains an
aggregation function aggi applied to some attribute ai. If
a ∈ A(e1), then clearly aggi(ai) belongs to F1; if a ∈ A(e2),
then aggi(ai) belongs to F2. There are other cases where
F is splittable. Consider, for example, sum(a1 + a2) for
ai ∈ A(ei). Since sum(a1 + a2) = sum(a1) + sum(a2), this
does not hinder splittability. The same holds for subtraction.
Decomposability and splittability are both prerequisites for
our main equivalences.

The correct handling of duplicates, i.e., bags, is essential
for the correctness of the query compiler and requires some
care. We will therefore classify our aggregation functions into
those which are sensitive to duplicates and those which are
not. An aggregation function is called duplicate agnostic if
the multiplicity of the elements in the bag does not influence
its result. It is called duplicate sensitive otherwise. For our
aggregation functions we have

• min, max, sum(distinct), count(distinct), avg(distinct)
are duplicate agnostic and

• sum, count, avg are duplicate sensitive.

Yan and Larson used the term Class C aggregation function
for duplicate sensitive aggregation functions and Class D for
duplicate agnostic aggregation functions [22].

The following definition also goes back to Yan and Larson
[22]. Let F = (b1 : agg1(a1), . . . , bm : aggm(am)) be an
aggregation vector. We define F ⊗ c for some attribute c,
which will typically contain the result of some count(∗), as
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F ⊗ c = (b1 : agg′1(e1), . . . , bm : agg′m(em)) with

agg′i(ei) =

 aggi(ei) if aggi is duplicate agnostic
aggi(ei ∗ c) if aggi(ei) = sum(ei)
sum(c) if aggi(ei) = count(∗)

Additionally, we define

agg′i(count(ei)) = sum(if ei = ⊥ then 0 else c)

if ei 6=′ ∗′.
Finally, note that for all aggregate functions except

count(∗), we have agg({a}) = a for arbitrary elements a.
Thus, if we are sure that we deal with only one tuple, we
can apply the following rewrite. Let ai and bi be attributes.
Then, if F = (b1 : agg1(a1), . . . , bm : aggm(am)), we define

F̂ = (b1 : a1, . . . , bm : am).

2.3 Left Outerjoin
Although we assume the reader to be familiar with the

left outerjoin, we give its definition here. However, while
doing so, we slightly extend it to allow the left outerjoin to
assign values other than NULL to some of the attributes of
the right-hand side in case some tuple in its left argument
does not find a join partner. We call these values default
values and this extended version left outerjoin with defaults.
Let D = d1 : c1, . . . , dk : ck be a vector assigning constants
cj to attributes dij . We then define

e1 E
D
p e2 := (e1 Bp e2)

∪((e1 Tp e2) A {⊥A(e2)\A(D) ◦ [D]}).

2.4 Group Operator
Grouping is defined on a bag, and its subscripts indicate

(i) the grouping critera and (ii) a new attribute name as well
as a function which is used to calculate its value.

ΓθG;g:f (e) := {y ◦ [g : x] | y ∈ ΠD
G(e),

x = f({z|z ∈ e, z.G θ y.G}b)}s

for some set of attributes G, an attribute g and a function
f . The comparison operator θ must be a null extended
comparison operator like ‘

.
=’.

The grouping criterion may be defined on several attributes.
Then, G and θ represent sequences of attributes and com-
parators. In case all θ equal ’

.
=’, we abbreviate Γ .=G;g:f by

ΓG;g:f .
We can extend the above definition to calculate several

new attribute values by defining

ΓθG;b1:f1,...,bk:fk (e) := {y ◦ [b1 : x1, . . . , bk : xk] | y ∈ ΠD
G(e),

xi = fi({z|z ∈ e, z.G θ y.G}b)}s.

We also introduce two variants of the grouping operator
which can be used to abbreviate expressions. Let F = b1 :
e1, . . . , bk : ek and F(ei) = {g} for all i = 1, . . . , k. Then we
define

ΓG;F (e) := Πg(χF (ΓG;g:id(e))).

Here, the free attribute g is implicit and Πg removes it. If we
wish to make it explicity, we write ΓG;g;F instead of simply
ΓG;F . Note that g plays the same role as partition in OQL
([4, p. 114]).

Let us also introduce an SQL-notation based variant, which
we will use for the rest of the paper. Let F be an aggregation

vector of the form

F = b1 : agg1(a1), . . . , bk : aggk(ak)

for attributes ai. Then we define Fg as

Fg = b1 : agg1(g.a1), . . . , bk : aggk(g.ak)

and introduce the following abbreviation:

ΓG;F (e) := ΓG;g;Fg (e).

The notation of the left-hand side will be used for the rest of
the paper. Examples for the grouping operator can be found
in Appendix E.

The result of Γ is always duplicate-free.

2.5 Groupjoin Operator
The groupjoin is defined as follows:

e1 ZA1θA2;g:f e2 := {y ◦ [g : G]|y ∈ e1,
G = f({x|x ∈ e2, y.A1θx.A2}b)}b

Thus, each tuple t1 in e1 is extended by a new attribute g
whose value is the result of applying a function f to a bag.
This bag contains all tuples from e2 which join on A1θA2

with t1.
Similar to grouping, we will use Zq;g;F to abbreviate

Πg(χF (e1 Zq;g:id e2)), and Zq;F to abbreviate ZA;g;F . In
both cases, F must be an aggregation vector with F(F ) =
{g}. An SQL notation variant of the groupjoin is defined as
e1 Zq;F e2 := e1 Zq;Fg e2, where the requirements for F and
Fg are the same as for unary grouping. The notation on the
left-hand side will be used for the rest of the paper. Examples
for the groupjoin operator can be found in Appendix E.

Since the reader most likely is not familiar with groupjoin,
let us give some remarks and pointers on its implementation.
Obviously, implementation techniques for the equijoin and
the nest operator can be used if θ stands for equality. For the
other cases, implementations based on sorting seem promis-
ing. One could also consider implementation techniques for
non-equi joins, e.g., those developed for the band-width join
[10]. An alternative is to use θ-tables, which were devel-
oped for efficient aggregate processing [9]. Implementation
techniques for groupjoin have also been discussed in [5, 14].

In System T, we implemented the groupjoin for
e1 Za1=a2;F e2 as follows. In the first phase, all tuples
from e1 are hashed on a1 and inserted into a hash table.
Thereby, the attributes in F(F ), which contain the results
of aggregations, are initialized. For example, for ci : sum(bi),
ci is initialized with 0. In the second phase, all tuples t2 in
e2 are hashed on a2 and a lookup into the hashtable is per-
formed. If a tuple t1 from e1 which fulfills the join predicate
t1.a1 = t2.b2 is found, the attributes in F(F ) are advanced
according to the aggregation functions and the values pro-
vided by t2. For example, if ci : sum(bi), ci is increased by
the amount provided by bi. In the last phase, the entries in
the hashtable are pushed into the next operator. Thereby,
a final aggregation step may be performed, for example for
average.

Note that the groupjoin produces a duplicate-free result if
and only if its left input is duplicate-free. More specifically,
the left input of a groupjoin can be reconstructed by applying
a projection to the result of the groupjoin:

ΠA(e1)(e1 ZG;G e2) ≡ e1. (1)
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3. ALGEBRAIC EQUIVALENCES

3.1 Simple Observations about Grouping
As can be seen from the definition of the grouping operator,

it is a generalization of duplicate elimination. If we apply
a grouping with an empty aggregation vector, then it is
equivalent to a duplicate elimination. In other words,

ΠD
A (e) ≡ ΓA;()(e) (2)

holds for any set of attributes A with A ⊆ A(e). As a
consequence, we have to ask ourselves whether there exists a
property generalizing idempotency that holds for grouping.
This is indeed the case. Let F be an aggregation vector
decomposable into F 1 and F 2, and G and G+ be two sets
of grouping attributes with G ⊆ G+. Then

ΓG;F (e) ≡ ΓG;F2(ΓG+;F1(e)) (3)

holds, since we can first group at a finer granularity and then
combine finer groups to the groups derived from grouping
by G. We can even go a step further in the presence of
functional dependencies.

Assume the functional dependency G→ G′ holds for two
sets of grouping attributes G and G′. Then, the equivalence

ΓG;F (e) ≡ ΠG∪A(F )(ΓG∪G′;F (e)) (4)

holds, since the groups and their contents are the same in
both cases. This equivalence can also be found under the
name simplify group-by in a paper by Tsois and Sellis [18].
A slightly more general version for any function f also holds:

ΓG;g:f (e) ≡ ΠG∪{g}(ΓG∪G′;g:f (e)) (5)

Equation 4 can be simplified if, in addition to G → G′,
G ⊆ G′ holds:

ΓG;F (e) ≡ ΠG∪A(F )(ΓG′;F (e)). (6)

Assume that the functional dependencies H → G and
G → H hold. Then, it should not make any difference
whether we group by H or G. The only problem we have to
solve is that H might not contain all attributes of G (or vice
versa). However, since H → G, any attribute g ∈ (G \H)
has only one possible value per group if we group by H.
Thus, we can simply copy this value. We do so by adding
a new aggregation function cpf(g), which copies the value g
of the first tuple seen for a group. This is determistic, since
all tuples in a group have the same value for g (as H → G).
Thus, to make sure that all values of G are extracted if we
group according to H, we extend a given aggregation vector
F as follows. Assume (G \ H) = {g1, . . . , gk}. Then, we
define F ◦(G\H) as F ◦(g1 : cpf(g1), . . . , gk : cpf(gk)). Using
this definition, we can state the equivalence

ΓG;F (e) ≡ ΠC(ΓH;F◦(G\H)(e)), (7)

which holds if H → G and C = G ∪ A(F ). This equivalence
allows to determine some set H with H → G such that
grouping on H might become cheaper compared to grouping
on G, e.g., if the number of grouping attributes is minimized.

Assume that every group consists of only one tuple, i.e.,
ΠD
G(e) = ΠG(e) for a set of attributes G with G ⊆ A(e). If

G→ TID(e), we can replace a grouping by a map:

ΓG;F (e) ≡ ΠC(χF̂ (e)) (8)

with C = G ∪ A(F ). Tsois and Sellis call this equivalence
remove-group-by [18].

3.2 Simple Observations about the Groupjoin
First, let us observe that the groupjoin is redundant. It

can be expressed by an outerjoin and a grouping. For i = 1, 2,
let ei be expressions, Ji ⊆ ei be join attributes, and F be an
aggregation vector. Define C = A(e1) ∪ A(F ). Then,

e1 ZJ1=J2;F e2 ≡ ΠC(e1 E
F (∅)
J1=J2

ΓJ2;F (e2)) (9)

holds if F (∅) = F ({⊥A(e2)}). This holds in SQL-92 for
min, max, sum, count(a), but not count(*). More precisely,
count(*) yields 0 if the input is the empty set, and 1 if it is
applied to some null-tuple. Thus, the right-hand side yields
0 for empty groups, whereas it should produce 1. Obviously,
this problem can easily be fixed in the left outerjoin by using
the correct default value of 1 for all attributes containing the
result of a count(*). The equivalence as such follows directly
from the definition of the groupjoin.

Using the above notation, the equivalence

ΠC(e1 BJ1=J2 ΓJ2;F (e2))

≡ σc2>0(e1 ZJ1=J2;F◦(c2:count(∗)) e2) (10)

is a direct consequence of the above equivalence. Here, the
condition F (∅) = F ({⊥A(e2)}) can be omitted, since empty
groups are eliminated by the selection σc2>0.

3.3 Groupjoin vs. Group/Left Outerjoin
We now come to the first major equivalence. It will replace

a sequence of a left outerjoin and a group by a groupjoin.
We first fix the notation. For i = 1, 2, let ei be algebraic
expressions and J1 = J2 be a join predicate, such that for
the join attributes Ji ⊆ A(ei) holds. For a set of grouping
attributes G, define Gi = G ∩ A(ei) and G+

i = Gi ∪ Ji.
Further, let F be a splittable and decomposable aggregation
vector with F(F ) ⊆ A(e2). We denote by C the set of
attributes occurring in the result, i.e., C = G ∪A(F ). Then,
the equivalence

ΓG;F (e1 EJ1=J2 e2) ≡ ΠC(e1 ZJ1=J2;F e2), (11)

holds under the conditions that

1. G→ G+
2 and G1, G

+
2 → TID(e1) hold in e1 EJ1=J2 e2,

2. J2 → G+
2 holds in e2,

3. F(F ) ⊆ A(e2), and

4. F (∅) = F ({⊥A(e2)}).

We discuss these conditions to provide the intuition behind
them. The two conditions under 1. stem from the main
theorem of Yan and Larson in [21]. They assure that a
grouping can be pushed into a regular join. In our context,
the condition G1, G

+
2 → TID(e1) assures that no two tuples

from e1 belong to the same group. This is necessary since
the groupjoin on the right-hand side provides exactly one
output tuple for each input tuple of e1. The condition
G → G+

2 implies that grouping by G+
2 is not finer grained

than grouping by G, which would lead to problems.
In case the second condition (J2 → G+

2 ) is not fulfilled, we
would have more groups on the left-hand side than on the
right-hand side of our equivalence, which would violate it.
This is easy to see, if we add to G an evil attribute from e2,
which is not functionally determined by J2.

The importance of the functional dependencies is illus-
trated in Appendix E.
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The third condition (F(F ) ⊆ A(e2)) can be relaxed as
we will see in the appendix (see Equation 14). The fourth
condition follows from the discussion of Equation 9.

Equation 11 is important since it allows us to replace a
unary grouping and a left outerjoin by a groupjoin. This is
very beneficial in several scenarios. Consider just the one
where all these operators have a hash-based implementation
in a main-memory setting. Then, the left-hand side requires
to build two hash tables, whereas the right-hand side requires
to build only one. Further, no intermediate result tuples for
the outerjoin have to be built.

3.4 Groupjoin vs. Group/Join
We now come to the second major equivalence. It will

replace a sequence of a join and a group by a groupjoin. Given
the notations of the previous subsection, the equivalence

ΓG;F (e1BJ1=J2e2) ≡ ΠC(σc2>0(e1 ZJ1=J2;F◦(c2:count(∗))e2)),
(12)

holds under the conditions that

1. G→ G+
2 and G1, G

+
2 → TID(e1) hold in e1 BJ1=J2 e2

2. J2 → G+
2 holds in e2, and

3. F(F ) ⊆ A(e2).

The intuition behind these conditions is the same as for
the previous equivalence. The importance of the functional
dependencies is illustrated in Appendix E. The fourth condi-
tion could be omitted, since empty groups are eliminated by
the selection σc2>0. Equation 12 is beneficial under similar
circumstances as Equation 11.

3.5 The Typical Situation
The situation we find for all TPC-H queries and which

we assume is typical, can be described as follows. J1 is a
key of e1. This is not unlikely, since most joins in SQL are
key/foreign-key joins. Further, the set of grouping attributes
typically contains the join attributes J1, i.e., J1 ⊆ G. Last,
all grouping attributes are from e1, i.e., G ⊆ A(e1). It is
easy to check that in this case the first two conditions of the
main equivalences are trivially fulfilled.

4. APPLICATION

4.1 Groupjoin vs. Group/Outerjoin
Unfortunately, Query 13 is the only one in TPC-H con-

taining an outerjoin. It looks as follows:

select c count, count(*) as custdist
from (select c custkey, count(o orderkey) as c count

from customer left outer join
orders on c custkey = o custkey

and o comment not like

’%special%requests%’
group by c custkey

) as c orders (c custkey, c count)
group by c count
order by custdist desc, c count desc

A straightforward translation into the algebra yields:

Q13 ≡ Γc count;custdist:count(∗)(e1)

e1 := Γc custkey;c count:count(∗)(e2)

e2 := Customer Ec custkey=o orderkey e3

e3 := σo comment not like ’%special%requests%’(Order)

Sort

Γ

Γ

E

C σ

O

Sort

Γ

Z

C σ

O

Plan without groupjoin Plan with groupjoin

Figure 2: Plans for Query 13.

The plan of this translation is sketched in Figure 2. We left
out the details like the grouping attributes, selection and
join predicates, since they can easily be derived from the
query.

Since c custkey is the key of the customer relation, we can
apply Equation 11 to expression e2, which yields

e2 ≡ Customer Zc custkey=o orderkey;c count:count(∗) e3

A glance at Figure 5 shows that the effort was worthwhile:
the query’s execution time could be improved by more than
a factor of 3. As a general rule, the improvement achieved
by applying Equation 11 grows with the ratio of the number
of tuples after the left outerjoin compared to the number of
tuples produced by the group operator. Since the outerjoin
may be much more expensive than the join or the grouping,
improvements by a factor larger than 2 are possible. The
outerjoin in Query 13 produces 1,533,923 tuples. Since the
query needs attributes from both its inputs, 1,533,923 inter-
mediate tuples have to be constructed. These costs are also
saved if the groupjoin is used.

4.2 Groupjoin vs. Group/Join: Query 3
There are numerous queries in the TPC-H benchmark

which feature a grouping following a join. Some are simple,
some are complex. To illustrate the application of Equa-
tion 12, we take a look at a simpler (and shorter) one. Query 3
retrieves the first 10 tuples returned by

select l orderkey, o orderdate, o shippriority
sum(l extendedprice*(1-l discount)) as revenue,

from customer, orders, lineitem
where c mktsegment = ’BUILDING’

and c custkey = o custkey
and l orderkey = o orderkey
and o orderdate < date ’1995-03-15’
and l shipdate > date ’1995-03-15’

group by l orderkey, o orderdate, o shippriority
order by revenue desc, o orderdate

Translation of this query into the algebra yields

Q3 ≡ TopK10(e1)

e1 ≡ Γo orderkey;revenue:sum(·)(e2)

e2 ≡ e3 Bl orderkey=o orderkey e4

e3 ≡ σl shipdate>1995-03-15(Lineitem)

e4 ≡ e5 No custkey=c custkey e6

e5 ≡ σo orderdate<1995-03-15(Order)

e6 ≡ σc mktsegment=’BUILDING’(Customer)
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Plan without groupjoin Plan with groupjoin

Figure 3: Plans for Query 3.

This plan is also sketched in Figure 3.
We exploited the fact that the query states that

l orderkey = o orderkey, and that o orderkey is the key of
the order relation. Additionally, we applied Equation 6 to
keep the set of grouping attributes small. As a consequence,
the sole grouping attribute is o orderkey, which is the key of
the order relation. Thus, the preconditions of Equation 12
are fulfilled and we can rewrite e1 to

e1 ≡ e4 Zo orderkey;revenue:sum(·) e3

The resulting plan is sketched in Figure 3. From Figure 5,
we see that the plan without the groupjoin operator is about
50% slower than the plan with the groupjoin. This is not
bad, but also not really impressive. As a general rule, the
improvement achieved by applying Equation 12 grows with
the ratio of the number of tuples after the join compared to
the number of tuples produced by the group operator. To
illustrate higher gains, we now briefly sketch a more complex
example.

4.3 Groupjoin vs. Group/Join: Query 21
Query 21 retrieves the first 100 tuples returned by

select s name, count(*) as numwait
from supplier, lineitem l1, orders, nation
where s suppkey = l1.l suppkey

and o orderkey = l1.l orderkey
and o orderstatus = ’F’
and l1.l receiptdate > l1.l commitdate
and exists (select *

from lineitem l2
where l2.l orderkey = l1.l orderkey
and l2.l suppkey <> l1.l suppkey)

and not exists (
select *
from lineitem l3
where l3.l orderkey = l1.l orderkey
and l3.l suppkey <> l1.l suppkey
and l3.l receiptdate > l3.l commitdate)

and s nationkey = n nationkey
and n name = ’SAUDI ARABIA’

group by s name
order by numwait desc, s name

This query contains two nested subqueries. We decided
to apply the excellent unnesting technique developed by
Bellakonda et al.[1]. The resulting plan of this translation is

TopK

Γ

σ

Γ

B

L N

B

L S

O

TopK

Γ

σ

Z

N

B

L S

O

L

Plan without groupjoin plan with groupjoin

Figure 4: Plans for Query 21.

System T
X5680@3.33GHz
TPC-H (SF=1)

with Z without Z alternative
Q t(ms) t(ms) t(ms)

13 84 278
3 70 104

21 127 500
5 59 68
9 212 222 192

10 51 74
16 45 49
17 33 34
20 37 37

total 1295 1932 all 22 queries of TPC-H

Figure 5: Performance results.

shown in Figure 4. The plan without a groupjoin (left-hand
side) has two group operators. The topmost group operator
corresponds to the group-by clause in Query 21. It groups by
s name and calculates numwait. The same grouping operator
occurs also in the plan with the groupjoin (right-hand side).
The main idea of Bellakonda et al. is to coalesce the two
subqueries into one. This subquery calculates the number
of lineitem tuples which satisfy the conditions of the first
subquery, and the number of lineitem tuples satisfying the
conditions of the second subquery. This calculation is done
in the bottommost group operator of the plan on the left-
hand side of Figure 4. These numbers are then used in the
predicate contained in the selection following the bottommost
grouping. The reader is referred to the original paper for a
detailed discussion. For our purposes, it sufficies to know that
Equation 12 can be applied to introduce a groupjoin. The
performance numbers for both plans are given in Figure 5.
As we can see, the performance increases by more than a
factor of three. The reason why the plan without a groupjoin
is so expensive can be seen from the plan itself. Ignoring
details, the plan joins lineitem with lineitem, and lineitem is
by far the largest relation in the TPC-H benchmark.
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5. EVALUATION
In order to determine the execution times for the differ-

ent plans, we used our System T, which is a main memory
row store. While developing System T, special attention
was given to the physical algebra. A carefully crafted push
algebra yields sufficient speed. We ran all experiments on a
server with an Intel X5680 at a clock rate of 3.33 GHz. The
server ran SUSE Linux, and System T was compiled using
g++ -O3. The performance results are presented in Figure 5.
We used TPC-H with scaling factor 1. All queries ran in
single thread mode. Figure 5 gives the execution times for
all queries of TPC-H for which one of our equivalences is
applicable. The first two rows show the impressive improve-
ments for Query 13, where Equation 11 was applied, and
for Query 3, to which Equation 12 was applied. In both
cases, a factor of more than three was gained. The remaining
queries allow for the application of Equation 12. They do
not benefit from the transformation in any impressive way.
However, it is important to note that the transformation is
always beneficial. Thus, the query optimizer does not have
to consider alternatives, which is a very nice feature.

Let us now discuss Query 9. Here, the application of Equa-
tion 12 results only in a minor performance improvement.
However, there exists another plan with a different join order,
to which Equation 12 cannot be applied, which is slightly
better than both the other plans. Thus, even if one of the
equivalences is applicable to some plan, the resulting plan
may not be globally optimal. In a sense, this is what one
might have expected anyway, but we like to stress this point.
A future challenge will thus be to integrate the new equiva-
lences into a state-of-the-art plan generator like DPhyp [15],
which is already capable of handling groupjoins.

The impact of introducing groupjoins is notable on the
total query execution time for all TPC-H queries. If no
groupjoin is used, the total is 1932 ms, whereas it is 1295 ms
if we introduce the groupjoin whenever possible. Thus, this
technique saves about 33 % of the total TPC-H execution
time.

6. CONCLUSION
We have seen that merging a join followed by a group-by

into one groupjoin operator significantly speeds up TPC-H.
Since the groupjoin is also useful for decorrelating nested
queries and expressing advanced grouping constructs like
cube-by and group-by grouping sets, we strongly believe that
it should become a standard operator in relational DBMSs.
Furthermore, we hope that the groupjoin will find its way
into textbooks.
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APPENDIX
The appendix is organized as follows. We first repeat a result
derived by Yan and Larson. Then, we state some simple
equivalences which will be needed for the proofs. Since these
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are easy to prove, we omit their proof. Finally, we present a
lemma and the proofs of our main equivalences.

A. CONVENTIONS
For the remainder of this section, let e1 and e2 be two

algebraic expressions. Let q ≡ J1 = J2 be a join predicate
with Ji ⊆ A(ei) and G be the set of grouping attributes.
Define Gi = G ∩ A(ei), G

+
i = Gi ∪ Ji, and G+ = G ∪ J1 ∪

J2. Let F be an aggregation vector. We assume that F is
splittable and decomposable. Define C = A(F ) ∪G.

B. GROUP AND JOIN
The following equivalence corresponds to the main theorem

of Yan and Larson [22]. It states that

ΓG;F (e1 Bq e2)

≡ ΓG;(F1⊗c2)◦F2
2

(e1 Bq Γ
G+

2 ;F1
2 ◦(c2:count(∗))

(e2)) (13)

holds if F is splittable into F1 and F2, and F2 is decomposable
into F 1

2 and F 2
2 . The proof can be found in [22].

We now wish to eliminate the top-most grouping operator
on the right-hand side of Equation 13. We can do so by
applying Equation 8, which requires G+ → TID(e1). If
further G→ G+ holds, then there is only one tuple per group
in the outermost grouping operator on the right-hand side
of Equation 13 and we can apply Equation 6. Thus, under
these two conditions we can derive the following equivalence:

ΓG;F (e1 Bq e2)

≡13 ΓG;(F1⊗c2)◦F2
2

(e1 Bq Γ
G+

2 ;F1
2 ◦(c2:count(∗))

(e2))

≡6 ΠC(ΓG+;(F1⊗c2)◦F2
2

(e1 Bq Γ
G+

2 ;F1
2 ◦(c2:count(∗))

(e2)))

≡8 ΠC(χ ̂(F1⊗c2)◦F2
2

(

e1 Bq Γ
G+

2 ;F1
2 ◦(c2:count(∗))

(e2))) (14)

This equivalence corresponds to the main theorem of Yan
and Larson in [21]. This can be further simplified if F(F ) ⊆
A(e2):

ΓG;F (e1 Bq e2)

≡14 ΠC(χ ̂(F1⊗c2)◦F2
2

(e1 Bq Γ
G+

2 ;F1
2 ◦(c2:count(∗))

(e2)))

≡ ΠC(e1 Bq Γ
G+

2 ;F
(e2)) (15)

C. GROUP AND UNION
Let e1 and e2 be two expressions with A(e1) = A(e2).

Further, let G ⊆ A(e1) be a set of grouping attributes and
F an aggregation vector. If (ΠG(e1) ∩ΠG(e2)) = ∅, then

ΓG;F (e1 ∪ e2) ≡ ΓG;F (e1) ∪ ΓG;F (e2). (16)

If (ΠG(e1) ∩ ΠG(e2)) 6= ∅ and F is decomposable into F 1

and F 2, then

ΓG;F (e1 ∪ e2) ≡ ΓG;F2(ΓG;F1(e1) ∪ ΓG;F1(e2)). (17)

This equivalence also holds if (ΠG(e1) ∩ΠG(e2)) = ∅.

D. MAIN PROOF
Preconditions and Proof Outline
Several equivalences are only valid if certain preconditions

hold and equivalences are used to prove other equivalences.
For convenience, we thus provide two tables. The first ta-
ble lists all preconditions of our main equivalences and the

equivalences which require them. The second table lists all
equivalences together with a list of equivalences used in their
proofs. These two tables allow the reader to quickly get an
overview of the outline of a proof and the provenance of the
preconditions. The first table is

preconditions equivalences requiring them

G1, G
+
2 → TID(e1) Equation. 8, 14, 15, 11, 12

G→ G+
2 Equation. 6, 14, 15, 11, 12

J2 → G2 Equation. 4, 11, 12
F(F ) ⊆ A(e1) Equation. 11, 15, 20

and the second table is:

to prove equivalences used in proof
Equation 14 Equation. 6, 8, 13
Equation 15 Equation 14
Equation 18 Equation. 13, 17
Equation 19 Equation. 8, 18
Equation 20 Equation 19
Equation 11 Equation. 4, 9, 20

A Lemma We start with a lemma:

ΓG;F (e1 EJ1=J2 e2)

≡ ΓG;(F1⊗c2)◦F2
2

(

e1 E
F1
2 (∅),c2:1
J1=J2

Γ
G+

2 ;F1
2 ◦(c2:count(∗))

(e2)). (18)

Proof. We start with

ΓG;F (e1 Eq e2)

≡Def ΓG;F ((e1 Bq e2) ∪ ((e1 Tq e2) A E⊥))

≡17 ΓG;F2
1 ,F

2
2

(ΓG;F1
1 ,F

1
2

(e1 Bq e2)

∪ ΓG;F1
1 ,F

1
2

((e1 Tq e2) A E⊥)),

where E⊥ = {⊥A(e2)}. Applying Equation 13 to the left
argument of the union results in

ΓG;F1
1 ,F

1
2

(e1 Bq e2)

≡13 ΓG;(F1
1⊗c2)◦F

2
2

(e1 Bq Γ
G+

2 ;F1
2 ◦(c2:count(∗))

(e2)).

Applying Equation 13 to the right argument of the union
yields

ΓG;F1
1 ,F

1
2

((e1 Tq e2) A E⊥))

≡13 ΓG;(F1
1⊗c2)◦F

2
2

((e1 Tq e2) A Γ
G+

2 ;F1
2 ◦(c2:count(∗))

(E⊥))

≡ ΓG;(F1
1⊗c2)◦F

2
2

((e1 Tq Γ
G+

2 ;F1
2 ◦(c2:count(∗))

(e2))

A Γ
G+

2 ;F1
2 ◦(c2:count(∗))

(E⊥))

≡ ΓG;(F1
1⊗c2)◦F

2
2

((e1 Tq Γ
G+

2 ;F1
2 ◦(c2:count(∗))

(e2))

A Π
G+

2 ∪A(F )∪{c2}
(χF1

2 (∅),c2:1(E⊥)))

and the claim follows. 2

A Corollary From Equation 18, we can easily derive the
following corollary, by applying Equation 8:

ΓG;F (e1 EJ1=J2 e2)

≡ ΠC(χ ̂(F1⊗c2)◦F2
2

(

e1 E
F1
2 (∅)
J1=J2

Γ
G+

2 ;F1
2 ◦(c2:count(∗))

(e2))) (19)
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l1 : Γa;sum(d)(R1 Ea=c S)
a sum(d)
1 17

r1 : R1 Za=c;sum(d) S
a sum(d)
1 17

l2 : Γa,e;sum(d)(R1 Ea=c S)
a e sum(d)
1 1 8
1 2 9

r2 : R1 Za=c;sum(d) S
a sum(d)
1 17

l3 : Γa;sum(d)(R2 Ea=c S)
a sum(d)
1 34

r3 : R2 Za=c;sum(d) S
a sum(d)
1 17
1 17

l4 : Γa;sum(d)(R3 Eb=e S)
a sum(d)
1 17

r4 : R3 Zb=e;sum(d) S
a b sum(d)
1 1 8
1 2 9

Figure 8: Left- and right-hand sides.

R1

a
1

R2

a
1
1

R3

a b
1 1
1 2

S
c d e
1 8 1
1 9 2

Figure 6: Example relations.

m1 : R1 Ea=c S
a c d e
1 1 8 1
1 1 9 2

m2 : R2 Ea=c S
a c d e
1 1 8 1
1 1 9 2
1 1 8 1
1 1 9 2

m3 : R3 Eb=e S
a b c d e
1 1 1 8 1
1 2 1 9 2

Figure 7: Join results.

Proof of Equation 19

ΓG;F (e1 Eq e2)

≡18 ΓG;(F1⊗c2)◦F2
2

(

e1 E
F1
2 (∅),c2:1
q Γ

G+
2 ;F1

2 ◦(c2:count(∗))
(e2))

≡8 ΠC(χ ̂(F1⊗c2)◦F2
2

(

e1 E
F1
2 (∅)
q Γ

G+
2 ;F1

2 ◦(c2:count(∗))
(e2)))

2

If A(F ) ⊆ e2, Equation 19 can be simplified to

ΓG;F (e1 EJ1=J2 e2)

≡ ΠC(e1 E
F (∅)
J1=J2

Γ
G+

2 ;F
(e2)) (20)

Proof of Equation 11 We now give the proof of Equa-
tion 11. We start with the right-hand side and transform it

until we get the left-hand side:

ΠC(e1 ZJ1=J2;F e2)

≡9 ΠC(e1 E
F (∅)
J1=J2

ΓJ2;F (e2))

≡4 ΠC(e1 E
F (∅)
J1=J2

Γ
G+

2 ;F
(e2))

≡20 ΓG;F (e1 EJ1=J2 e2))

2

Proof of Equation 12
Equation 12 follows directly from Equation 11. An alterna-

tive is to modify the above proof by using Equation 10 instead
of Equation 9 and Equation 14 instead of Equation 20.

E. EXAMPLES
Figure 6 contains some relations. The results of some

outerjoins (Ri Eq S) with two different join predicates are
given in Figure 7. Since all tuples in some Ri always find
a join partner, the results of the outerjoins are the same
as the corresponding join results. We are now interested in
the functional dependencies occurring in the conditions of
our main equivalences. Therefore, we discuss four example
instances of Equation 12, where at most one of the functional
dependencies is violated:

G→ G+
2 G1, G

+
2 → TID(e1) J2 → G+

2

1 + + +
2 + + -
3 + - +
4 - + +

The according instances of the left-hand and right-hand side
of Equation 12 are:

LHS RHS
1 Γa;sum(d)(R1 Ea=c S) R1 Za=c;sum(d) S
2 Γa,e;sum(d)(R1 Ea=c S) R1 Za=c;sum(d) S
3 Γa;sum(d)(R2 Ea=c S) R2 Za=c;sum(d) S
3 Γa;sum(d)(R3 Eb=e S) R3 Zb=e;sum(d) S

The functional dependencies have to be checked on the join
results given in Figure 7. In order to help the reader to
check the functional dependencies, we provide the following
table holding the main attribute sets occurring in our main
equivalences:

G G1 G2 J2 G+
2

1 {a} {a} ∅ {c} {c}
2 {a, e} {a} {e} {c} {c, e}
3 {a} {a} ∅ {c} {c}
4 {a} {a} ∅ {e} {e}

Taking a look at Figure 8, we see that both sides of the
equivalence give the same result only if none of the functional
dependencies is violated.
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