
Data Coordination: Supporting Contingent Updates

Michael Lawrence
Dept. of Computer Science

University of British Columbia
Vancouver, Canada

mklawren@cs.ubc.ca

Rachel Pottinger
Dept. of Computer Science

University of British Columbia
Vancouver, Canada
rap@cs.ubc.ca

Sheryl Staub-French
Dept. of Civil Engineering

University of British Columbia
Vancouver, Canada
ssf@civil.ubc.ca

ABSTRACT
In many scenarios, a contingent data source may benefit
by coordinating with external heterogeneous sources upon
which it depends. The administrator of this contingent
source needs to update it when changes are made to the
external base sources. For example, when a building design
is updated, the contractor’s cost estimate must be updated,
too. The goal of data coordination is to update a contingent
source, C, based on changes to an independently maintained
base source, B.

This paper introduces a data coordination system which
allows C to coordinate its data without imposing signifi-
cant requirements on B. Our system uses declarative map-
pings between B and C and performs coordination in two
stages View Differencing — finding changes to an interme-
diate view of B based on its mapping to C, and Update
Translation — translating the view differencing result into
updates on C. We present and evaluate novel solutions to
both stages and demonstrate their feasibility on real world
problems.

1. INTRODUCTION
In many applications, a data source may need to be co-

ordinated with heterogeneous data sources on which it de-
pends. The administrator of this contingent source needs to
ensure it is up to date and consistent with the latest data
provided by these base sources. A significant challenge when
coordinating between autonomous sources is that the base
sources only participate in the process to the extent of pro-
viding access to their data: the entire coordination process
is the responsibility of the contingent source’s administrator.

For example, a precise cost estimate is critical for decision
making during a building’s design phase. Updated building
designs are periodically provided by the project’s architect,
while the cost estimate is created and maintained by the
contractor. Efficiently determining how the building design
changes and what effects these changes have on the cost es-
timate are significant challenges for the contractor. We refer

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 37th International Conference on Very Large Data Bases,
August 29th - September 3rd 2011, Seattle, Washington.
Proceedings of the VLDB Endowment, Vol. 4, No. 11
Copyright 2011 VLDB Endowment 2150-8097/11/08... $ 10.00.

to this problem of updating an existing data source based on
changes in independently maintained data sources as data
coordination. Other data coordination scenarios arise; for
example, a bus company may need route data to coordi-
nate with the road network data provided by the city, a
national department of finance may need to coordinate eco-
nomic indicators with data provided by local statistics gath-
ering bodies, or a ferry operator may need to coordinate its
schedule information based on data from a marine forecast
website.

More specifically, data coordination occurs between two
autonomous but related data sources, B and C. In partic-
ular, one provider (e.g. the building architect) maintains a
base relational database, B, while another provider (e.g. the
contractor) maintains its own, separate, contingent rela-
tional database, C. This is in contrast to the traditional
problem of data integration [6], which focuses on query-
ing heterogeneous data; and coordination in peer to peer
databases [10, 13, 16], where a number of participants use a
common system to share data. We address coordination sce-
narios where there is a lack of system wide collaboration: C
is interested in coordinating with data made available by an
autonomous source B, with B periodically changing without
notice due to external factors (e.g. the architect updates the
design due to client requests). Our proposal for data coordi-
nation is a system which can be used by the administrator of
C to detect relevant changes in B and compute a set of up-
dates to C in order to maintain consistency. This presents
the following new challenges from previous work on data
coordination [2, 9, 16] for several reasons: 1) the loose cou-
pling of B and C means that C will not receive notifications
when and how B has changed; 2) the base/contingent rela-
tionship constrains coordination to only modifications on C,
and 3) the contingent source C is interested in resolving a
final ground instance and must be careful to avoid changes
which result in other side-effects.

In this paper, we propose a data coordination system
which represents relationships between B and C using declar-
ative mapping constraints of the form qB = qC .1 Such con-
straints permit the straightforward expression of complex
relationships between sources. Our system monitors B for
changes which impact C and performs best-effort coordi-
nation using a two-phased approach: 1) View Differencing,
which finds the changes to the view defined by qB = qC , and
2) Update Translation, which translates these into changes
to C, allowing its administrator to review and select the

1A much altered definition of data coordination appears
in [18], which takes a substantially different approach.

831

id type length height area
0 Column 1 1 1
1 Wall 10 3 27
2 Wall 4 3 12

(a) Component

cid name thickness
0 column concrete 240
0 rebar 200
1 light concrete 300
1 drywall 15
2 heavy concrete 200

(b) Material

Figure 1: Example building design Bt.

code qty
2220.00 1
3100.04 30
9250.12 27
9250.14 12
9250.02 27

(a) ProjectItems

code desc rate
3100.04 column formwork 6.50
3100.08 column rebar 165.00
9250.12 light concrete 25.00
9250.14 heavy concrete 35.00
9250.02 drywall 3.50
9250.03 190mm studs 12.00

(b) ItemRates

Figure 2: Example cost estimate Ct.

suggested changes.
We make the following specific contributions:

• We define data coordination and decompose the prob-
lem into view differencing and update translation.

• We propose and experimentally evaluate two algorithms
for view differencing.

• We propose algorithms for view update translation
based on data exchange formalisms [7] and incomplete
information [8] which find all possible translations, and
guide the user to select a unique solution.

• We experimentally evaluate our update translation al-
gorithms on real-world data, demonstrating their fea-
sibility and the benefit of practical heuristics.

The remainder of this section presents an example which
outlines our data coordination approach. Section 2 intro-
duces our data coordination system and formally defines the
specific problems we address. Section 3 outlines and presents
experimental results for two approaches to view differencing;
Section 4 describes our solutions for update translation, fol-
lowed by experimental results in Section 5, related work in
Section 6, and conclusions in Section 7.

1.1 Motivating Example

Example 1. A Building Designer’s data has schema B
containing relations Component and Material. An instance
Bt at time t is shown in Figure 1. A Cost Estimator’s data
has schema C containing relations ProjectItems and Item-
Rates; they have created an instance Ct in Figure 2 for the
building design Bt. The Cost Estimator has also created a

name/desc ar/qty
light concrete 27
heavy concrete 12
drywall 27

Figure 3: VB, the evaluation of qB on building design
Bt (Figure 1) equals VC , the evaluation of qc on cost
estimate Ct (Figure 2).

qB

diff?

Building

Architect

Contractor

Building Design (B)

Cost Estimate (C)

V

Figure 4: The Cost Estimator stores view V on
the building design. When V changes, we translate
these changes into a set of changes on C.

declarative mapping constraint qB = qC defined by the fol-
lowing queries

VB(nm, ar) :−
Component(id, t, l, h, ar) ∧Material(id, nm, th)

VC(desc, qty) :− ProjectItems(c, qty)

∧ ItemRates(c, desc, r) ∧ c = 9250.∗

expressing the relationship between the walls in the building
design and the cost items pertaining to walls in the cost es-
timate. The data of Figures 1 and 2 satisfy this mapping
because evaluating qB on Bt yields the same result as evalu-
ating qC on Ct (Figure 3). 2

Our data coordination system would allow the Cost Es-
timator to coordinate C with building design B. The Cost
Estimator describes how to connect to B and the desired
mapping to be maintained. Our system uses a “pull” model
of coordination, which is appropriate for scenarios where B
is unwilling to make special provisions to support coordi-
nation of contingent sources (for example if B is a dataset
available through a public URL). Our system stores a ma-
terialized view V on the building design as defined by the
query qB . It monitors B, and when there are changes to
V, it computes a set of possible changes to C as shown in
Figure 4.

A major challenge is handling ambiguity. In Example 1
if the building architect removes the drywall material layer
from Wall 1, it will cause (drywall, 27) to be deleted from
V, which could be reflected in the cost estimate by deleting
from ProjectItems, ItemRates, or both. A more challeng-
ing example is if the building architect adds paint layers to
Walls 1 and 2, causing (beige paint, 88) to be inserted into
V. This will require inserting into both ProjectItems and
ItemRates, but we cannot tell which value to use for its rate
or code (although qC tells us c = 9250.∗). If there is an exist-
ing “beige paint” tuple in ItemRates, then there is a good
chance that we can use its code and insert a single tuple
into ProjectItems. However, real world construction data
is ambiguous, containing duplicate descriptions and codes.

832

Because of these ambiguities, both examples remain non-
trivial even if Bt were given.

Our approach to data coordination is to provide a con-
cise description of all possible solutions, given the changes
and mapping constraint. This approach is motivated by the
user’s need to resolve a final ground instance of C. It allows
them to retain control over how coordination is performed,
and provides opportunities to overlay situation-dependent
ranking strategies.

2. DATA COORDINATION
Our system uses declarative mapping constraints of the

form qB = qC to express the coordination relationship of
B to C. As emphasized in [15], using declarative map-
pings allows the mapping designer to focus on what it means
to be coordinated, without concern to how coordination is
achieved. In this section, we formally define the specific
problems addressed in the implementation of our coordina-
tion system.

A database schema A is a set of relations, {A1, . . . Ak},
and an instance A of schema A consists of a set of relation
instances {A1, . . .Ak}. A query q over A is a function from
instances of A to instances of a view schema, which we de-
note V , writing the query as V (x) :− q(x, y), where x is
the set of attributes of V , q is a conjunction of relational
predicates, and y is the set of attributes in these relational
predicates which are not in x. In query qB of Example 1, x
consists of nm, ar, while y consists of id, t, l, h, th. When
it is clear from the context, we also use V = q(A) to denote
the set of tuples which results from evaluating q on A. Our
mappings are defined as follows.

Definition 1. (Mapping Constraint). A mapping con-
straint between relational schemas B and C is an expression
of the form qB = qC , where qB is a query over B, qC is a
query over C, and both qB and qC have the same number
and types of attributes in x. A mapping constraint qB = qC

is said to be satisfied with respect to instances B and C if
qB(B) = qC(C). 2

Our approach in general is for conjunctive queries qB and
qC , although we note that one of the proposed methods per-
mits arbitrary queries for qB , and that extending to queries
with arithmetic comparisons is a topic of our ongoing work.
The problem of creating mappings is outside the scope of
this paper. It has recently been argued [5] that precisely
engineered mappings are needed in many applications, and
we leave this responsibility to a domain expert (e.g. the Cost
Estimator), who may draw assistance from automated tools
such as Clio [20].

Data coordination involves updating the contingent source,
C, in response to changes in the base source, B. We define
an update as follows:

Definition 2. (Update) An update to an instance A is
a set of pairs of tuple sets (A+

i ,A−
i) for each relation Ai.

The result of applying an update (A+, A−) to A is {(A1 ∪
A+

1) −A−
1 , . . . (Ak ∪A+

k) −A−
k } We assume that for all i

A−
i ⊆ Ai and A+

i ∩A−
i = ∅. 2

Since B is autonomous and does not push change notifi-
cation to C, our system must monitor B for changes. The
monitoring policy depends on the freshness requirements of
Cs administrator — for example, our system might check B

(C+, C-)
qC

(V+, V-)

qB

Bt+1

Ct+1Ct

Vt Vt+1

Figure 5: Data coordination solution overview.

every day or every week. The central problem addressed by
our system occurs each time a change is detected in B:

Definition 3. (Data Coordination Problem) Given

1. Schema B, database instance Bt+1

2. Schema C, database instance Ct

3. A mapping constraint qB = qC s.t. there exists some
Bt s.t. qB(Bt) = qC(Ct)

Find all possible updates (C+, C−) such that when applied
to Ct, the result is a Ct+1 such that mapping qB(Bt+1) =
qC(Ct+1) is satisfied. 2

2.1 Our Approach
In our approach to data coordination, the mapping qB =

qC captures the subset of B’s data which, were it to change,
should have an effect on C. We can thus focus our data
coordination efforts by examining only what has changed
with respect to the view defined by qB . As discussed above,
our system implements coordination by storing a material-
ized view V on B defined by qB . C is coordinated with B
when V is identical to the materialized view VC resulting
from applying qC to C. Hence, if V is unavailable, it can be
recomputed from C.

With respect to the data coordination problem defined
above, at time t + 1, C will have a materialized view Vt on
B at the time t when it was last coordinated, thus providing
a record of the exact changes to B which are pertinent to
C. We use Vt to break data coordination into the following
two stages:

1. (View Differencing) Given Vt and Bt+1, find updates
(V+,V−) to Vt s.t. qB(Bt+1) = (Vt ∪V+)−V−.

2. (Update Translation) Given (V+,V−), find (C+, C−)
s.t. qB(Bt+1) = qC

`
(Ct ∪ C+)− C−´

This approach is illustrated in Figure 5.
In Section 3 we propose two methods to view differenc-

ing: 1) a practical and straightforward method which finds
(V+,V−) by materializing Vt+1 and comparing it with Vt;
and 2) an approach which is adapted from incremental view
maintenance. We experimentally investigate important ques-
tions about the behavior and performance of these methods.

Update translation is the more challenging stage and rep-
resents the bulk of this paper. The challenge with update
translation is ambiguity: there may be many possible trans-
lations of (C+, C−) for a given (V+,V−). This challenge is
compounded by the need for exact equality: how do we find
a translation which avoids side-effects? (spurious insertions
or deletions.)

833

The problem is related to data exchange [7]; however, data
exchange uses open world semantics and considers the gen-
eration of a target source from scratch (as opposed to up-
dating an existing source.) Hence their constraints are more
relaxed than in data coordination: the view need only be
a subset of a given query on a database instance. Our ap-
proach is to translate insertions and deletions separately.
We combine methods from data exchange, and use incom-
plete information to define a universal solution for insertion
translation which avoids side-effects (Section 4.1). We then
formally define the set of minimal, feasible deletion transla-
tions and propose a constrained search method which finds
them (Section 4.2). In Appendix C, we discuss how these
translations are combined into the final result in our system,
as well as a number of practical enhancements.

3. VIEW DIFFERENCING

3.1 Materialize and Compare
Our first proposed approach to view differencing is to

materialize Vt+1 by evaluating qB on Bt+1, and generate
(V+,V−) by direct comparison with Vt. We call this Mate-
rialize and Compare (MAC). We briefly describe MAC here;
details are in Appendix A. MAC computes (V+,V−) by
scanning Vt and Vt+1 in parallel. The process is similar to
a sorted merge: the next tuples from each of Vt and Vt+1

are compared via a total ordering; if one is smaller than the
other, it is added to V− or V+ (if it came from Vt or Vt+1

respectively).
MAC for view differencing has several benefits:

1. Since we are simply evaluating qB , there is no limit to
the types of queries which can be used. This allows for
mappings expressing very sophisticated relationships,
e.g. aggregation, conditionals, negation etc.

2. Minimal support is required from source B. As stated
in Section 1, one goal is to support autonomous sources.
For the MAC algorithm, we only require B to evaluate
queries on the its current data instance.

3.2 Incremental View Maintenance
Our second approach to view differencing is based on

an adaption of incremental view maintenance (IVM) tech-
niques, hence we call it IVM for View Differencing (IVM-
VD). IVM [11] updates a materialized view given changes
to the base relations without recomputing that view from
scratch. IVM, in addition to the new base relations (Bt+1)
and existing materialized view (Vt), also requires access to
the old base relations (i.e. Bt) and the updates to the base
relations. Its result is Vt+1.

We use the counting algorithm of [12], which requires
a count of the distinct derivations of tuples in the view.
Briefly, for a query with k predicates, the counting algorithm
evaluates the additive union of 2k separate query evaluations
(delta rules), each replacing one of the relational predicates
with its updates. Implementing this algorithm within the
context of an autonomous data coordination system requires
two major changes: 1) A local query rewriting to obtain tu-
ple counts from B without requiring any special facilities;
and 2) a modified implementation of the additive union op-
erator which allows the view updates to be isolated during
the computation of Vt+1. The full IVM-VD algorithm and

our solutions to its implementation challenges for data co-
ordination are given in Appendix A.

The following section describes the results of experimen-
tally comparing MAC to IVM-VD. While the heuristic of in-
ertia [11] states that IVM-VD should be preferred for small
updates, there are a number of practical reasons to prefer
MAC. We consider the exploration of such trade-offs an im-
portant contribution; to our knowledge, there has been no
prior comparison of the performance benefits of incremental
view maintenance as opposed to materializing from scratch.

3.3 Comparing MAC to IVM-VD
IVM-VD should be more efficient than MAC when the

updates are small and recomputing the view from scratch
is expensive. However, there are several possibly limiting
factors: IVM-VD makes a trade-off between the number of
queries evaluated, and the cost of each of these evaluations.
The reasoning is that it should be more efficient to evaluate
a large number of delta rules, each involving a term (B+

i or
B−

i) significantly smaller than the base relations. Of course,
the performance advantage gained by this trade-off depends
on the number of relations in the query qB and the number
of inserted/deleted tuples for each of these relations. We
explore the scope of this trade-off in depth in Appendix A.1;
our findings are as follows:

1. Both MAC and IVM-VD are feasible, offering accept-
able performance under realistic conditions.

2. IVM-VD’s execution time varies exponentially with
the number of joined relations in qB , but only if most
of these relations are updated. MAC is fairly resilient
to changes in the problem parameters; its performance
depends mostly on the size of Vt and Vt+1. Both al-
gorithms are linear in the size of the instance.

3. MAC appears to be favorable to IVM-VD when qB

contains more than a few joins, and the size of the
updates is greater than 2.5% of the database instance.

4. UPDATE TRANSLATION
After our system has computed a set of updates (V+,V−)

to V, it attempts to translate these into a set of updates on
C. A satisfactory translation requires that evaluating the
query qC on the updated C results in the updated view. The
problem is extremely challenging because, as shown in [3],
unambiguous translation is only possible under extremely
limited conditions. Update translation for data coordina-
tion additionally poses some new challenges for the following
reasons:

1. Our solution must be exact. That is, our mapping
constraints demand equality (bi-directional logical im-
plications), as opposed the more common subset con-
straints (uni-directional implication.) This means that
special attention must be paid to side-effects; we need
to ensure translated insertions C do not cause addi-
tional, spurious insertions into VC

2. Because changes to C are dictated by the given changes
to V (which are dictated by changes to B), updates to
C must not assert additional changes to V.

3. We need to consider sets of insertions and deletions,
and the interaction between them. I.e. translating each

834

insertion or deletion separately and taking the union
will produce incorrect results.

Our methods for translation of insertions V+ make use
of the tuple generating dependency (tgd) chase [1]. In do-
ing so, we generate an uncertain translation containing free
variables. A similar approach in a peer to peer setting is
taken in Youtopia [9, 16], where individual insertions and
deletions are propagated amongst a peer data sharing net-
work. We then find constraints on these variables by using
algebra of incomplete information [8]. This translation is
presented to the administrator of C, who should have some
domain knowledge which allows them to fill in the missing
values.

4.1 Insertion Translation
We begin by reformulating the insertion translation prob-

lem using first order logic. The constraint V = qC(C) can
be stated as a pair of tgds of the form

∀x
`
V (x)→ ∃yqC(x, y)

´
(1)V

∀x, y
`
qC(x, y)→ V (x)

´
(2)

where qC is a conjunction of relational atoms (not an al-
gebraic function operating on database instances.) Equa-
tion (1) algebraically corresponds to V ⊆ qC(J), while (2)
corresponds to V ⊇ qC(J). Insertions into V amount to ad-
ditional assertions of V (x) (i.e. new values for x s.t. V (x) is
true) Hence, they can only cause violations of (1) and can-
not impact (2). Likewise, deletions amount to assertions of
¬V (x) for some new values of x, and hence can only violate
(2) and will not impact (1).

Our method for translation of insertions takes advantage
of this with two steps: chase and constrain. We use the tgd
chase to generate a universal solution that satisfies (1), and
then use incomplete information to constrain the variables of
this solution to satisfy (2). Consider the following example:

Example 2. Consider a database consisting of a single
relation instance:

C(a, b)

(0, 1)

(0, 8)

(8, 2)

(1, 2)

(1, 3)

and a view V (x1, x2) :− C(x1, y) ∧ C(y, x2) The view in-
stance (V) corresponding to C is then

V(x1, x2)

(0, 2)

(0, 3)

Suppose that V+(9, 5) is inserted. The tgd chase on V+

results in C+(9, z) and C+(z, 5), where z is some unknown
value for y. This is acceptable if our goal is to find the
certain answers to a class of queries over C [7, 9]. How-
ever, since the user’s goal is to eventually resolve a ground
instance of C, we need to be careful about additional side-
effects. In this case, choosing z = 2 falsely asserts that
there is a tuple V(1, 5). 2

4.1.1 Chase Step
The chase step translates the set of insertions by chas-

ing [4, 7] to find a universal solution to the data exchange
problem given V+ and the constraint from Equation (1) in
Section 4.1. The correctness of our approach relies on the
following theorem.

Theorem 1. Let {C+
1 , . . .C+

k } be the result of chasing
V+ on (1). It follows that

V ∪V+ ⊆ qC({C1 ∪C+
1 , . . .Ck ∪C+

k }) (3)

Proof. By the definition of the chase, we have V+ ⊆
qC({C+

1 , . . .C+
k }). The theorem follows from the mono-

tonicity of the conjunctive query qC .

Theorem 1 gives a universal solution for insertion trans-
lations satisfying Equation (1). Following Example 2, we
chase on V+(9, 5) to get C+ = {(9, z), (z, 5)}. However, dif-
ferent values for z may result in spurious tuples, violating
Equation (2) (such as z = 2, from Example 2.) The fol-
lowing section shows how to use conditional tables to find
a set of sufficient and necessary conditions on the variables
generated during the chase in order to ensure (2) is satisfied.

4.1.2 Constrain Step
The constrain step derives constraints on the result of the

chase step in order to enforce strict equality, i.e. to satisfy
Equation (2) without violating Equation (1). We do this by
using relational operators on c-tables [8] to determine which
tuples may violate the constraints.

Briefly, a conditional table (c-table) [1, 8] is a relation
instance where tuples may contain labeled nulls (variables)
in addition to literal values. A c-table has a global constraint
Φ over its tuples’ variables, as well as constraints on the
individual tuples. A c-table (T, Φ) defines a set of possible
relations Rep(T, Φ) based on the valuations of its variables
which satisfy the conditions.

Given the universal solution C+ from the chase step, the
constrain step finds a Φ+ s.t. Rep(C+, Φ+) equals the set
of valid insertion translations. Recall Equation (3) from the
chase step. Our method is to modify C+

1 , . . .C+
k so that

Equation 3 holds exactly. We do this by finding a Φ+ which
does not allow spurious tuples.

Using the roles for relational operators on c-tables [8], the
spurious tuples can be computed as a c-table by evaluating
S = qC({C1 ∪ C+

1 , . . . Ck ∪ C+
k }) − (V ∪ V+). Each

resulting tuple, t, has some local conditions (e.g., z = 2 for
t = V(1, 5) in Example 2); the desired Φ+ can be found by
taking the conjunction of each condition’s complement.

Following Example 2, after inserting (9, z), (z, 5) into C,
we would find
S = {(9, 1), (9, 8), (9, 2), (9, 3), (0, 5), (1, 5), (5, 5), (9, 9)} for
z values of 0, 1, 2, 3, 5, 8, and 9. Hence, our final uni-
versal solution for insertion translation would be C+ =
{(9, z), (z, 5)} for z 6= 0, 1, 2, 3, 5, 8 or 9.

The evaluation of qC on c-tables can result in an expo-
nential number of tuples, since each variable in one of the
y-positions could take any of the values present in this po-
sition of another predicate. The run time of this algorithm
is proportional to the size of S, which is loosely bound by
O

`
(n + N)k

´
, where k is the number of predicates in qC

joining another predicate with a y variable, n is the number
of inserted tuples, and N is the size of the largest relation
in C. This severe worst-case is mitigated by factors such as

835

the join selectivity of the conjunction. For example, if qC

consists of a chain of uniform joins (i.e. a series of many-
to-one relationships), then the size of S becomes a degree-k
polynomial over n and N , where the largest exponent of N
is dk/2e and the largest exponent of n is k.

4.2 Deletion Translation
As with insertions, translating deletions also presents chal-

lenges in the form of ambiguities and side-effects. The ambi-
guity is present in that for any deleted tuple t ∈ V−, there
may be multiple sets of tuples which can be deleted from
{C1 . . .Ck}, each of which achieves the deletion of t. The
side-effects are that any or perhaps all of these sets may
result in the deletion of other tuples from V. In this sec-
tion, we use the contrapositive of the tgd in Equation (2) to
formulate the enumeration of all possible minimal deletion
translations.

Note that deletions from V can only cause violations of
Equation (2) — when there is no V (x) for a corresponding
qC(x, y). Performing a tgd chase in this instance is not a
viable solution, because we cannot fix these violations by
inserting into V . Our approach is based on transforming
the tgd (2) to its contrapositive

∀x ¬V (x)→ ¬∃y qC(x, y) (4)

With respect to Equation (4), deleted tuples amount to as-
sertions of ¬V (x) for all values of x which are in V−. We
describe a novel chase technique which enforces satisfaction
of this contrapositive tgd, while not violating Equation (1).
The new challenges are 1) that the right hand side asserts
nonexistence of x, y, and so our chase rule needs to find all
y which are in violation for a given x; and 2) ensuring that
(1) is not violated.

Since qC is a conjunction of relational predicates, ¬qC is a
disjunction of the negation of each predicate. In Example 2,
our contrapositive tgd would be
∀x1, x2 ¬V (x1, x2)→ ∀y ¬C(x1, y)∨¬C(y, x2). For a given
value of x, let α(x) = {y | qC(x, y)} denote the set of values
of y violating the right hand side of Equation (4) (which
can be found by evaluating a variant of qC .) We satisfy
Equation (4) for a given x by deleting at least one tuple
from any of qCs predicates for each element of α(x). In
Example 2, for (x1, x2) = (0, 2), we have α(x) = {1, 8}. In
order to delete (0, 2) from V, we must delete one of (0, 1) or
(1, 2), and one of (0, 8) or (8, 2). Deleting (0, 1) would also
cause (0, 3) to be deleted from V, and so any translation
having (0, 1) is infeasible. We generalize this to formalize
the set of possible deletion translations.

In Appendix B we give an algorithm which constructs all
feasible deletion translations. Our algorithm is more general
than past approaches [9, 16], and works by first building the
set

Γ = {γ(x, y) | x ∈ V−, y ∈ α(x)}

where each γ is itself a set, defined as

γ(x, y) = {qi
C(xi, yi) | i = 1..k}

(where qi
C is the i-th predicate of qC .) A solution to the dele-

tion translation problem consists of a choice of one deleted
tuple from each element of Γ. A solution is feasible if delet-
ing all tuples does not violate (1). Our algorithm performs
a recursive search for all feasible solutions by considering all
possibilities from each γ. Again, since qC is monotonic we

 0.1

 1

 10

 100

 1000

 1 2 3 4 5

W
al

l
ti

m
e

(s
ec

)

Predicates in query (k)

Insertions
Deletions

Figure 6: Performance (log scale) of update trans-
lation as a function of the number of predicates (k)
in qC .

can prune the search space by not considering any deletion
translation which is a superset of an infeasible translation.

Our algorithm has a worst case run time of O(skαn),
where k is the number of predicates in qC , n = |V−|, α
is the maximum size of α(x), and s is the time to determine
if a solution yields spurious deletions. In the following sec-
tion, we demonstrate that it performs quite well on realistic
cases, where relational normalization permits a number of
practical optimizations. In Appendix C, we discuss com-
bining the insertion and deletion translations into a final
result, as well as a number of practical improvements and
optimizations.

5. UPDATE TRANSLATION RESULTS
We implemented our update translation algorithms and

experimentally evaluated their performance using the TPC-
H database benchmark specification [22] and a query from
that specification which joins five tables and results in a
large view in relation to the size of the base relations. Such
a test instance is in line with the scale and complexity of
previous experiments on view updating [17]. Our imple-
mentation is a C++ program which uses the Berkeley DB
storage API [21]; full details of our setup are given in Ap-
pendix D.

Our first experiment analyzes performance as the num-
ber of predicates k in qC is varied (by projecting our test
query onto k ≤ 5 relations.) The results (Figure 6) indicate
exponential growth of insertion translation, agreeing with
the analysis in Section 4.1.2. The difference in performance
between k = 1 and k = 2 is statistically insignificant be-
cause the y-variables do not intersect between the first and
second predicates. The effect of increasing k dominates rela-
tion size, since the fourth relation contains 25 tuples and the
fifth only 5. The performance of deletions scales roughly lin-
early. There is a jump from k = 2 to 3, as the size of γ(x, y)
increases. The observed scalability is better than would be
expected from its worst-case analysis due to the hierarchy
of many-to-one relationships in the test query, which causes
α(x) = 1 and also a large pruning benefit.

Our second experiment (Figure 7), varies the size of C.
Since our test query consists of a chain of uniform joins and
one of its relations is of fixed size, both algorithms scale
linearly.

Our final experiment varies n. The performance of inser-
tion translation suffered in initial trials due to the high de-

836

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1 2 3 4 5 6 7 8 9 10

W
a
ll

 t
im

e
 (

se
c
)

Database size (GB)

Insertions
Deletions

Figure 7: Performance of update translation as a
function of the size (N) of C.

gree polynomial in n. Given that the end goal is for the user
to select a single unique translation among the many feasible
translations, it is wasteful to compute and constrain a large
number solutions which will never be contenders for the final
result. We propose using a static tables heuristic which both
reduces the search space to improve the performance of our
update translation algorithms, and also reduces the number
of solutions which need to be considered by the user. We can
use this heuristic to stop our search early, but can always
continue computing new solutions should the user request
it. The idea behind the heuristic is that many databases
contain a hierarchy of many-to-one relationships among tu-
ples (i.e. “is-a” or “has-a”.) If qC contains predicates along
such a hierarchy, it is unlikely that an insertion should gen-
erate insertions at higher levels. For example, in the TPC-H
schema, there is a hierarchy Supplier → Nation → Region.
It is unlikely that inserting a tuple into a view on these rela-
tions should insert a new Nation or Region into the database,
since one would expect the set of Nations/Regions to remain
relatively static. The static tables heuristic constrains the
set of solutions by fixing a set of tables which should not be
modified by insertions or deletions, acting as a hint for the
most likely translations.

We modified our algorithms to exclude modifications to
three of the tables in our test query. The results of our ex-
periments are shown in Figure 8. We plot the wall time of
insertions with and without the static tables heuristic. With
the heuristic the performance of insertions scales linearly, a
dramatic improvement on its exponential performance with-
out. The performance of deletions is largely unaffected, and
appears to scale linearly with a factor roughly equal to 1.

The deletion translation performance exceeds the expec-
tations set in Section 4.2, because the normalized form of
the TPC-H schema permits a number of optimizations. In
particular, primary key/foreign key relationships between
relations allows γ to be efficiently constructed for each tuple
by using primary and foreign key indexes, and also for solu-
tion feasibility to be easily determined. In Appendix D we
discuss a number of other optimizations for insertion trans-
lation relating to efficient testing of logical implication be-
tween disjunctions of binary inequalities.

6. RELATED WORK
A few projects have studied various forms of data coordi-

nation. Hyperion [2] coordinates data amongst autonomous
peers through event-condition-action (ECA) rules, which

 0

 500

 1000

 1500

 2000

 10 20 30 40 50 60 70 80 90 100

W
a
ll

 t
im

e
 (

se
c
)

Number of insertions/deletions (n)

Insertions - Raw
Insertions - ST Heuristic

Deletions

Figure 8: Performance of update translation as a
function of update size (n).

dictate how events at one source trigger actions at another.
ECA rules allow powerful update semantics [14] (and once
an event is detected, determining the corresponding action is
relatively straightforward.) This is an imperative approach
to coordination; by contrast, our declarative mappings make
coordination more challenging but allow sophisticated rela-
tionships to be encoded with relative ease. Recent Hype-
rion work [19] coordinates with mapping tables describing
pair-wise associations between values, focusing on problems
arising in value heterogeneity of relations with direct corre-
spondences, whereas we focus on data sources without direct
correspondences (i.e. conjunctions).

ORCHESTRA [9, 10] is a collaborative data sharing sys-
tem (CDSS) where querying is local and updates are ex-
changed between neighboring peers. The update exchange
problem is transformed from s-t tgds into a Datalog pro-
gram. The authors use Skolem functions in place of exis-
tentially quantified variables. The problems which arise are
similar to our update translation problem, but differ in two
important ways: 1) In our case, we propagate updates in
one direction (from B to C), which additionally constrains
the translations to those which operate solely on C; 2) our
end goal is not to query C, but to arrive at a final, unam-
biguous solution. This necessitates attention to side-effects
resulting from particular choices of values for the existential
variables.

View differencing is similar to incremental view mainte-
nance [11], which finds an updated view given changes to
the base relations. Our problem has two major differences:
1) As opposed to an updated view, our objective is to obtain
the updates to the view. 2) View maintenance requires the
updates to B, and both Bt and Bt+1. In data coordination
B is external to and autonomous from C, and as such may
not provide these.

In [17], a side-effect free approach to translating deletions
is given by making physical duplicates of joining tuples in
the base relations and using a modified join semantics, yield-
ing a fully automatic approach. Our emphasis is on a semi-
automatic approach — calling on the user to make decisions
in the face of ambiguity, which allows us to leave the oper-
ator semantics intact.

In Youtopia [16], insertions and deletions are translated
between peers who use s-t tgds to express constraints amongst
their data instances. Insertions and deletions are cascaded
incrementally by using forward and backward chase rules,
similar to our update translation methods from Section 4.

837

Whereas this incremental cascading is appropriate in a peer
network, we feel that in our scenario of the base/contingent
relationship, it is appropriate to coordinate data in a batch
process. Also, since our data coordination scenario only in-
volves updates to the contingent source C, we need to take
extra measures to ensure the translations do not result in
spurious insertions/deletions.

7. CONCLUSIONS
This paper introduced a system for the administrator of

a contingent data source C to coordinate with a base source
B using declarative mapping constraints to express relation-
ships between the two. We have described a two-stage ap-
proach to performing coordination of Cs data and identified
and proposed solutions to the central problems of this ap-
proach using novel methods. We have demonstrated empir-
ically that with the combination of practical heuristics, our
methods are able to handle realistic coordination scenarios.

We are currently investigating a number of important fea-
tures of our coordination system. We have discussed the use
of a static tables heuristic to focus the search space of update
translation on the best candidate solutions. We think an im-
portant feature of our coordination system will be including
additional heuristics and ranking methods. For example,
the user may naturally prefer updates which are smaller, or
respect certain constraints on C. Some of these issues are
discussed in more detail in Appendix C.

In order to address large scale coordination tasks, im-
proved algorithms are an important consideration. We are
currently working on an algorithm which computes the min-
imal Φ+ directly, without evaluating any tuples more than
necessary.

Seeking to reduce the burden on the user is a primary
concern. It may be desirable to incorporate a training mech-
anism into our system, so that the user’s interaction (say,
in choosing a set of updates) can be recorded and used to
guide future translations. The first steps in this direction
are to formulate the learning problem, including a defini-
tion of the objectives and the learning parameters recorded
by our system.

Acknowledgments
We thank Raymond Ng, Solmaz Kolahi, and the anonymous
reviewers for their suggestions. This project is partially
funded by NSERC Canada.

8. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison-Wesley, 1995.

[2] M. Arenas, V. Kantere, A. Kementsietsidis, I. Kiringa,
R. J. Miller, and J. Mylopoulos. The Hyperion
project: from data integration to data coordination.
SIGMOD Record, 32(3):53–58, 2003.

[3] F. Bancilhon and N. Spyratos. Update semantics of
relational views. TODS, 6(4):557–575, 1981.

[4] P. Barceló. Logical foundations of relational data
exchange. SIGMOD Record, 38(1):49–58, 2009.

[5] P. A. Bernstein and S. Melnik. Model management
2.0: manipulating richer mappings. In SIGMOD,
pages 1–12, 2007.

[6] A. Doan and A. Y. Halevy. Semantic integration
research in the database community: A brief survey.
AI Magazine, 25(1):109–112, 2004.

[7] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa.
Data exchange: Semantics and query answering. In
ICDT, pages 207–224, 2003.

[8] G. Grahne. The Problem of Incomplete Information in
Relational Databases, volume 554 of LNCS. 1991.

[9] T. J. Green, G. Karvounarakis, Z. G. Ives, and
V. Tannen. Update exchange with mappings and
provenance. In VLDB, pages 675–686, 2007.

[10] T. J. Green, G. Karvounarakis, N. E. Taylor,
O. Biton, Z. G. Ives, and V. Tannen. ORCHESTRA:
facilitating collaborative data sharing. In SIGMOD,
pages 1131–1133, 2007.

[11] A. Gupta and I. S. Mumick, editors. Materialized
Views: Techniques, Implementations, and
Applications. MIT Press, 1999.

[12] A. Gupta, I. S. Mumick, and V. S. Subrahmanian.
Maintaining views incrementally. In SIGMOD, pages
157–166, 1993.

[13] A. Y. Halevy, Z. G. Ives, J. Madhavan, P. Mork,
D. Suciu, and I. Tatarinov. The piazza peer data
management system. TKDE, 16(7):787–798, 2004.

[14] V. Kantere, I. Kiringa, J. Mylopoulos,
A. Kementsietsidis, and M. Arenas. Coordinating peer
databases using ECA rules. In DBISP2P, pages
108–122, 2003.

[15] L. Kot, N. Gupta, S. Roy, J. Gehrke, and C. Koch.
Beyond isolation: research opportunities in declarative
data-driven coordination. SIGMOD Record, 39:27–32,
September 2010.

[16] L. Kot and C. Koch. Cooperative update exchange in
the youtopia system. PVLDB, 2(1):193–204, 2009.

[17] Y. Kotidis, D. Srivastava, and Y. Velegrakis. Updates
through views: A new hope. In ICDE, page 2, 2006.

[18] M. Lawrence, R. Pottinger, and S. Staub-French.
Coordination of data in heterogeneous domains. In
ICDE Workshop NTII, pages 167–170, 2010.

[19] M. M. Masud, I. Kiringa, and H. Ural. Update
processing in instance-mapped P2P data sharing
systems. IJICS, 18(3/4):339 – 379, 2009.

[20] R. J. Miller, L. M. Haas, and M. A. Hernández.
Schema mapping as query discovery. In VLDB, pages
77–88, 2000.

[21] M. A. Olson, K. Bostic, and M. Seltzer. Berkeley DB.
In USENIX, pages 43–43, 1999.

[22] TPC benchmark H, standard specification, revision
2.11.0, April 2010.

838

APPENDIX
A. VIEW DIFFERENCING

We now describe our approach to view differencing in
more detail. Materialize and Compare (MAC) takes as in-
puts the updated instance Bt+1 and a sorted copy of the ma-
terialized Vt (which is already stored by our system.) Any
total ordering on the view tuples will suffice for sorting; In
our experiments we order view tuples based on a significance
ordering on their attributes. i.e. x1 < x2 iff x1[a] < x2[a]
for some attribute a, and x1[b] = x2[b] for all attributes b
more significant than a. Careful choice of the comparison
operator can speed up the sorting. If the mapping designer
knows how the data in B is stored and how qB is evaluated,
a comparison operator may be chosen such that sorting does
not require moving around a significant number of tuples.

As discussed in Section 3.2, we use the counting algorithm
of [12] for IVM-VD. The counting algorithm associates with
each tuple x a count of the number of derivations of x in
a relation, under duplicate semantics. For x ∈ B, we use
countB(x) to denote this count (which could also be nega-
tive.) An additive union operator] is defined over relations
of counted tuples (x, count(x)), by adding the counts of tu-
ples (and removing any tuples whose count sums to 0.)

The updated view Vt+1 is found by performing the addi-
tive union of Vt with the result of 2k delta rules, where k is
the number of relational predicates in qB . Each delta rule re-
places one of these predicates with the equivalent predicate
defined on the on set of inserted/deleted tuples into/from
that relation. We obtain tuple counts by rewriting each
delta rule as an aggregate query. This rewriting is simple,
and incurs little additional cost on the part of B.

Another challenge is computing the updates (V+,V−)
from the set of tuple counts computed by the counting algo-
rithm. We do this during the final additive union operator,
by tracking which tuples have a count which changes from
≤ 0 to > 0, and which tuples have a count which changes
from > 0 to ≤ 0.

A.1 Evaluation
We experimentally evaluated both MAC and IVM-VD to

assess their performance in a variety of circumstances. Our
main goals were to determine whether they are both feasible
under reasonable conditions, and to what features they are
most sensitive. Therefore, our experiments measured the
wall execution times of both approaches while varying the
amount of data, update size, schema, and view definitions.

A.1.1 Instances
Simple: Contains a single relation B(id, a, b). id is a key;

a is an integer on [0, 100); and b is a floating point value.
The simple instance is to obtain baseline performance for
a very simple case, measuring the effect of view size and
update size. Our view definition was: q(b) :− B(id, a, b) ∧
a < c, where c is a variable between 0 and 100, and which
defines the view size as a percentage of the database size.
Since b values are randomly distributed, MAC was forced
to sort Vt+1 after materialization. Naturally, IVM-VD was
not required to sort. Data was generated uniformly.

Tree: Recall from Section 3.2 that for a query with k
predicates, IVM-VD evaluates 2k delta rules and performs
2k additive union operations. Our second test instance var-
ied the number of relations in the schema and view definition
to determine how well each method scales on progressively

complex queries. The tree schema has relations A1 . . . Ak;
each relation i 6= k has a foreign key reference to relation
i+1, and the data for this schema forms a forest, with each
tree rooted by a tuple of Ak relation. The view on the k-
relation tree schema contains the id of all tuples in A1 who
are joined to the tuple in Ak with idk = 0.

TPC-H: The TPC-H schema is a benchmark decision
support schema [22]; TPC-H consists of 8 relations used to
track the part ordering system of a retail database. We used
the TPC-H schema to evaluate performance under a realis-
tic database scenario. We used TPC-H query q16, as shown
in Figure 9. Since the counting algorithm can only be ap-
plied for views defined with conjunctive queries, we adapted
the TPC-H queries by replacing subqueries with finite value
sets, and removing aggregations. Our data was generated
with the TPC-H data generator, which has a uniform dis-
tribution.

SELECT P_BRAND, P_TYPE, P_SIZE, PS_SUPPKEY

FROM PARTSUPP JOIN PART ON P_PARTKEY=PS_PARTKEY

WHERE P_BRAND <> ’Brand#4’ AND

P_TYPE NOT LIKE ’SMALL%’ AND

P_SIZE IN (1,6,11,16,21,26,31,36,41,46,50)

AND PS_SUPPKEY NOT IN (1, 100, 200, 1000, 4000,

4800, 5200, 6400, 8800, 9300, 9700, 9999);

Figure 9: TPC-H query q16.

A.1.2 Methods
For the simple instance, we conducted experiments which

vary c — the view size as a percentage of the data set size
— as well as the size of the updates to the relation. For
the tree test instance, we varied the number of relations k,
and generated a single instance of each size k schema. For
the TPC-H instance, we conducted experiments varying the
database size (and hence the view size) and varying the size
of updates, similarly to the single relation instance. For each
data set size, or update size, we performed 10 trials using
independently generated updates. We used the TPC-H data
generator, which uniformly generates data for all 8 relations
proportional to a size factor; this size factor roughly corre-
sponds to its size in GB, or 1/8,660,000th the total number
of tuples.

Our implementations of both approaches were written in
C++, using the MySQL++ library, and a MySQL database
engine, version 5.0. The implementation and engine both
ran on the same host. Our experiments were performed on
a Intel Xeon 2.93GHz system, with 64GB of RAM, running
OpenSUSE Linux.

A.1.3 Experimental Results
First, we varied x (the size of the view as a percentage

of the data set size)on the Simple instance (Figure 10). As
can be seen, both methods perform reasonably well, with
IVM-VD slightly outperforming MAC. In this case, the size
of both insertions and deletions are fixed at 5% of the size of
the unified data set (Bt∪Bt+1), which is 2M tuples. We also
found that the sorting step occupied 75% of MACs execution
time, meaning that it could be made significantly faster if
Vt is already sorted. This would be the case if the view
includes any attribute for which there is an index. Our tests
on TPC-H highlight the performance advantage of sorting.

839

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 20 40 60 80 100

E
x
e
c
u
ti

o
n
 T

im
e
 (

se
c
o
n
d
s)

View Size (% of relation size)

MAC
IVM-VD

Figure 10: Performance of view differencing on the
simple instance.

We ran additional experiments (not shown) varying the
size of the updates. As expected, the run time of IVM-
VD increases linearly with the size of the updates, roughly
tripling over the experimental range, while the performance
of MAC was not affected. It should be noted that our exper-
imental range extended to insertions and deletions of 25% of
the tuples in the test database, which would be considered
an extreme case. For a simple view definition, IVM-VD is
not overly sensitive to a normal range of update sizes.

 1

 10

 100

 1000

 5 10 15 20 25

E
x

e
c
u

ti
o

n
 T

im
e
 (

se
c
o

n
d

s)

Join Size

MAC
IVM-VD

Figure 11: Performance of view differencing on the
tree instance.

Next we tested on the Tree instance to determine the al-
gorithms’ sensitivity to join size (as a proxy for query com-
plexity). Figure 11 shows the run time (plotted on a log-
arithmic scale) of each algorithm as the number of joins is
varied. The run time of IVM-VD increases exponentially,
reaching around 1400 seconds for a 26-way join. While a
26 relation join may seem implausible, it is seen in prac-
tice; these results indicate some caution is necessary when
considering the application of IVM-VD for large numbers of
joins. These results require the number of updated relations
to be large, regardless of the number of relations in the view
definition. In preliminary trials, we found IVM-VD to be
efficient for views with a large number of joins when the
number of updated relations is small. This is because the
majority of delta rules will perform a join with a relation of
size 0. Modern query optimizers can detect this case and
quickly return an empty result.

MAC scales quite well in this case. Its runtime decreases
at first due to a decrease in the size of Vt+1 and then in-

creases as the decreased view size is overwhelmed by the
time to materialize Vt+1. The sharp increase at 23 joins
is due to MySQL’s execution time of qB growing from less
than 10 seconds to more than 45.

We note that these results may be due in part to the ef-
ficiency (or lack thereof) of the query evaluation implemen-
tation. While replacing MySQL with an implementation
having better performance for large joins may change the
results’ scale, it should not affect the relative ordering of
the two methods, as the execution time of MAC for views
involving large joins is more likely to be bound by the time
to materialize Vt+1.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 2 4 6 8 10 12 14 16 18 20

E
x

e
c
u

ti
o

n
 T

im
e
 (

se
c
o

n
d

s)

Database size (GB)

MAC
IVM-VD

Figure 12: Performance of view differencing as a
function of size for TPC-H.

Finally, we present our TPC-H results. In Figure 12 we
fixed the update size at 10% of the data set size and var-
ied the size of the database. Both methods scale linearly
with the size of the data, with MAC outperforming IVM-
VD slightly in each case. This latter trend is largely due to
our choice of update size: in Figure 13 we fixed the database
size at 10GB and varied the update size. In this case, the
run time of IVM-VD increased with update size, while MAC
was decreased slightly due to decreasing view size. Our view
definition (Figure 9) was a query from TPC-H; it joins four
relations and using four selection conditions involving tests
of inequality, set membership and substring containment.
The size of the resulting view is about 0.64% of the to-
tal database size, ranging from 0.11M to 2.37M tuples over
the range of the experiments. We experimented with other
TPC-H queries, and in all cases, the point at which MAC
outperforms IVM-VD is around 2.5%, despite the fact that
the three queries used have a varying number of joins and
result in varying view sizes.

B. DELETION SEARCH ALGORITHM
Algorithm 1 first builds the set Γ, and then performs a

recursive search to find all feasible combinations of 1 tuple
from each γ ∈ Γ. For a set of deletions V− = {x1, . . . xm},
the number of distinct translations is at most

Qm
i=1 kα(xi),

where k is the number of predicates in qC .
Consider Example 2 from Section 4.1. If we were given

V− = {(0, 2)}, TranslateDeletions would first find α(0, 2) =
{(1), (8)}. It would build two sets

γ1 = {(0, 1), (1, 2)}, γ2 = {(0, 8), (8, 2)}

In order to delete V−(0, 2) we must delete at least 1 tuple
from each γ. RecursiveSearch first tries C(0, 1), and, finding

840

Algorithm 1 Finds all combinations of one tuple from each
γ ∈ Γ using a pruned search tree.

TranslateDeletions(V−)

1: Γ← ∅
2: for all x ∈ V− do
3: for all y ∈ α(x) do
4: γ ← ∅
5: for all Conjuncts Ci(xi, yi) in qC(x, y) do
6: γ ← γ ∪ {Ci(xi, yi)}
7: end for
8: Γ← Γ ∪ {γ}
9: end for

10: end for
11: RecursiveSearch(∅, Γ)

RecursiveSearch(C−, Γ)

1: γ ← any member of Γ
2: for all Ci(x, y) ∈ γ do
3: if (1) is satisfied w/resp. to C− ∪ {Ci(x, y)} then
4: C− ← C− ∪ {Ci(x, y)}
5: Γ← Γ− γ
6: if Γ = ∅ then
7: Output C− as a feasible solution
8: else
9: RecursiveSearch(C−, Γ)

10: end if
11: end if
12: end for

 0

 10

 20

 30

 40

 50

 60

 70

 0 5 10 15 20

E
x

ec
u

ti
o

n
 T

im
e

(s
ec

o
n

d
s)

Update Size (% of instance size)

MAC
IVM-VD

Figure 13: Execution time for view differencing as
a function of update size for TPC-H.

that it violates Equation (1) due to V(0, 3) being spuriously
deleted, tries C(1, 2) instead. On the recursive call, our al-
gorithm would find that neither C(0, 8) and C(8, 2) violates
Equation (1), and hence it would give two possible transla-
tions:

C− = {(1, 2), (0, 8)},C− = {(1, 2), (8, 2)}

The set α(x) can be computed by evaluating a variant of
the query V (x) :− qC(x, y) by replacing x with its specific
values, and adding y to V . This query can be efficiently
computed if at least one relation Ci has a secondary index
on an attribute in xi. We can check the constraint on line 4
of RecursiveSearch by maintaining a Γ set for each x ∈ Vt+1.
Each additional deletion on line 5 of RecursiveSearch also
removes γs from these additional Γ sets, and the constraint
will be violated if Γ = ∅ for any x ∈ Vt+1.

C. CHOOSING A TRANSLATION
Sections 4.1 and 4.2 described our solutions to translat-

ing view insertions and deletions into sets of possible in-
sertions/deletions on Ct. We now discuss how our system
presents translations to the user, guiding them to select what
they believe is the correct set of updates for their local data.

The set of insertions is presented as a c-table, along with
the constraint Φ+ on its variables. The user must choose
appropriate values for these variables which do not violate
Φ+. Due to the regularity of Φ+ a relatively simple iterative
process can be used.

Φ+ consists of a conjunction of disjunctions, where the
disjuncts are inequality atoms of the form w 6= z, or w 6= c
for variables w, z and constant c. In our process, each tuple
xi, yi ∈ C+

i is presented individually in sequence along with
provenance information in the form of the tuple in V+ which
resulted in the generation of Ci(xi, yi). For each variable w,
the user is given a list of suggested values, where choosing one
of the suggested values results in a (xi, yi) which is already
in Ci — i.e. no insertion needs to be performed. The user is
also given a list of forbidden values, based on the existence
of inequalities w 6= c and w 6= z in Φ+, where z is a variable
whose value has already been chosen.

The set of deletion translations can be presented to the
user in summary form by using a representative element
from each deletion. As with insertion, we can also give as
provenance the tuple from V− which necessitated each tu-
ple’s deletion.

An important question is whether the insertions chosen
will dictate the set of deletions which can be chosen —
i.e. is it possible for a set of insertions and deletions to
conflict? We define a conflict as any pair of C+ and C−

which are correct translations on their own, but evaluating
qC((C ∪ C+) − C−) does not generate the updated view. An
important question is how to ensure that conflicting trans-
lations cannot be chosen, while still giving the freedom of
choice.

Our approach relies on the following theorem:

Theorem 2. C+ and C− conflict iff C+
i ∩ C−

i 6= ∅.

Proof. For the if direction; let t ∈ C+ ∩ C−. Since C+

is a universal solution to the data exchange problem given
V+ and qC , it follows that C+ is minimal (otherwise it would
not homomorphically map to a solution which is minimal.)
Also, since qC is monotonic it follows that qC(C ∪ C+ − t) ⊂
V ∪ V+. Again, due to the monotonicity of qC and the fact
that qC(C) = V, there exists a tuple t′ ∈ V+ such that
t /∈ qC(C ∪ C+ − t). Since by definition V+ ∩ V− = ∅,
it follows that qC((C ∪ C+) − C−) 6= (V ∪ V+) − V−.

For the only if direction; assume C+ ∩ C− = ∅. Then it is
the case that qC((C ∪ C+) − C−) = qC((C − C−) ∪ C+) (i.e.
the order of operators is irrelevant.) Since qC(C ∪ C+) =
V ∪ V+, and qC(C − C−) = V − V−, and due to
the monotonicity of qC we have qC((C ∪ C+) − C−) ⊆
(V ∪V+)−V− and qC((C− C−) ∪ C+) ⊆ (V −V−) ∪V+.
However, since V+ ∩ V− = ∅, the right hand side of the
previous two expressions are equal, forcing both expressions
to hold exactly.

Given Theorem 2, we can build conflict avoidance into
our selection process. After the user has chosen variable
values for the inserted tuples, we can eliminate all deletion

841

SELECT S_ACCTBAL, S_NAME, N_NAME, R_NAME,

P_PARTKEY, P_MFGR, S_ADDRESS, S_PHONE, S_COMMENT

FROM SUPPLIER

JOIN PARTSUPP ON PS_SUPPKEY = S_SUPPKEY

JOIN PART ON P_PARTKEY = PS_PARTKEY

JOIN NATION ON N_NATIONKEY = S_NATIONKEY

JOIN REGION ON R_REGIONKEY = N_REGIONKEY;

Figure 14: TPC-H query q2.

translation choices which intersect with the chosen inser-
tions. Conversely, if the user chooses the preferred deletion
translation first, we can add constraints to the variables in
the translated insertions so that it does not intersect with
the deletions chosen.

D. UPDATE TRANSLATION
EXPERIMENTAL SETUP

As described in Section 5, we have implemented our up-
date translation solutions in C++ using the Berkeley DB
external storage API, and B-Tree index structures. All ex-
periments were run on a 2.93GHz Intel Xeon based system
with 64GB of memory running OpenSUSE Linux.

We modeled our experimental instance to be comparable
in size and complexity to those used in [17]. We again used
the TPC-H benchmark database instance, and a view defi-
nition (Figure 14) which joins five tables and is a variant of
the cost supplier query (q2) [22]. For the experiments with
< 5 joins (Figure 6) we removed Region, Nation, Supplier,
and Part, in that order.

In total, our dataset had ≈1.9M tuples, and the view size

is 0.8M tuples. We randomly generated view insertions by
equally choosing existing values from the database at ran-
dom; and newly generated random values. We randomly
generated view deletions by choosing tuples from our mate-
rialized view at random.

Our implementation of c-tables is completely custom, and
we use a nested loop algorithm for joining tables containing
incomplete information. We have made a number of opti-
mizations based on an indexing mechanism for disjunctions
of inequalities which allows logical implication to be effi-
ciently determined. Let Λ1 and Λ2 be two disjunctions of
binary inequalities between variables and constants. I.e.

Λ1 = λ1,1 ∨ λ1,2 . . . λ1,n

Λ2 = λ2,1 ∨ λ2,2 . . . λ2,m

Where each λi,j is a binary inequality of the form w 6= z or
w 6= c for variables w, z and constant c. Then Λ1 → Λ2

iff all λ1,i are also in Λ2. We give each variable a unique
identifier, and define a simple total ordering on binary in-
equalities. We store a disjunction of binary inequalities in
sorted order, allowing us to determine if Λ1 → Λ2 by lexi-
cographical comparison.

During our insertion translation, we store the disjunctions
of Φ+ in lexicographically sorted order. This allows us to
minimize Φ+ in O(n) time by performing an in-order scan,
since all of the disjunctions implied by a given disjunction
will appear directly after it in this ordering. We also use
this property for early termination of nested loop iterations
in our join algorithm. We check if completing the current
inner loop iterations will require a condition which is already
implied by Φ+, and hence performing these inner loops will
be redundant.

842

