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ABSTRACT
We propose a novel subsequence matching framework that allows
for gaps in both the query and target sequences, variable match-
ing tolerance levels efficiently tuned for each query and target se-
quence, and also constrains the maximum match length. Using
this framework, a space and time efficient dynamic programming
method is developed: given a short query sequence and a large
database, our method identifies the subsequence of the database
that best matches the query, and further bounds the number of con-
secutive gaps in both sequences. In addition, it allows the user to
constrain the minimum number of matching elements between a
query and a database sequence. We show that the proposed method
is highly applicable to music retrieval. Music pieces are repre-
sented by 2-dimensional time series, where each dimension holds
information about the pitch and duration of each note, respectively.
At runtime, the query song is transformed to the same 2-dimensional
representation. We present an extensive experimental evaluation
using synthetic and hummed queries on a large music database.
Our method outperforms, in terms of accuracy, several DP-based
subsequence matching methods—with the same time complexity—
and a probabilistic model-based method.

1. INTRODUCTION
Finding the best matching subsequence to a query has been at-

tracting the attention of both database and data mining communi-
ties for the last few decades. The problem of subsequence match-
ing is defined as follows: given a query sequence and a database
of sequences, identify the subsequence in the database that best
matches the query. Achieving efficient subsequence matching is an
important problem in domains where the target sequences are much
longer than the queries, and where the best subsequence match for
a query can start and end at any position in the database.

A large number of Dynamic Programming (DP) [1] based dis-
tance or similarity measures perform similarity search in several
application domains including time series, categorical sequences,
multimedia data, etc. Nonetheless, there are still many applica-
tion domains, such as music retrieval, where these methods are not
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directly applicable or have very poor retrieval accuracy (see Sec-
tion 5), since in many cases several properties and characteristics
of the specific domain are ignored. In this paper, we focus on time
series subsequence matching and approach the problem from the
music retrieval perspective: suppose you hear a song but you cannot
recall its name; one solution is to hum a short part of the song and
perform a search on a large music repository to find the song you
are looking for or even songs with similar melody. The main task
of a Query-By-Humming (QBH) system is, given a hummed query
song, to search a music database for the K most similar songs.
This directly maps to subsequence matching as the hummed query
is typically a very small part of the target sequence.

Let us now see how time series subsequence matching can be
applied to QBH. Every piece of music is a sequence of notes char-
acterized by a key, that defines the standard pattern of allowed inter-
vals that the sequence of notes should conform with, and a tempo,
that regulates the speed of the music piece. Each note consists of
two parts: the pitch and the duration. A pitch interval is the dis-
tance between two pitches. In western music the smallest pitch
interval is called semitone, a tone comprises two consecutive semi-
tones, and the interval of 12 semitones is called octave. Another
important term is transposition, i.e., the action of shifting a melody
of a piece written in a specific key to another key. Finally, there
is a discrimination between monophonic and polyphonic music; in
the latter case it is possible for two or more notes to sound simul-
taneously, as opposed to the former case. Here, we consider mono-
phonic music, as in QBH we deal with melodies hummed by users.

(a) Part of the music score.
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(b) Representation using pitch intervals and IOIR.
Figure 1: Example of the music score and its 2-dimensional time series
representation. IOIR is the duration ratio of two consecutive notes.

Pitch and duration are two distinctive factors for a music piece
and they should both be used for efficient music representation [29].
We could have two or more songs that share similar note frequen-
cies (i.e., pitch values) but their melodies vary due different indi-
vidual pitch durations. Hence, if, for instance, only pitch is used to
represent a music song, there is a high risk of erroneously match-
ing two songs. Several existing approaches are hampered by the
fact that they only consider pitch in their representation, ignoring
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note durations [21]. In this work, we take into account both pitch
and duration. Melodies are defined as 2-dimensional time series of
notes of arbitrary length, where one dimension represents pitch and
the other duration (see Figure 1 for an example).

Figure 2: SMBGT: error-tolerant matching is denoted as ε-match.

In order to guarantee robust and meaningful subsequence match-
ing for a potentially very noisy domain, like QBH, several param-
eters should be considered. First, when humming a song, slight
or more serious errors may occur due to instant or temporary key
or tempo loss, respectively. Thus, the matching method should be
error-tolerant, otherwise there may be false negatives during the
retrieval. In addition, the method should allow skipping a number
of elements in both query and target sequences. This may, however,
produce very long matching subsequences with large gaps between
the matching elements. To solve this problem, we should constrain
the length of the matching subsequence, e.g., to be at most r, where
r is tuned appropriately for the application domain. Also, to ensure
that the matching subsequences will include as many matching el-
ements as possible, an additional constraint should be imposed to
the minimum number of matching elements. However, constrain-
ing the number of matching elements may decrease the number
of candidate matches. Specifically, if we have prior knowledge
about the singing skills of the person who produced the hummed
queries, we can tighten or loosen this constraint for strong or weak
hummers, respectively. Moreover, we can bound the number of al-
lowed consecutive gaps in both query and target sequences, which
provides a setting that also controls the expansion of the matched
subsequences during the DP computation.

Our first contribution is a subsequence matching framework that
allows for a constrained number of gaps on both query and target
sequences, variable tolerance levels in the matching (tolerances
are functions of the query and target elements), and a matching
range that constrains the maximum match length. In addition, a
similarity measure, SMBGT, is proposed, which given a query Q
and a target sequence X (with |Q| << |X|) finds the subsequence
of X that best matches Q. Gaps are allowed in the alignment and
can be bounded on both query and target sequences (by β and α
respectively). Moreover, the maximum match length in X as well
as the minimum number of matching elements are constrained (by
r and δ respectively). An example of SMBGT is shown in Figure 2.

Our second contribution is an extensive comparative evaluation
on QBH of several DP-based methods and a probabilistic model-
based method, where their retrieval accuracy and runtime is studied
on real (hummed by humans) and synthetic queries. Similar exper-
imentation is performed for the proposed methods showing their
superiority in terms of accuracy against these DP and model-based
methods for several parameter settings.

2. RELATED WORK
Several DP methods exist for whole sequence matching includ-

ing Dynamic Time Warping (DTW) [15] and variants (e.g., cDTW
[26], EDR [4], ERP [5]) that are robust to misalignments and time
warps, and some (e.g., DTW, cDTW) can achieve high retrieval

accuracy in applications such as time series mining and classifi-
cation [14]. Other DP-based methods allow for gaps in the align-
ment, e.g., LCSS [19]. All these methods, however, are designed
for whole sequence matching. SPRING [27] is a DP-based method
that finds the subsequences of evolving numerical streams that are
closest to a query in constant space, and time linear to the database
size (for short queries). Some of these DP methods can be applied
to QBH. Similar DP-based methods exist for string matching [17,
28], though they are not in the scope of this paper.

Zhu et al. [33] developed an efficient lower-bound for DTW.
This method, however, is designed for whole sequence matching
and is not directly applicable to subsequence matching, which is
our focus. The same problem remains in several other DP-based
methods [21]. Such methods could be retrofitted by performing
a sliding window search over the database. Nonetheless, such ap-
proach would be computationally expensive requiring one DP com-
putation per window. Two methods for subsequence matching [11,
13] implicitly account for local adjustments of tempo, though they
are not transposition invariant. SPRING seems promising for QBH
and thus it is further studied in this paper. Moreover, the Edit
distance [17] has been used for music retrieval with several vari-
ations [16]. Here, we study its most recent version [31]. All afore-
mentioned DP methods, however, fail to handle noise imposed by
users. Several LCSS-based approaches [2, 3, 29] can tolerate hum-
ming noise, though the fact that no bounds are imposed to the al-
lowed gaps may result in a large number of false positives when
|Q| << |X|. The approach of Han et al. [10] is based on uni-
form segmentation and sliding windows, which requires the user to
manually select the length of the segments and is therefore not sen-
sitive to the actual behavior of the data and can efficiently handle
only near exact matching. Another approach has been proposed [7,
12] that deals with whole query matching and a bounded number of
gaps only in the target sequence. Besides, none of these approaches
accounts for note duration, i.e., they are proposed for 1-dimensional
sequences. Moreover, some approaches embed transposition in-
variance as a cost function in the DP computation [6, 16], though,
with not attractive runtime.

Furthermore, n-gram-based methods for music retrieval [8, 29]
fail to handle noisy queries efficiently as they are designed for near
exact matching. Also, several probabilistic methods (HMM-based)
have been developed for speech recognition and music retrieval [20,
23, 25, 31]. However, they are computationally expensive due to
the required training, and creating models to represent all styles of
music in a large database is a very tough task.

Regarding the representation schemes developed for music re-
trieval, a common trend is to represent notes by encoding only their
pitch [21]. The combination of pitch and duration though improves
music retrieval as it holds more information for each note. Finally,
in this paper, we study monophonic music rather than polyphonic
[30, 32], as it directly applies to QBH.

3. PROBLEM SETTING

3.1 Representing Musical Pieces
There are two common ways of expressing pitch: (a) absolute

pitch, where the frequency of the note is used—in MIDI this value
is an integer between 1 and 127 with 0 representing pause—and (b)
pitch interval, which is the frequency difference between two ad-
jacent notes. Three common ways to encode duration [22] are: (a)
Inter-Onset-Interval (IOI) defined as the difference in time onsets
of two adjacent notes, (b) IOI Ratio (IOIR), defined as the ratio of
IOIs of two adjacent notes, with the IOIR of the last note equal to
1, and (c) Log IOI Ratio (LogIOIR), being the logarithm of IOIR.
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For the 2-dimensional time series representation, we considered
two combinations of encoding schemes: 〈pitch interval, IOIR〉 and
〈pitch interval, LogIOIR〉. With these combinations we deal with
note transitions, saving much computational time as we do not have
to check for possible transpositions of a melody, nor do we have to
scale in time when compared to other melodies. An example of
the 〈pitch interval, IOIR〉 representation of the song of Figure 1(a)
is shown in Figure 1(b). Also, pitch intervals were quantized in [-
11,11] by applying modulo 12 [29]. This quantization corresponds
to two octaves, a reasonable range in which human pitch can fluc-
tuate while singing. Regarding time, LogIOIR was quantized to the
closest integer or the closest value in [−2, 2] [22].

3.2 Definitions
Let X = {x1, . . . , xn} be a time series that represents a music

piece, where |X| denotes the size of X . Each xj = 〈xpj , x
r
j 〉 ∈ X

is a pair of real values, where xpj and xrj correspond to pitch and
duration information respectively, and are represented using any of
the schemes described in Section 3.1. A music database is a set
of time series DB = {X1, . . . , XN}, where N is the number of
music pieces in DB. A subsequence of X , denoted as X[ts :
te] = {xts, . . . , xte}, is a set of elements from X appearing in
the same order as in X . The first element of the subsequence is
xts and the last is xte. Note that X[ts : te] is not necessarily
continuous, i.e., gaps are allowed to occur by skipping elements of
X . Let Q = {q1, . . . , qm} be another time series with the same
representation as X . Consider the following definitions:

DEFINITION 1. (Variable error-tolerant match) We say that qi
∈ Q and xj ∈ X match with variable ε-tolerance, and denote it as
qi ≈fε xj , if, we use absolute or relative tolerance, and for a set of
constraints εf = {εfp , εfr}:

εfp(i) = fp(q
p
i ) and εfr (i, j) = fr(q

r
i , x

r
j ), (1)

where fp is a function of qpi and fr a set of constraints on qri , xrj .

Note that in Definition 1 εfp , εfr can also be two constants. In
most application domains sequences are numerical, thus the proba-
bility for outliers increases, which is the case for QBH where users
are prone to instant humming errors [23]. Hence, it is imperative
to allow for flexible error-tolerant matches. In Section 5.1.3 we
discuss an instantiation of this definition for the QBH application.

DEFINITION 2. (Common bounded-gapped subsequence) Con-
sider two subsequencesQ[ts1:te1] andX[ts2:te2] of equal length.
Let GQ and GX denote the indices of those elements in Q and X ,
respectively, that are included in the corresponding subsequences.
If qπi ≈ε xγi , ∀πi ∈ GQ, ∀γi ∈ GX , i = 1, . . . , |GQ|, and

πi+1 − πi < β, γi+1 − γi < α, (2)

then, pair {Q[ts1:te1], X[ts2:te2]} defines a common bounded-
gapped subsequence of Q and X . The longest such subsequence
satisfying te2 − ts2 ≤ r is called SMBGT (Q,X).

Example: LetQ = {6, 3, 10, 5, 3, 2, 9},X = {1, 1, 3, 4, 6, 9, 2, 3,
1}. Consider subsequence Q[2:6] with GQ = {2, 4, 5, 6}, which
corresponds to sequence {3, 5, 3, 2}, andX[3:8] with GX = {3, 4,
7, 8}, which corresponds to {3, 4, 2, 3}. Also, assume the follow-
ing parameter setting: ε = 1 (absolute tolerance), α = 2, β = 1,
and r = 6. Clearly, the two subsequences are of the same length, at
most two (α = 2) consecutive gaps occur in X—between the sec-
ond and third elements in X[3:8]—and at most one (β = 1) con-
secutive gap occurs in Q—between the first and second elements

in Q[2:6]. Range constraint r = 6 clearly holds for X[3:8], while
all matching elements in the two subsequences differ by at most 1
(ε = 1). Thus, pair {Q[2 : 6], X[3 : 8]}, is SMBGT (Q,X).

3.3 Problem Formulation
Problem (Subsequence Matching): Given a databaseDB with

N sequences of arbitrary lengths, a query sequenceQ, and positive
integers δ and r, find set S = {Xi[ts : te]|Xi ∈ DB} of the
top-K subsequences with:

|SMBGT (Q,Xi[ts : te])| ≥ δ. (3)

It should be mentioned that each database sequence contributes
with only one subsequence Xi[ts : te] to S. Note the additional
constraint te− ts ≤ r which is by definition included in SMBGT.

4. SUBSEQUENCE MATCHING
WITH GAPS-RANGE-TOLERANCES

We present a novel subsequence matching framework that is mo-
tivated by QBH. One of the novelties of our framework is that
it considers variable error-tolerant matches without employing a
probabilistic model [11, 23] (Section 5.1.3). In addition, it allows
gaps in both the query and target sequences during their alignment,
constrains the maximum match range in the target sequence, and
bounds the minimum number of matched elements. To the best of
our knowledge, this is the first subsequence matching approach that
considers all the above aspects and, as shown in the experiments,
outperforms—in terms of accuracy—existing methods by over an
order of magnitude on hummed queries.

4.1 SMBGT: Subsequence Matching
with Bounded Gaps and Tolerances

To solve the problem presented in Section 3.3 we propose SM-
BGT, a novel method for subsequence matching. SMBGT bounds
the number of consecutive gaps allowed in both X and Q by two
positive integers α and β, respectively, allows for variable tolerance
levels in the matching, constrains the matching range, and bounds
the minimum number of matching elements. The intuition behind
allowing gaps in both sequences is to deal with serious humming
errors that are likely to occur due to temporary key/tempo loss or
significant instant note loss (more than the acceptable tolerance).
Thus, we should be able to skip these elements. We will refer to a
special case of SMBGT where α and β are set to infinity as SMGT,
i.e., no constraints are imposed on the length of the allowed gaps.

4.1.1 Computation
Consider an “alignment array” a of size (|Q| + 1) ∗ (|X| + 1),

where Q, X are the compared sequences. ∀i ∈ {1, . . . , |Q|} and
∀j ∈ {1, . . . , |X|}, the recursive computation for SMGT is:

a0,j = 0 and ai,0 = 0, (4)

ai,j =

{
ai−1,j−1 + 1 , if qi ≈fε xj
max {ai−1,j , ai,j−1} , otherwise.

(5)

An additional matrix s keeps for each cell ai,j the start point of its
best alignment, in si,j , and is updated according to the transitions.

For both SMGT and SMBGT, the computation of a is performed
in an online fashion and the space complexity is O(|Q|) as they do
not need to store the whole matrix a. Instead, two 1-dimensional
arrays are used, prev, cur, to track the scores (prev.value and
cur.value) and start points (prev.start and cur.start) of two
consecutive columns, j − 1, j, of a, since having the values of
column j − 1 of a suffices to compute column j. The goal is to be
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able to match any subsequence of Q with any subsequence in the
database. According to the above recursion, whenever a match oc-
curs the score on the alignment path is increased by 1, otherwise the
maximum score of the two adjacent (left, top) cells is inherited with
no extra transition penalty. In case of a tie, we choose the transition
that corresponds to the subsequence with the most recent start point
since this subsequence includes a smaller number of gaps. In SM-
BGT, the recursion for a is modified to include constraints α and
β. Thus, when a mismatch occurs at position (i, j), ai,j stores the
largest number of matched elements that can be propagated verti-
cally or horizontally, while not violating α and β. This is checked
by an additional step, called propagation (Section 4.1.2).

Algorithm 1: Function Update() for SMGT and SMBGT .

Input: query Q, target X , column index j, array cur, and δ.
Output: current best match best.

1 begin
2 // return the value and start point of the cell with the maximum

value in cur.
3 {lmax, lstart} = max{cur};
4 llen = j − lstart + 1;
5 blen = bestend − beststart + 1;
6 if best == null ∧ lmax ≥ δ then
7 bestvalue = lmax; beststart = lstart; bestend = j;
8 end
9 else if

lmax > bestvalue ∨ (lmax == bestvalue ∧ blen > llen) then
10 bestvalue = lmax; beststart = lstart; bestend = j;
11 end
12 end

Algorithm 2: Function Reset() for SMGT .

Input: query Q, target X , column index j, array cur, tolerance εf ,
and match range r.

Output: updated column cur.
1 begin
2 for i← 1 to |Q| do
3 if j − curi.start+ 1 == r then
4 if qi ≈fε xj then curi.value = 1;
5 else //determine the appropriate transition and return the

value and start point.
6 {curi.value, curi.start} = check(cur, prev);
7 end
8 end
9 end

The maximum length of the database subsequence with the long-
est common bounded-gapped subsequence is constrained by r, and
the minimum matching score by δ (Section 3.3). Notice that dur-
ing the computation, best = (bestvalue, beststart, bestend) keeps
track of the current best solution, with bestvalue being the value of
the best match, and beststart, bestend the start and end points of
that match, respectively. best is updated as shown in Algorithm 1
taking into account δ. At the end of the computation best corre-
sponds to the location of SMBGT(Q,X) in X . Finally, given K,
SMBGT reports theK database sequences, where the longest com-
mon bounded-gapped subsequences occur. To keep track of these
subsequences, a priority queue S is maintained and updated ac-
cordingly using function Updatequeue(). When a new candidate
subsequence is found, S is updated if it contains less than K ele-
ments or if the new candidate match has a higher score than any of
the K subsequences in S. The main steps of SMBGT are shown in
Algorithm 3.

4.1.2 Propagation
Two additional arrays, Astart and Bstart, are used to determine

the direction of the propagation (left or top). Thus, for each cell

(i, j), Astart and Bstart store the latest match positions in X and
Q, respectively. Two versions of these arrays (Aprevstart, A

cur
start and

Bprevstart, B
cur
start) are used corresponding to prev and cur, respec-

tively. Suppose that the value for cell (i, j) (i.e., curi) is being
computed and propagation() is triggered due to a mismatch be-
tween qi and xj . This function will check whether the value of an
adjacent (left or top) cell can be inherited. If j − Aprevstart(i) ≤ α
then left propagation is allowed. Similarly, if i−Bcurstart(i−1) ≤ β,
top propagation is allowed. We always choose the propagation that
inherits the highest value in matrix a. In case both previ (i.e.,
ai,j−1) and curi−1 (i.e., ai−1,j) can be propagated, we choose
max {previ.value, curi−1.value}. If no propagation is possible,
curi.value = 0 and curi.start = 0, so that another match can
start at this point. In case of a tie, we choose the transition that
leads to the subsequence with the most recent start point as this
subsequence includes a smaller number of gaps.

Algorithm 3: SMBGT .

Input: query Q, target X , gap constraints α and β, tolerance εf ,
match range r, and parameter K.

Output: priority queue S.
1 begin
2 S = null;
3 for t← 1 to |DB| do
4 bestvalue = 0; beststart = 0;
5 for j ← 1 to |Xt| do
6 for i← 1 to |Q| do
7 if qi ≈fε xj then
8 curi.value = previ−1.value+ 1;
9 curi.start = previ−1.start;

10 end
11 else
12 curi = propagation(i, j, Astart, Bstart);
13 end
14 end
15 best = Update(j, cur);
16 cur = ResetB(j, cur,Astart, Bstart);
17 end
18 Updatequeue(S, best,K);
19 end
20 end

4.1.3 Eliminating Large Matches
Regarding SMGT, due to constraint r it is necessary to perform

an additional step (called Reset()) in order to avoid expanding
matching subsequences whose length is r and thus are not going
to be included in the final set of top-K matches. After computing
cur and updating best, we scan cur to detect those cells that cor-
respond to subsequence matches with length equal to r. This elim-
ination is performed by function check() which returns the new
value and corresponding start point for each cell. Hence, for each
cell (i, j), if qi ≈fε xj , then curi (that corresponds to that cell)
is set to 1. Otherwise, it is checked whether inheriting the value
of the left (prevj−1) or top (curi−1) cell may lead to a violation
of r. The value of the left cell can be inherited if the subsequence
length that corresponds to that cell is less than r − 1. The intuition
is that if the corresponding length is equal to r−1 this subsequence
would have already been reported as a candidate match on cur and
thus we should not expand it further. Moreover, the value of the top
cell can never be equal to r, as the elimination is performed on cur
from top to bottom. Thus, the value of the top cell can always be
inherited. If both values can be inherited, we select the transition
with the highest value and in case of a tie the transition that leads
to the subsequence with the most recent start point. If no transition
is possible, check() returns 0 as the cell and start point value. The
main steps of functionReset() can be seen in Algorithm 2. In SM-
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BGT the reset function that has to be triggered (called ResetB())
is similar to Reset() with an additional propagation check in case
of a mismatch between qi and xj . If no propagation is possible
the value and start point of the cell are set to 0, otherwise they are
updated accordingly. In particular, in the case of a top propaga-
tion, the value of the top cell is inherited by the current cell. In
the case of a left propagation, it should be ensured that it may not
lead to a subsequence that violates r (the length of the subsequence
that corresponds to the left cell is less than r − 1). Finally, if both
propagations are possible, we perform the one leading to the sub-
sequence with the highest score and in case of a tie we perform the
one that leads to the subsequence with the most recent start point.

4.2 Example of SMBGT
Consider the following example: let Q = {0,−4, 1, 2,−2} and

X = {0, 0,−4, 3, 0, 2,−3, 1}. We want to find SMBGT(Q,X),
with α = 2, β = 1, δ = 3, and r = |Q| = 5. For simplicity, we
consider only the pitch dimension and do not impose any matching
tolerance. We show four matrices: (1) a which is the alignment
array used for the DP computation, (2) s which contains for each
cell of a the start point of the best matching subsequence that ends
on that cell, (3) Astart, and (4) Bstart, which are the additional
matrices used by function propagation(). Following Equation 4
and Algorithm 3 (Appendix), the first 6 columns of all four matrices
are shown in Figure 3 (a). At this phase, column 6 contains cells
that will trigger function ResetB(). Consider row 5 of column 6.
The start point of the subsequence that corresponds to that row is at
position 2, which gives a subsequence of length 6−2+1 = 5 = r.
Thus, this cell should be reset. Since qi = xj = 2 (match), the
new value of that cell should be 1. Let us check the next row of
column 6. The length of the corresponding subsequence is now
6 − 2 + 1 = 5 = r, however in this case qi 6= xj , thus we
should check whether any propagation is possible. Regarding the
left propagation, j−Aprevstart(i) = 6−0 > α; hence left propagation
is not allowed. Also, i − Bcurstart(i − 1) = 5 − 4 = 1 = β, hence
top propagation is allowed, and the new value of cell (6, 6) is set to
1. Notice that s, Astart, and Bstart are updated accordingly. The
new matrices are now reset and are shown in Figure 3 (b). Clearly,
bestvalue = 3, beststart = 2, and bestend = 6.
The time complexity of both SMGT and SMBGT is O(|Q||X|).
Also, none of the two measures is metric (see Appendix A.1).

5. EXPERIMENTS
We performed an extensive comparative evaluation of several

DP-based methods and HMMs with SMGT and SMBGT on QBH
by studying their accuracy and runtime on hummed and synthetic
queries, showing the superiority of the proposed methods.

5.1 Experimental Setup

5.1.1 Data
We created a music database of 5643 freely available on the web

MIDI files that cover various music genres. We also generated six
synthetic query sets (100 queries per set) of lengths between 13
and 137: Q0, Q.10, Q.20, Q.30, Q.40, and Q.50. Q0 contained
exact segments of the database, while Q.10 −Q.50 were generated
by adding noise to each query in Q0. For all queries we randomly
modified 10, 20, 30, 40, and 50% of their corresponding time series
in both dimensions. Noise was added to existing query elements
without insertions or deletions. Moreover, in all noisy query sets we
allowed at most 3 consecutive elements to be replaced with noisy
values. Also, we used a set of 100 hummed queries of lengths
between 14 and 76. More details can be found in Appendix A.4.

5.1.2 Evaluation
We studied five DP-based methods that can be applied to music

retrieval: SPRING [27], Edit distance-based [31], two DTW-based
[11, 13] (denoted DTWs, DTWc), and a gapped-based approach
[12] (denoted Il. et al.). The first four are designed for subsequence
matching whereas the fifth performs whole query matching. In our
experiments, Edit has been slightly modified to deal with LogIOIR
and quantizations, while for Il. et al. a more elastic version has
been used, suitable for subsequence matching and supports both
constant and variable tolerance. Both Il. et al. and SPRING were
modified to allow for varying r. These methods are sketched in
Appendix A.2. Moreover, since probabilistic methods have been
applied to music retrieval, for completeness, we also compare the
DP methods with an HMM-based approach where each database
sequence is modeled by an HMM (see Appendix A.3 for details).
Our evaluation strategy was organized as follows: we first tested the

Figure 3: DP matrices for SMBGT (a) before and (b) after reset.

robustness of all methods with respect to noise using the synthetic
query sets; those methods that achieved a reasonably high recall
(> 90%) even for high noise levels (50%) were further tested on
hummed queries where the noise level can be much higher. Specif-
ically, we evaluated the performance of Il. et al., SPRING, Edit dis-
tance, DTWs, DTWc, SMGT, and SMBGT on synthetic and real
queries, in terms of recall, mean reciprocal rank (MRR) [9], and av-
erage rank (AR). The top-K answers were returned. Recall is the
percentage of queries for which the correct answer is among the
top-K results. MRR is the mean inverse rank of all queries in their
top-K results. If the right answer is not included in the results, then
the inverse rank is 0. The rank of a query is the number of matches
(i.e., database sequences) with similarity/distance value at least as
high/low as that of the correct match (including the correct match).
The average rank of a query set is the average rank of all queries
in the set. All three measures are essential for the evaluation of
a QBH method, as the first one (recall) shows how successful the
method is in finding the correct answer among the top-K, whereas
MRR and average rank indicate if there is room for improvement
in terms of recall when decreasing K. For all methods we tried
all variations and parameter settings; in the experiments we report
those variations that achieved the best performance. Experiments
were run on an AMD Opteron 8220 SE processor at 2.8GHz, and
implemented in C++.

5.1.3 Variable Tolerances - Instantiation
For QBH, a reasonable definition for εfp is the following:

εfp(i) = dqpi ∗ te, with t = 0.2, 0.25, 0.5. (6)
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For εfp , both absolute and relative tolerances were studied. Relative
tolerance has been extended as follows:

xrp/(1 + εfp) ≤ qpi ≤ x
r
p ∗ (1 + εfp), qpi , x

r
p ≥ 0, (7)

xrp/(1 + εfp) ≥ qpi ≥ x
r
p ∗ (1 + εfp), qpi , x

r
p < 0. (8)

This was necessary for this application, since by definition we should
distinguish between positive and negative values of pitch intervals.

To define an appropriate form for εfr (i, j) we should differenti-
ate between IOIR and LogIOIR. After having people hum several
pieces of different kinds of music, we observed a tendency of mak-
ing duration ratios smaller, even half of their actual values. This is
reasonable, as users care more about singing melodies than being
exact in tempo. Also, we should account for cases of queries at
slower tempos. Thus, for IOIR, we define:

εfr (i, j) = {xrj ≤ 2 ∗ qri , xrj − qri ≥ −0.5}. (9)

Negative values may occur in the case of LogIOIR, thus:

εfr (i, j) =

{
{0 ≤ log2(xrj/q

r
i ) ≤ 1}, log2xrj ≥ 0.

{|log2(xrj/q
r
i )| ≤ 1}, log2xrj < 0.

(10)

As the logarithmic values get smaller, the difference in ratios
gets smaller as well. Notice that the two forms of εfr (i, j) shown in
Equation 9 and Equation 10 are appropriate for the QBH applica-
tion studied in this paper.

Nonetheless, the proposed variable tolerance framework is generic
and can be used for other application domains, even with more di-
mensions, after defining an appropriate form for εf .

5.2 Experimental Results on Synthetic Queries

5.2.1 Parameters
For the methods that consider r in their computation (SPRING,

Il et al., SMGT, and SMBGT) we set r = |Q|, as due to the query
sets’ construction, the desirable match will not exceed that value.
Taking into account the noise levels of the query sets, in SMBGT
and SMGT δ was set to 0.9, 0.7, 0.6, 0.5, 0.35, and 0.3 times the
length of each query in the six query sets, Q0 −Q.50, respectively.
We selected these gradually decreasing δ values, so as to be elastic
enough as noise increases, and avoid false dismissals. We experi-
mented with α = β = 3, as we know that the maximum number of
gaps in all query sets is 3, thus allowing SMBGT to capture these
gaps. Also, we tried both tolerance schemes, i.e., constant and vari-
able (Equation 6). For all synthetic query sets SMBGT achieved its
best accuracy for variable absolute tolerance with t = 0.2, SMGT
for variable absolute tolerance with t = 0.5, and Il. et al. for
constant relative tolerance with εp = 1 and εr = 4. Regarding
the HMM method, we conducted extensive experimental evalua-
tion testing the effect of all of its parameters. The number of states
M varied from 1 to 10, and the best accuracy was achieved for
M = 5; training for M > 10 were prohibitive in terms of training
runtime and memory consumption.

The observation distribution of the states we experimented with
was Gaussian (which is common). Finally, the pseudocounts tested
for the unobserved data were 0.001, 0.01, and 0.1 to 5 with step
0.2. The best accuracy was achieved for 0.1. For more details see
Appendix A.5.3.

We tested several values for K, ranging from 5 to 150, for all
synthetic query sets. In QBH, however, high values of K may not
be practical as users may not be willing to look at a large number of
candidate songs to identify the targeted one; we chose a reasonable
value (K = 20) to report the accuracy, regardless of noise level.

5.2.2 Representation
We observed that, as the noise level increases, the representa-

tions achieving the highest recall per DP-based method are a subset
of the representations of lower noise levels. The best representa-
tions for synthetic queries were 〈mod12, IOIR〉 and 〈pitch interval,
IOIR〉 while the latter is also the representation leading to highest
accuracies for hummed queries (Section 5.3). This shows that the
simpler the representations, the more promising they seem to be
in QBH. The representation used for the HMM method—leading
to the smallest possible alphabet size—was 〈mod12, LogIOIR in
[−2, 2]〉. For more details see Appendix A.5.3.

5.2.3 Accuracy
Regarding the 100 exact queries (Q0), all DP-based methods

achieved 100% recall, with MRR and average rank 1 for top-5,
except for DTWs, which did not exceed a recall of 96% even for
K = 250. The HMM method, achieved 96% recall for top-5, with
MRR 0.95 and average rank 1.22, and recall 100% for top-150.
SMBGT, SMGT, and Edit distance performed best, and behaved
similarly for all query sets. Even for Q.50 their recall is 97, 96,
and 97%, respectively. Figure 4(left) shows an overview of these
findings. For more detailed results see Tables 1, 2, 3, 4, and 5 in
Appendix A.5.1. The reason for the high recall of Edit distance is
that if two elements do not match, it will increase the total match-
ing score by at most 1, while for the remaining intact elements this
score will not be affected. On the contrary, the recall of all other
competitor methods degrades with noise. SPRING and the HMM
method behave similarly for Q.10, Q.20, and Q.30 presenting a re-
call of more than 91%, but further increasing the noise level results
in a smooth degradation for SPRING and a sharp one for the HMM
method. For Q.50 their recall is only 75 and 56%, respectively.
The accuracy of DTWc and Il. et al. degrades very sharply when
adding noise, achieving for Q.40 27 and 53% recall, and for Q.50 7
and 32%, respectively. The latter method presents such behaviour,
as it will sooner stop its computation when not being able to find a
match for a query element. SMBGT significantly outperforms Il. et
al. with α = β due to its additional ability to skip query elements.
DTWs performs worst for all noise levels (0% recall for Q.50), and
this behaviour, along with that of DTWc, is justified by the fact
that they implicitly embed time by allowing it to adjust locally, and
they are unable to skip non-matching elements, as they force them
to align. For both of them, the value of parameter c (Equation 17)
achieving their best recall was 2. SPRING explicitly accounts for
duration information in its computation, thus it can tolerate higher
noise levels as opposed to DTWs and DTWc. Referring to MRR
and average rank, the same conclusions hold, with SMBGT, SMGT
and Edit distance remaining close to 1 for all noise levels, which is
expected as the other competitors identify fewer correct answers in
the top-K.

5.2.4 Time
We observed that the average execution time per query length

for all methods increased linearly to the query length. DTWs was
the fastest of all DP-based methods, however, achieving the worst
accuracy. DTWc, SMBGT, SMGT, and Edit distance showed neg-
ligible differences to each other, while SPRING and DTWs were
faster than the aforementioned methods, since they have a simpler
computation scheme compared to the other methods. Il. et al.
was the most computationally expensive method, while the HMM
was the fastest one. Nevertheless, the training time for the HMMs
was close to 14 hours due to their high complexity, which is pro-
hibitive, not to mention the significant degradation in accuracy for
high noise levels. For more details refer to Figure 6.
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5.3 Experimental Results on Hummed Queries
The methods that showed to be noise-tolerant even for high noise

levels of 50%, i.e., SMBGT, SMGT, and Edit distance, were further
evaluated for the hummed query set, since possibly none of the
elements of the correct song will be intact, due to humming errors
and noise introduced by the recording procedure (Appendix A.4.3).

5.3.1 Tolerance
In Figure 4(middle and right) (and also Table 7 in Appendix A.5.1),

we see the results for absolute tolerance for SMBGT and SMGT,
with t = 0.2 and t = 0.25 (Equation 6), respectively, which
achieved the best accuracy. For any tolerance scheme, small con-
stant and variable tmade our methods perform better than for greater
values, with variable t being better. Moreover, absolute tolerance
always outperformed relative tolerance in all experiments. For ex-
ample, for t = 0.2 and K = 10, relative tolerance was 33% worse
than absolute. Regarding Edit distance, no tolerance can be defined.

5.3.2 Tuning Parameters
We experimented with parameters r, α, and β, for δ = 0. First,

we studied the effect of r in SMGT where no constraint is im-
posed on the number of consecutive gaps. Increasing r, starting
from r = |Q|, we observe that the recall of SMGT increases, until
r = 1.2∗ |Q|, after which the recall degrades. Interestingly, setting
r =∞ leads to a recall of 0%. This is not surprising since increas-
ing r without any additional constraint in the number of gaps results
in a larger number of erroneous candidate matches (see Table 6 for
detailed results). We also studied the influence of α and β for the
extreme case of r = ∞ for SMBGT. Testing all pairs of values
in [2, 8], the recall was significantly improved and the best recall
was achieved for α = β = 4 (51% for K = 50), as shown in Fig-
ure 4(middle). Then, in order to capture the impact of r combined
with α and β, we gradually decreased the value of r and tested all
pairs of α, β ∈ [2, 8]. The best accuracy was achieved for α = 5,
β = 6, and r = 1.2 ∗ |Q|, verifying the need for skipping elements
in both target and query. In Figure 4(middle) we also show how
accuracy is improved when varying r from 1.2 to 2, for α = 5 and
β = 6.

5.3.3 Accuracy
Figure 4(right) shows that our methods are at least 30 times

higher in recall than Edit distance for K = 50, while SMBGT
achieves 10% higher recall than SMGT for K = 5, and 15% for
K = 10 and K = 20. The recall of Edit distance is 0% even for
K = 10. The values reported in Figure 4(right) are achieved for
r = 1.2, α = 5 and β = 6 (for SMBGT), and δ = 0 for all K.
Regarding MRR, SMBGT outperforms Edit distance by more than
two orders of magnitude for K = 50, while SMGT achieves worse
MRR than SMBGT, as these measures are influenced by the recall
(see also Table 7). The values of MRR for K < 50 are very close
to those of K = 50, and hence we do not report them. Increasing
K > 50 may improve the recall of all methods, though, trading
K for higher recall will increase retrieval cost as more database se-
quences will be reported. Our goal, in QBH, is to achieve high re-
call by reporting as few candidates as possible. Hence, for K = 5-
50 the proposed methods clearly offer higher recall. Finally, we
tested the impact of δ on recall for the best combination of parame-
ters for SMBGT. Increasing δ, even for δ = 0.5 ∗ |Q| and K = 50
the recall does not decrease, while further increasing it makes recall
worse. For example, for δ = 0.6 ∗ |Q| it degrades to 28%, and for
δ = 0.7∗ |Q| to 9%, whenK = 5. This behavior indicates that the
recall on the hummed queries for which the correct song appeared
in the top-K was not influenced by requesting more elements of

the targeted sequences to match to theirs. In other words, these
hummed queries were very similar to the targeted songs, leading us
to the conclusion that if, in QBH, the users are singing well (both in
pitch and time), δ can be set, for example, to 0.5, resulting in fewer
false positive candidates.

5.4 Lessons Learned
Concluding our experimentation we learned the following: (1)

due to their inherent lack of flexibility most of the existing subse-
quence matching methods cannot handle high noise levels as shown
in the synthetic experiments, hence they completely fail in hummed
queries as opposed to SMBGT and SMGT. Among all competi-
tor methods Edit showed to be the most promising, however, for
hummed queries it was at least 30 times lower in recall, for K =
50, than SMGT and SMBGT. For smaller K, e.g., K = 10,
SMBGT achieved up to 15% higher recall than SMGT, which shows
that imposing bounds α and β is indeed useful, (2) variable ε-
tolerance always achieved better accuracy than constant ε-tolerance,
(3) α and β were tuned by trying all possible combinations in a
small range reasonable to QBH and reporting the one with the best
accuracy. In applications where this range is prohibitively large,
cross validation could be used, (4) δ may be tuned according to the
singing skills of the hummers and r should not exceed the query
length by more than a factor of 1.2, (5) simple representations fa-
vor DP-based methods, (6) all DP-based methods have similar re-
trieval time complexity (with small variations) while HMMs are
faster, though the required training is computationally expensive.

6. CONCLUSIONS
Motivated by QBH we proposed a subsequence matching frame-

work, which allows for gaps in both query and target sequences,
variable tolerance levels in the matching of elements, and con-
strains the maximum match length and the minimum number of
matched elements. Our framework was shown to outperform sev-
eral DP-based subsequence matching methods and a model-based
probabilistic method in terms of accuracy, after extensive exper-
imental evaluation on a large music database using hummed and
synthetic queries. Directions for future work include testing the
performance of the proposed methods in other application domains.
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APPENDIX
A. APPENDIX

We provide some additional material and further details on our
work. The content of this section is organized as follows: in Ap-
pendix A.1 we prove that SMBGT is non-metric (this holds for
SMGT as well); in Appendix A.2 and A.3 we present the DP-based
competitors and the probabilistic approach, respectively, that have
been benchmarked and tested against our two proposed methods;
in Appendix A.4 we provide additional description of the data used
in our experimentation; finally, in Appendix A.5 we include some
additional experimental results on accuracy, runtime, and represen-
tation.

A.1 SMBGT

THEOREM 1. SMBGT is not metric.

PROOF. We prove this theorem by showing that SMBGT does
not follow the triangle inequality. Consider the following three 1-
dimensional time series: X1 = {3, 2},X2 = {4},X3 = {2, 2, 1}.
Assume ε-tolerance fixed to 1, r = ∞, δ = 0, and α = β =
1. Then SMBGT (X1, X2) = 1, SMBGT (X2, X3) = 0, and
SMBGT (X1, X3) = 2. However, SMBGT (X1, X2) +
SMBGT (X2, X3) < SMBGT (X1, X3).

A.2 DP-based Methods
DP-based methods typically use an “alignment array” a of size

(|Q| + 1) ∗ (|X| + 1), where Q, X are the compared sequences.
For 1 ≤ i ≤ |Q| and 1 ≤ j ≤ |X|, each cell ai,j represents either
the minimum cost for aligning subsequences of Q and X ending
at i and j, respectively, or the maximum number of their matched
elements, depending on whether we use a distance or similarity
measure.

A.2.1 Edit distance-based
The most recent variation of the Edit distance [31] between two

sequences Q and X , with slight extensions to deal with LogIOIR
and quantizations, is computed as follows:

a0,j = 0 and ai,0 = i, (11)
ai,j = min {ai−1,j + 1, ai,j−1 + 1, ai−1,j−1 + w(qi, xj)} ,

where w(qi, xj) is defined as:

w(qi, xj) =
1

2
∗
{
|
qip − xjp

PitchRange
|
}

+
1

2
∗DurationCost (12)

DurationCost =

|1−
min{qir ,xjr}
max{qir ,xjr}

|, for IOIR.

| qir−xjr
DurationRange

|, for LogIOIR.
(13)

PitchRange and DurationRange correspond, respectively, to
the maximum pitch interval and LogIOIR range in DB. After a is
computed, this method reports minj{a|Q|,j}, i.e., the minimum
cost of aligning Q with the subsequence of X ending at position j.

A.2.2 SPRING
SPRING [27] uses an additional matrix s which keeps for each

cell ai,j the start point of its current best alignment. The recursive
computation of ai,j is:

a0,j = 0 and ai,0 = ∞, (14)
ai,j = w(qi, xj) + dbest, (15)
dbest = min {ai−1,j , ai,j−1, ai−1,j−1} , (16)

with w(qi, xj) being the Lp norm of qi and xj . The same initial-
ization is used for si,j and at each iteration the start point of the
element that was used to produce dbest is propagated. Finally, after
a is computed, SPRING reports minj{a|Q|,j}.

A.2.3 DTW tempo scaling
The next two methods were developed to measure the melodic

similarity of two sequences Q and X without using tempo infor-
mation directly, though allowing to locally adjust the tempo at cer-
tain positions. We refer to them as simple (DTWs) [13] and com-
plex (DTWc) [11]. Both methods share the same initial condition,
shown in Equation 17, where the simple scheme has been slightly
modified to conform with the complex scheme. The recursions for
the simple and complex scaling schemes are shown in Equation 18
and Equation 19, respectively.

a0,j = 0 and ai,0 = ai−1,0 + c, (17)
ai,j = w(qip , xjp) + min {ai−1,j−1, ai−1,j−2, ai−2,j−1} , (18)

ai,j = min


ai−1,j−1

ai−2,j−1 + w(qi−1p , xjp)

ai−1,j−2 + w(qip , xj−1p)

+ w(qip , xjp). (19)

Note that c is a user-defined positive integer and w(qip , xjp) =
|qip − xjp |. Finally, both schemes report minj{a|Q|,j}.

A.2.4 Iliopoulos et al.
The method by Iliopoulos et al. [12] performs whole query

matching, by demanding all points of Q to match within a con-
stant ε-tolerance in a subsequence of X , and allows for a limited
number of gaps only in the target sequence. A DP computation
is performed, where every match is rewarded with a score of 1,
whereas, whenever a mismatch occurs between qi and xj , it checks
whether the best matching value found so far for qi, can be propa-
gated without exceeding α gaps in X .

In our experiments, we have developed a more elastic version
of this method suitable for subsequence matching. First, a single
database scan identifies all possible start points of the candidate
matches. These start points correspond to the first query element
according to the tolerance scheme. Then, for each candidate, the
method performs the DP computation described above. In addi-
tion, the whole query matching requirement is eliminated. When a
non-matched query element qi is met, instead of ignoring the query
subsequence Q[1 : i] matched so far, we consider Q[1 : i] as a
candidate match. The rationale behind this is that it would be a
too tight constraint to demand all query elements to match in X .
In a realistic situation, as in QBH, humming errors might occur
that, in the original setting, would immediately eliminate candidate
matches with even a mismatch due to a single falsely hummed note.

A.3 Probabilistic Method
An HMM [18, 25] is a doubly stochastic process that contains a

finite set of states. Each state emits/observes one symbol based on
a probability distribution, and transitions between states are regu-
lated by the so-called transition probabilities. More formally, an
HMM is defined by: (1) M distinct states, (2) L distinct symbols
that can be observed at each state, i.e., the discrete alphabet, (3)
set T = {tij} of transition probabilities, where tij = P [st =
j|st−1 = i], 1 ≤ i, j ≤ M , where st is the state at time t. This
implies that the current state depends only on the predecessor one
(first order Markov chain assumption), (4) set E = {ej(k)} of
the probabilities of observation symbols at state j, where ej(k) =
P [ot = k|st = j], where ot is the observed symbol at time t,
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and (5) set Π = {πj} of prior probabilities, where πj = P [s1 =
j], 1 ≤ j ≤M .

When an HMM is trained from a set of sequences it reflects the
probabilistic relations of symbols within the sequences. Given a
database of sequences, if we had a probabilistic model for each
individual sequence or group of homogeneous sequences, we could
transform the query matching problem to a probability calculation
of each model having generated a sequence (query Q). In other
words, we would be looking for the model which maximizes the
log-likelihood of the query sequence.

Taking advantage of the training phase of HMMs is not that triv-
ial when the database contains a large number of heterogeneous
sequences. In QBH the database may contain a large number of
songs covering a wide range of music styles, as happens with our
data. This would impose high heterogeneity in the database and
there would be no implication about any kind of correlation be-
tween the sequences. Consequently, forming groups of similar
sequences which can then be represented by HMMs (after train-
ing), or even combining HMMs by constructing mixture models,
would lead to unexpected and meaningless results. If, in contrast,
the database consists of homogeneous sequences (e.g., music pat-
terns) then HMMs could be highly applicable for, e.g., retrieval or
classification [24]. Thus, it is obvious that the most reasonable and
fairest approach would be to model each database sequence with
one HMM [23], which is in fact the approach we adopted in this
paper. Notice that accounting for more sequences per HMM would
achieve at most the performance of this approach, as in the former
case each HMM would try to model the behavior of several uncor-
related database sequences, while in the latter the HMM is trained
to model the structure of each database sequence.

A.4 Data

A.4.1 Database
Our database covers various music genres such as blues, rock,

pop, classical, jazz, themes from movies and tv series. For each
MIDI (comprising 16 channels) and channel, we extracted the high-
est pitch at every time click (all-channels extraction [29])1. Then,
we converted tuples 〈pitch, click〉 to 〈pitch interval, IOIR〉, result-
ing in 40891 time series. This pre-processing procedure was done
offline and only once, guaranteeing that there is no chance of miss-
ing a melody existing in any channel of a song.

A.4.2 Synthetic Queries
The pitch interval of the noisy elements was changed by ±k ∈

[3, 8] (integer), as we wanted the noise to range within one octave.
This simulates the error performed by a human when singing a song
by memory as well as the intrinsic noise that may be added by any
audio processing tool. An erroneous interval of 3 to 8 semitones,
i.e., 1.5 to 4 tones, is very reasonable.

Regarding the IOIR dimension, each qri was modified by ±k ∈
[2, 4] (real), so that several reasonable variations of duration ratios
could be simulated, and also be outside the bounds described by
Equation 9, avoiding any bias against our proposed methods. In
case of a negative value in IOIR, it is reset to a very small real
positive value, as duration ratios should be positive. Moreover, in
all noisy query sets we allowed at most 3 consecutive elements to
be replaced with noisy values. This is because in QBH we do not
expect to have many consecutive matching errors, or else it would
be hard to identify the correct target for short queries.

1In the extraction process we excluded channel 10, since it is used
for drums and cannot offer any musical information in QBH.

Table 1: Accuracy of all methods for query set Q.10 and K = 20
Accuracy

Methods Recall (%) MRR AR Repr.
SMBGT 100 1 1 1-8
SMGT 99 0.99 1.2 1,2,4-6,8
DTWs 15 0.1265 18.2 1,5
DTWc 95 0.9198 2.23 1,5
Edit 100 1 1 1,2,6
SPRING 100 0.995 1.01 2,4,6,8
Il. et al. 99 0.9523 1.33 1,5
HMM 98 0.9054 1.72 3

Table 2: Accuracy of all methods for query set Q.20 and K = 20
Accuracy

Methods Recall (%) MRR AR Repr.
SMBGT 100 1 1 1-8
SMGT 99 0.99 1.2 1,2,5,6
DTWs 1 0.0005 20.98 5
DTWc 89 0.8479 3.48 5
Edit 99 0.99 1.2 1
SPRING 95 0.9357 2.98 2,6,8
Il. et al. 93 0.8802 3.02 1,5
HMM 95 0.8953 2.14 3

Table 3: Accuracy of all methods for query set Q.30 and K = 20
Accuracy

Methods Recall (%) MRR AR Repr.
SMBGT 100 1 1 1,2,5,6
SMGT 97 0.97 1.6 1,2,5,6
DTWs 1 0.01 20.8 5
DTWc 69 0.6304 7.49 5
Edit 100 0.9833 1.11 1
SPRING 91 0.8778 5.2 2,6,8
Il. et al. 71 0.5803 7.8 5
HMM 93 0.7974 3.09 3

Table 4: Accuracy of all methods for query set Q.40 and K = 20
Accuracy

Methods Recall (%) MRR AR Repr.
SMBGT 99 0.9745 1.27 2,5,6
SMGT 96 0.9381 1.9 5
DTWs 0 0 21 -
DTWc 27 0.2514 15.89 5
Edit 98 0.9664 1.47 1
SPRING 86 0.7906 7.84 6,8
Il. et al. 53 0.3759 11.34 5
HMM 76 0.5538 7.57 3

Table 5: Accuracy of all methods for query set Q.50 and K = 20
Accuracy

Methods Recall (%) MRR AR Repr.
SMBGT 97 0.9487 1.71 2,5,6
SMGT 96 0.9241 1.97 5
DTWs 0 0 21 -
DTWc 7 0.0427 19.92 5
Edit 97 0.9366 1.88 1
SPRING 75 0.638 14.51 6
Il. et al. 32 0.2072 15.44 5
HMM 56 0.369 11.53 3

A.4.3 Hummed Queries
To evaluate the methods in QBH, 4 males were asked to hum

25 songs (each). Two of them were musically trained with middle
and low level studies in the piano and the guitar, while the third
and fourth had no musical background. Melodies were hummed
in a microphone and then converted to MIDI using the Akoff mu-
sic composer-version 2.0 2, a well-known tool commonly used for

2http://www.akoff.com/music-composer.html.
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evaluating QBH systems (e.g., by Zhu et al. [33]). All-channels
extraction was applied to the queries to obtain the same repre-
sentation with the database. The query set covered several gen-
res of music, such as classical (“Für Elise”), blues (“Hideaway”),
jazz (“Strangers in the Night”), rock ’n’ roll (“Rock Around the
Clock”), rock (“Fly Away”), country (“Hey Good Lookin”), and
romantic songs (“What a Wonderful World”).

Selecting the final set of hummed queries involved manual pro-
cess. Apart from the mistakes that a user can make, any record-
ing procedure may introduce noise in both pitch and duration. Af-
ter listening to the MIDI of each hummed song, noise had been
introduced, especially in pitch. Consequently, users had to hum
each song several times before selecting the version with the least
amount of noise, i.e., the one whose melody sounded as close to the
target as possible. Furthermore, users were asked to avoid singing
with lyrics and also to sing close to the microphone.

A.5 Experimental Results

A.5.1 Accuracy
The results of the performance evaluation of the proposed meth-

ods with respect to accuracy, for all synthetic query sets, are shown
in Tables 1, 2, 3, 4, and 5.

Table 6: Recall of SMGT for various top-K and ranges for the
hummed queries

Recall (%)
r |Q| 1.1|Q| 1.2|Q| 1.5|Q| 2|Q| ∞

K = 5 32 31 34 31 30 0
K = 10 38 40 42 36 40 0
K = 20 41 46 48 44 42 0
K = 50 47 52 62 57 56 0
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Figure 5: Accuracy of the proposed methods vs. DP and HMM meth-
ods for K = 20 in terms of MRR for synthetic queries.

Table 7: Recall and MRR of the proposed methods vs. Edit distance
for the hummed queries (K = 50)

Accuracy
Methods Recall (%) MRR Tol.
SMBGT 67 0.3661 abs. 0.2
SMGT 62 0.2956 abs. 0.25
Edit 2 0.0012 -

A.5.2 Runtime
In Figure 6 we show the average execution time for all methods

per query length conforming with the complexities of the methods.

For DP-based methods the time complexity is O(|Q||X|) whereas
for Il. et al. it is O(|X| + |Q||X|2). Training an HMM for a
sequence X is O(W |X|M2), and computing the log-likelihood of
a query Q being generated by an HMM is O(|Q|M2), where W is
the number of iterations of the Baum-Welch [25] algorithm.
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Figure 6: Average execution time for all methods per query length.

A.5.3 Representation
For synthetic queries we observe that, as the noise level increases,

the representations (Table 8) achieving the highest recall per DP-
based method are a subset of the representations of lower noise
levels (Tables 1, 2, 3, 4, 5). An example can be seen for SPRING,
where in Q.10 the highest recall is achieved for 2, 4, 6, and 8, in
Q.20 and Q.30 for 2, 6, 8, and in Q.40 and Q.50 for 6, 8 and 6,
respectively. Moreover, representations 1 and 5 appear most in
all synthetic query sets, and 5 is also the representation leading
to highest accuracies for hummed queries. The latter shows that
the simpler the representations, the more promising they seem to
be in QBH. The representation used for the HMM method, which
leads to the smallest possible alphabet size, is 3. Each pair of the
cartesian product of the two dimensions pitch interval and ratio is
encoded by one symbol, resulting in 115 discrete symbols. Select-
ing a small alphabet size implies that each state does not take into
account too many symbols (so as to observe/emit one of them), and
hence, it becomes more likely for a query to be generated by the
targeted sequence, if there is not much noise in it. This is because
the approach is probabilistic and every symbol is assigned a non-
zero probability of being emitted at each state. Following a Gaus-
sian distribution with mean µ = 58 for representation 3 (Table 8),
which is the mean of the symbols’ distribution over the database,
and varying the standard deviation σ, HMMs performed better than
randomly selecting the probability values of emitting any symbol
at each state.

Table 8: Code numbers for representations
Code number Representation

1 〈mod12, IOIR〉
2 〈mod12, LogIOIR〉
3 〈mod12, LogIOIR in [−2, 2]〉)
4 〈mod12, LogIOIR quantized to closest integer〉
5 〈pitch interval, IOIR〉
6 〈pitch interval, LogIOIR〉
7 〈pitch interval, LogIOIR in [−2, 2]〉)
8 〈pitch interval, quantized to closest integer〉
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