
Completeness of Queries over Incomplete Databases

Simon Razniewski
Free University of Bozen-Bolzano

Dominikanerplatz 3
39100 Bozen, Italy

razniewski@inf.unibz.it

Werner Nutt
Free University of Bozen-Bolzano

Dominikanerplatz 3
39100 Bozen, Italy

nutt@inf.unibz.it

ABSTRACT
Data completeness is an important aspect of data quality as in many
scenarios it is crucial to guarantee completeness of query answers.
We develop techniques to conclude the completeness of query an-
swers from information about the completeness of parts of a gen-
erally incomplete database. In our framework, completeness of a
database can be described in two ways: by table completeness (TC)
statements, which say that certain parts of a relation are complete,
and by query completeness (QC) statements, which say that the set
of answers of a query is complete. We identify as core problem
to decide whether table completeness entails query completeness
(TC-QC). We develop decision procedures and assess the complex-
ity of TC-QC inferences depending on the languages of the TC and
QC statements. We show that in important cases weakest precon-
ditions for query completeness can be expressed in terms of table
completeness statements, which means that these statements iden-
tify precisely the parts of a database that are critical for the com-
pleteness of a query. For the related problem of QC-QC entail-
ment, we discuss its connection to query determinacy. Moreover,
we show how to use the concrete state of a database to enable fur-
ther completeness inferences.

1. INTRODUCTION
Incompleteness is a ubiquitous problem in practical data man-

agement. Since the very beginning, relational databases have been
designed so that they are able to store incomplete data [4]. The
theoretical foundations for representing and querying incomplete
information were laid by Imielinski and Lipski [15] who captured
earlier work on Codd-, c- and v-tables with their conditional tables
and introduced the notion of representation system. Later work on
incomplete information has focussed on the concepts of certain and
possible answers, which formalize the facts that certainly hold and
that possibly hold over incomplete data [1, 12, 17].

Data quality investigates how well data serves its purpose. As-
pects of data quality concern accuracy, currency, correctness and
similar issues. Especially when many users are supposed to insert
data into a database, some tuples may be missing and completeness
becomes an essential aspect of data quality.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 37th International Conference on Very Large Data Bases,
August 29th - September 3rd 2011, Seattle, Washington.
Proceedings of the VLDB Endowment, Vol. 4, No. 11
Copyright 2011 VLDB Endowment 2150-8097/11/08... $ 10.00.

As an example, consider a problem arising in the management
of school data in the province of Bolzano, Italy, which motivated
the technical work reported here. The IT department of the provin-
cial school administration runs a database for storing school data,
which is maintained in a decentralized manner, as each school is
responsible for its own data. Since there are numerous schools in
this province, the overall database is notoriously incomplete. How-
ever, periodically the statistics department of the province queries
the school database to generate statistical reports. These statistics
are the basis for administrative decisions such as the opening and
closing of classes, the assignment of teachers to schools and others.
It is therefore important that these statistics are correct. Therefore,
the IT department is interested in finding out which data has to be
complete in order to guarantee correctness of the statistics, and on
which basis the guarantees can be given.

The problem described above gives rise to several research ques-
tions:

1. How can one describe completeness of parts of a possibly
incomplete database?

2. How can one characterize the completeness of query answers?
3. How can one infer completeness of query answers from such

completeness descriptions?

Reasoning about data completeness has first been investigated
by Motro [19] and Halevy [18]. Motro described how knowledge
about the completeness of some query answers can allow one to
conclude that other query answers are complete as well. Halevy
tried to infer whether a query delivers all answers over an incom-
plete database, given that parts of some database relations are com-
plete. Both papers introduce important concepts, however, they
do not set up a framework in which it is possible to give satisfac-
tory answers to the questions above. Later work focussed on an-
swer completeness in the presence of master data [13, 14], resoning
about partially complete information in the context of planning [11,
9] or on approximations of possible and certain answers over in-
complete databases [8]. In parallel, other researchers developed ap-
proaches to quantifying completeness of data and query answers [3,
20].

We proceed as follows. In Section 2, we discuss related work on
reasoning about completeness in partially incomplete databases. In
Section 3, we formalize partially complete databases and answer
Question 1 by formalizing statements to express partial complete-
ness. In Section 4 we deal with Question 2 by discussing charac-
terizations of query completeness. In Sections 5 and 6, we answer
Question 3 by discussing inferences of query completeness from ta-
ble completeness and query completeness, respectively. Section 7
discusses general practical aspects of completeness information.
With Section 8, we conclude our work.

749

2. RELATED WORK
Motro [19] introduced the notion of partially incomplete and in-

correct databases as databases that can both miss facts that hold
in the real world or contain facts that do not hold there. He de-
scribed partial completeness in terms of query completeness (QC)
statements, which express that the answer of a query is complete.
He studied how the completeness of a given query can be deduced
from the completeness of other queries. His solution was based on
rewriting queries using views: to infer that a given query is com-
plete whenever a set of other queries are complete, he would search
for a conjunctive rewriting in terms of the complete queries. This
solution is correct, but not complete, as later results on query de-
terminacy show: the given query may be complete although no
conjunctive rewriting exists [22].

Halevy [18] suggested local completeness statements, which we,
for a better distinction from the QC statements, call table complete-
ness (TC) statements, as an alternate formalism for expressing par-
tial completeness of an incomplete database. These statements al-
low one to express completeness of parts of relations independent
from the completeness of other parts of the database. The main
problem he addressed was how to derive query completeness from
table completeness (TC-QC). He reduced TC-QC to the problem of
queries independent of updates (QIU) [10]. However, this reduc-
tion introduces negation, and thus, except for trivial cases, gener-
ates QIU instances for which no decision procedures are known. As
a consequence, the decidability of TC-QC remained largely open.
Moreover, he demonstrated that by taking into account the concrete
database instance and exploiting the key constraints over it, addi-
tional queries can be shown to be complete.

Etzioni et al. [11] discussed completeness statements in the con-
text of planning and presented an algorithm for querying partially
complete data. Doherty et al. [9] generalized this approach and pre-
sented a sound and complete query procedure. Furthermore, they
showed that for a particular class of completeness statements, ex-
pressed using semi-Horn formulas, querying can be done efficiently
in PTIME w.r.t. data complexity.

Demolombe [6, 7] captured Motro’s definition of completeness
in epistemic logic and showed that in principle this encoding allows
for automated inferences about completeness.

Recently, Denecker et al. [8] studied how to compute possible
and certain answers over a database instance that is partially com-
plete. They showed that for first-order TC statements and queries,
the data complexity of TC-QC entailment wrt. a database instance
is in coNP and coNP-hard for some TC statements and queries.
Then they focused on approximations for certain and possible an-
swers and proved that under certain conditions their approxima-
tions are exact.

Fan and Geerts [13, 14] discussed the problem of query com-
pleteness in the presence of master data. In this setting, at least
two databases exist: one master database that contains complete
information in its tables, and other, possibly incomplete periph-
ery databases that must satisfy certain inclusion constraints wrt. the
master data. Then, in the case that one detects that a query over a
periphery database contains already all tuples that are maximally
possible due to the inclusion constraints, one can conclude that the
query is complete. The work is not comparable because in addition
to the different setting it always considers a database instance.

Abiteboul et al. [2] discussed representation and querying of in-
complete semistructured data. They showed that the problem of
deciding query completeness from stored complete query answers,
which corresponds to the QC-QC problem raised in [19] for rela-
tional data, can be solved in PTIME w.r.t. data complexity.

All results presented in this paper are new.

3. FORMALIZATION

3.1 Standard Definitions
We assume a set of relation symbols Σ, the signature. A database

instance D is a finite set of ground atoms with relation symbols
from Σ. For a relation symbolR ∈ Σ we writeR(D) to denote the
interpretation of R in D, that is, the set of atoms in D with relation
symbol R.

A condition G is a set of atoms using relations from Σ and pos-
sibly the comparison predicates < and ≤. As common, we write
a condition as a sequence of atoms, separated by commas. A con-
dition is safe if each of its variables occurs in a relational atom. A
conjunctive query is written in the form Q(s̄) :−B, where B is a
safe condition, s̄ is a vector of terms, and every variable in s̄ oc-
curs in B. We often refer to the entire query by the symbol Q.
As usual, we call Q(s̄) the head, B the body, the variables in s̄
the distinguished variables, and the remaining variables in B the
nondistinguished variables of Q. We generically use the symbol L
for the subcondition of B containing the relational atoms and M
for the subcondition containing the comparisons. If B contains no
comparisons, then Q is a relational conjunctive query.

The result of evaluatingQ over a database instanceD is denoted
as Q(D). Containment and equivalence of queries are defined as
usual. A conjunctive query is minimal if no relational atom can be
removed from its body without leading to a non-equivalent query.

3.2 Running Example
For our examples throughout the paper, we will use a drastically

simplified extract taken from the schema of the Bolzano school
database, containing the following four tables:

- student(name, level, code),
- person(name, gender),
- language attendance(name, language),
- class(level, code, primary language).

The table student contains records about students, that is, their
names and the level and code of the class they are in. The table per-
son contains records about persons (students, teachers, etc.), that is,
their names and genders. The table language attendance describes
who is attending courses on which language. The table class con-
tains classes described by level and code together with the primary
language of a class which, since the province is trilingual, can be
German, Italian, or Ladin (a minority language spoken in the Alps).

3.3 Completeness
Partial Database. The first and very basic concept is that of a
partially complete database or partial database [19]. A database
can only be incomplete with respect to another database that is
considered to be complete. So we model a partial database as a
pair of database instances: one instance that describes the complete
state, and another instance that describes the actual, possibly in-
complete state. Formally, a partial database is a pair D = (D̂, Ď)

of two database instances D̂ and Ď such that Ď ⊆ D̂. In the
style of [18], we call D̂ (read “D hat”) the ideal database, and Ď
(read “D check”) the available database. The requirement that Ď
is included in D̂ formalizes the intuition that the available database
contains no more information than the ideal one.

Example 1. Consider a partial database DS for a school with
two students, Hans and Maria, and one teacher, Carlo, as follows:

750

D̂S = {student(Hans, 3, A), student(Maria, 5, C),
person(Hans, male), person(Maria, female),
person(Carlo, male) },

ĎS = D̂S \ { person(Carlo, male), student(Maria, 5, C) },

that is, the available database misses the facts that Maria is a student
and that Carlo is a person.

Next, we define statements to express that parts of the informa-
tion in Ď are complete with regard to the ideal database D̂. We
distinguish query completeness and table completeness statements.

Query Completeness. For a query Q, the query completeness
statement Compl(Q) says thatQ can be answered completely over
the available database. Formally, Compl(Q) is satisfied by a par-
tial database D, denoted as D |= Compl(Q), if Q(Ď) = Q(D̂).

Example 2. Consider the above defined partial databaseDS and
the query

Q1(n) :− student(n, l, c), person(n, ’male’),

asking for all male students. Over both, the available database ĎS
and the ideal database D̂S , this query returns exactly Hans. Thus,
DS satisfies the query completeness statement for Q1, that is,

DS |= Compl(Q1).

Table completeness. A table completeness (TC) statement al-
lows one to say that a certain part of a relation is complete, without
requiring the completeness of other parts of the database [18]. It
has two components, a relation R and a condition G. Intuitively, it
says that all tuples of the ideal relation R that satisfy condition G
in the ideal database are also present in the available relation R.

Formally, let R(s̄) be an R-atom and let G be a condition such
that R(s̄), G is safe. We remark that G can contain relational
and built-in atoms and that we do not make any safety assump-
tions about G alone. Then Compl(R(s̄);G) is a table complete-
ness statement. It has an associated query, which is defined as
QR(s̄);G(s̄) :−R(s̄), G. The statement is satisfied byD = (D̂, Ď),
written D |= Compl(R(s̄);G), if QR(s̄);G(D̂) ⊆ R(Ď). Note
that the ideal instance D̂ is used to determine those tuples in the
ideal versionR(D̂) that satisfyG and that the statement is satisfied
if these tuples are present in the available version R(Ď). In the
sequel, we will denote a TC statement generically as C and refer to
the associated query simply as QC .

If we introduce different schemas Σ̂ and Σ̌ for the ideal and the
available database, respectively, we can view the TC statementC =
Compl(R(s̄);G) equivalently as the TGD (= tuple-generating de-
pendency) δC : R̂(s̄), Ĝ→ Ř(s̄) from Σ̂ to Σ̌. It is straightforward
to see that a partial database satisfies the TC statementC if and only
if it satisfies the TGD δC .

Example 3. In the partial database DS defined above, we can
observe that in the available relation person, the teacher Carlo is
missing, while all students are present. Thus, person is complete
for all students. The available relation student contains Hans, who
is the only male student. Thus, student is complete for all male
persons. Formally, these two observations can be written as table
completeness statements:

C1 = Compl(person(n, g); student(n, l, c)),

C2 = Compl(student(n, l, c); person(n, ’male’)),

which, as seen, are satisfied by the partial database DS .

One can prove that table completeness cannot be expressed by
query completeness, because the latter requires completeness of the
relevant parts of all the tables that appear in the statement, while the
former only talks about the completeness of a single table.

Example 4. As an illustration, consider the table completeness
statement C1 that states that person is complete for all students.
The corresponding query QC1 that asks for all persons that are stu-
dents is

QC1(n, g) :− person(n, g), student(n, l, c).

Evaluating QC1 over D̂S gives the result {Hans, Maria }. How-
ever, evaluating it over ĎS returns only {Hans }. Thus, DS does
not satisfy the completeness of the query QC1 although it satisfies
the table completeness statement C1.

Reasoning. As usual, a set S1 of TC- or QC-statements entails
another set S2 (we write S1 |= S2) if every partial database that
satisfies all elements of S1 also satisfies all elements of S2.

While TC statements are a natural way to describe complete-
ness of available data (“These parts of the data are complete”), QC
statements capture requirements for data quality (“For these queries
we need complete answers”). Thus, checking whether a set of TC
statements entails a set of QC statements (TC-QC entailment) is the
practically most relevant inference. Checking TC-TC entailment is
useful when managing sets of TC statements. Moreover, as we will
show later on, TC-QC entailment for aggregate queries with count
and sum can be reduced to TC-TC entailment for non-aggregate
queries. If completeness guarantees are given in terms of query
completeness, also QC-QC entailment is of interest.

4. DESCRIBING QUERY COMPLETENESS
BY TABLE COMPLETENESS

In this section we discuss whether and how query complete-
ness can be characterized in terms of table completeness. Suppose
we want the answers for a query Q to be complete. An immedi-
ate question is which table completeness conditions our database
should satisfy so that we can guarantee the completeness of Q.

To answer this question, we introduce canonical completeness
statements for a query. Intuitively, the canonical statements require
completeness of all parts of relations where tuples can contribute to
answers of the query. Consider a query Q(s̄) :−A1, . . . , An,M ,
with relational atoms Ai and comparisons M . The canonical com-
pleteness statement for the atom Ai is the TC statement

Ci = Compl(Ai;A1, . . . , Ai−1, Ai+1, . . . , An,M).

We denote by CQ = {C1, . . . , Cn } the set of all canonical com-
pleteness statements for Q.

Example 5. Consider the query

Q2(n) :− student(n, l, c), class(l, c, ’Ladin’),

asking for the names of all students that are in a class with Ladin
as primary language. Its canonical completeness statements are the
table completeness statements

C1 = Compl(student(n, l, c); class(l, c, ’Ladin’))

C2 = Compl(class(l, c, ’Ladin’); student(n, l, c)).

As a first result, we find that query completeness can equivalently
be expressed by the canonical completeness statements in certain
cases.

751

THEOREM 1. LetQ be a conjunctive query. Then for all partial
database instances D,

D |= Compl(Q) iff D |= CQ,

provided one of the following conditions holds: (i) Q is evaluated
under multiset semantics, or (ii) Q is a projection-free query.

PROOF. See Appendix A.

From the theorem we conclude that the canonical completeness
statements of a query are sufficient conditions for the completeness
of that query, not only under multiset but also under set semantics.

COROLLARY 2. Let Q be a conjunctive query. Then

CQ |= Compl(Q).

PROOF. The claim for multiset semantics is shown in Theo-
rem 1. For set semantics, we consider the projection-free variantQ′

ofQ. Note that CQ = CQ′ . Thus, by the preceding theorem, ifD |=
CQ, then D |= Compl(Q′), and hence, Q′(Ď) = Q′(D̂). Since
the answers toQ are obtained from the answers toQ′ by projection,
it follows that Q(Ď) = Q(D̂) and hence, D |= Compl(Q).

Let Q be a conjunctive query. We say that a set C of TC state-
ments is characterizing for Q if for all partial databases D it holds
that D |= C if and only if D |= Compl(Q).

From Corollary 2 we know that the canonical completeness state-
ments are a sufficient condition for query completeness under set
semantics. However, on can show that they fail to be a necessary
condition for queries with projection. One may wonder whether
there exist other sets of characterizing TC statements for such que-
ries. The next theorem tells us that this is not the case.

THEOREM 3. Let Q be a conjunctive query with at least one
non-distinguished variable. Then no set of table completeness state-
ments is characterizing for Compl(Q) under set semantics.

PROOF. See Appendix B.

By Theorem 3, for a projection queryQ the statement Compl(Q)
is not equivalent to any set of TC statements. Thus, if we want
to perform arbitrary reasoning tasks, no set of TC statements can
replace Compl(Q). However, if we are interested in TC-QC in-
ferences, that is, in finding out whether Compl(Q) follows from
a set of TC statements C, then, as the next result shows, CQ can
take over the role of Compl(Q) providedQ is a minimal relational
query and the statements in C are relational.

THEOREM 4. Let Q be a minimal relational conjunctive query
and C be a set of table completeness statements containing no com-
parisons. Then

C |= Compl(Q) implies C |= CQ.
PROOF. See Appendix C.

By the previous theorems, we have seen that in several cases sat-
isfaction of the canonical completeness statements is a characteriz-
ing condition for query completeness. As a consequence, in these
cases the question of whether TC statements imply completeness
of a query Q can be reduced to the question of whether these TC
statements imply the canonical completeness statements of Q.

This raises the question how to decide TC-TC entailment. Ta-
ble completeness statements describe parts of relations, which are
stated to be complete. Therefore, one set of such statements entails
another statement if the part described by the latter is contained in
the parts described by the former. Thus, that TC-TC entailment
naturally corresponds to query containment.

Example 6. Consider the TC statements C1 and C2, stating that
the person table is complete for all persons and for all female per-
sons, respectively:

C1 = Compl(person(n, g); true),

C2 = Compl(person(n, g); g = ’female’).

It is obvious that C1 entails C2. Consider the associated queries
QC1 and QC2 , describing the parts that are stated to be complete,
thus asking for all persons and for all female persons, respectively:

QC1(n, g) :− person(n, g),

QC2(n, g) :− person(n, g), g = ’female’.

Clearly, QC2 is contained in QC1 . In summary, we can say that C1

entails C2 because QC2 is contained in QC1 .

The example can easily be generalized to a linear time reduction
under which entailment of a TC statement by other TC statments
is translated into containment of a conjunctive query in a union of
conjunctive queries. The next theorem shows that there is also a
reduction in the opposite direction.

THEOREM 5. Let L be a class of conjunctive queries that (i)
contains for every relation the identity query, and (ii) is closed un-
der intersection. Then the two problems of TC-TC entailment and
containment of unions of queries can be reduced to each other in
linear time.

5. TABLE COMPLETENESS ENTAILING
QUERY COMPLETENESS

In this section we discuss the problem of TC-QC entailment and
its complexity. First we study general TC-QC entailment, that is,
entailment w.r.t. all instances, and then consider entailment w.r.t.
a fixed instance of the available database. Finally, we apply our
results on general TC-QC entailment to aggregate queries.

5.1 General TC-QC Entailment
First we concentrate on TC-QC entailment and its complexity.

We distinguish between four languages of conjunctive queries:

• linear relational queries (LLRQ): conjunctive queries without
repeated relation symbols and without comparisons,
• relational queries (LRQ): conjunctive queries without com-

parisons,
• linear conjunctive queries (LLCQ): conjunctive queries with-

out repeated relation symbols,
• conjunctive queries (LCQ).

We say that a TC statement is in one of these languages if its asso-
ciated query is in it. For L1, L2 ranging over the above languages,
we denote by TC-QC(L1,L2) the problem to decide whether a set
of TC statements in L1 entails completeness of a query in L2.

As a first result, we show that TC-QC entailment can be reduced
to a certain kind of query containment. It also corresponds to a
simple containment problem w.r.t. tuple-generating dependencies.
From this reduction we obtain upper bounds for the complexity of
TC-QC entailment.

To present the reduction, we define the unfolding of a query w.r.t.
to a set of TC statements. Let Q(s̄) :−A1, . . . , An, N be a con-
junctive query where N is a set of comparisons and the relational
atoms are of the form Ai = Ri(s̄i), and let C be a set of TC state-
ments, where each Cj ∈ C is of the form Compl(Rj(t̄j);Gj).

752

Then the unfolding of Q w.r.t. C, written QC , is defined as follows:

QC(s̄) =
∧

i=1,..,n

(
Ri(s̄i) ∧

∨
Cj∈C,Rj=Ri

(Gj ∧ s̄i = t̄j)
)
∧N.

Intuitively, QC is a modified version ofQ that uses only those parts
of tables that are asserted to be complete by C.

THEOREM 6. Let C be a set of TC statements and Q be a con-
junctive query. Then

C |= Compl(Q) iff Q ⊆ QC .

Thus, a query is complete w.r.t. a set of TC statements, iff its re-
sults are already returned by the modified version that uses only the
complete parts of the database. This will give us upper complexity
bounds of TC-QC entailment for several combinations of languages
for TC statements and queries. The containment problems arising
are more complicated than the ones commonly investigated. The
first reason is that queries and TC statements can belong to differ-
ent classes of queries, thus giving rise to asymmetric containment
problems with different languages for container and containee. The
second reason is that in general QC is not a conjunctive query but a
conjunction of unions of conjunctive queries.

To prove Theorem 6, we need a definition and a lemma. Let C
be a TC-statement for relation R. Then we define the function fC
that maps database instances to R-facts as fC(D) = {R(t̄) | t̄ ∈
QC(D) }. That is, if D̂ is an ideal database, then fC(D̂) returns
those R-facts that must be in Ď, if (D̂, Ď) is to satisfy C. We
define fC(D) =

⋃
C∈C fC(D) if C is a set of TC-statements.

LEMMA 7. Let C be a set of TC statements. Then

(i) fC(D) ⊆ D, for all database instances D;

(ii) (D̂, Ď) |= C iff fC(D̂) ⊆ Ď, for all Ď ⊆ D̂;

(iii) QC(D) = Q(fC(D)), for all conjunctive queries Q and
database instances D.

PROOF. See Appendix D.
PROOF OF THEOREM 6. “⇒” Suppose C |= Compl(Q). We

want to show that Q ⊆ QC . Let D be a database instance. Define
D̂ = D and Ď = fC(D). Then D = (D̂, Ď) is a partial database,
due to Lemma 7(i), which satisfies C, due to Lemma 7(iii). Ex-
ploiting that D |= Compl(Q), we infer that Q(D) = Q(D̂) =
Q(Ď) = Q(fC(D)) = QC(D).

“⇐” Suppose Q ⊆ QC . Let D = (D̂, Ď) be a partial database
such thatD |= C. Then we haveQ(D̂) ⊆ QC(D̂) = Q(fC(D̂)) ⊆
Q(Ď), where the first inclusion holds because of the assumption,
the equality holds because of Lemma 7(iii), and the last inclusion
holds because of Lemma 7(ii), since D |= C.

We show that for linear queriesQ the entailment C |= Compl(Q)
can be checked by evaluating the function fC over test databases de-
rived from Q. If C does not contain comparisons, one test database
is enough, otherwise exponentially many are needed. We use the
fact that containment of queries with comparisons can be checked
using test databases obtained by instantiating the body of the con-
tainee with representative assignments (see [16]). A set of assign-
ments Θ is representative for a set of variables X and constants
K relative to M , if the θ ∈ Θ correspond to the different ways to
linearly order the terms in X ∪K in accordance with M .

LEMMA 8. Let Q(s̄) :−L,M be a conjunctive query, let C be
a set of TC statements, and let Θ be a set of assignments that is
representative for the variables in Q and the constants in L and C
relative to M . Then:

(i) If Q ∈ LLCQ, and C ⊆ LRQ, then

Q ⊆ QC iff L = fC(L).

(ii) If Q ∈ LLCQ and C ⊆ LCQ, then

Q ⊆ QC iff θL = fC(θL) for all θ ∈ Θ.

PROOF. See Appendix E.

THEOREM 9. We have the following upper bounds:
(i) TC-QC(LRQ,LLCQ) is in PTIME.

(ii) TC-QC(LCQ,LLCQ) is in coNP.
(iii) TC-QC(LRQ,LRQ) is in NP.
(iv) TC-QC(LCQ,LCQ) is in ΠP

2 .

PROOF. (i) By Lemma 8(i), the containment test requires to
check whether whether L = fC(L) for a linear relational condi-
tion L and a set C of relational TC statements. Due to the linearity
of L, this can be done in polynomial time.

(ii) By Lemma 8(ii), non-containment is in NP, because it suf-
fices to guess an assignment θ ∈ Θ and check that θL \ fC(θL) 6=
∅, which can be done in polynomial time, since L is linear.

(iii) Holds because containment of a relational conjunctive query
in a positive relational query is in NP(see [21]).

(iv) Holds because containment of a conjunctive query in a pos-
itive query with comparisons is in ΠP

2 [23].

As a preparation for our hardness proofs we show that contain-
ment of unions of conjunctive queries can be reduced to TC-QC
entailment while preserving classes of queries. For classes of con-
junctive queries L1, L2 let Cont(L1,L2) and ContU(L1,L2) de-
note the problems to decide whether a query in L1 is contained in
a query from L2, or a union of queries from L2, respectively.

LEMMA 10. Let L1, L2 be one of the languages LLRQ, LLCQ,
LRQ, LCQ. Then there is a polynomial time many-one reduction
from ContU(L1,L2) to TC-QC(L2,L1).

PROOF. We show how the reduction works in principle. Con-
sider three queries Qi(t̄i) :−Bi, where i = 0, 1, 2. We define a set
of TC statements C and a queryQ such that C |= Compl(Q) if and
only if Q0 ⊆ Q1 ∪Q2.

To this end, we introduce a new relation symbol S, with the same
arity as the Qi, and define the new query as Q(t̄0) :−S(t̄0), B0.
For every relation symbol R in the signature Σ of the Qi we in-
troduce the statement CR = Compl(R(x̄R); true), where x̄R is a
vector of distinct variables. Furthermore, for each of Qi, i = 1, 2,
we introduce the statement Ci = Compl(S(t̄i);Bi). Let C =
{C1, C2 } ∪ {CR | R ∈ Σ }. Then it is easy to see that C and Q
do the job.

To apply this lemma, we need to know the complexity of asym-
metric containment problems, which have received little attention
so far. To the best of our knowledge, the results in the next lemma
have not been shown in the literature before.

LEMMA 11.
(i) ContU(LLRQ,LLCQ) is coNP-complete.

(ii) Cont(LRQ,LLRQ) is NP-complete.
(iii) Cont(LRQ,LLCQ) is ΠP

2 -complete.

PROOF. The upper bounds are straightforward. The lower
bounds are proved by a reduction of (i) 3-UNSAT, (ii) 3-SAT, and
(iii) ∀∃3-SAT, respectively (see Appendix F).

753

The hardness of the TC-QC(LLRQ,LCQ) problem is not shown
by an examination of the related containment problem. However,
using the reduction that proves the hardness of Cont(LRQ,LLCQ),
we are able to prove the hardness of TC-QC(LLRQ,LCQ) directly.

LEMMA 12. There is a PTIME many-one reduction from ∀∃3-
SAT to TC-QC(LLRQ,LCQ).

PROOF. See Appendix G.

THEOREM 13. We have the following lower bounds:
(i) TC-QC(LLCQ,LLRQ) is coNP-hard.

(ii) TC-QC(LLRQ,LRQ) is NP-hard.
(iii) TC-QC(LLCQ,LRQ) is ΠP

2 -hard.
(iv) TC-QC(LLRQ,LCQ) is ΠP

2 -hard.

PROOF. Follows from Lemmas 11 and 12.

The complexity of TC-QC entailment is summarized in Table 1.

5.2 Reasoning w.r.t. Database Instances
So far, we have studied completeness reasoning on the level of

statements and queries. In many cases, however, one has access
to the current state of the database, which may be exploited for
completeness reasoning. Already Halevy [18] observed that taking
into account both a database instance and the functional dependen-
cies holding over the ideal database, additional QC statements can
be derived. Denecker et al. [8] showed that for first order queries
and TC statements, TC-QC entailment with respect to a database
instance is in coNP, and coNP-hard for some queries and state-
ments.

Example 7. As a very simple example, consider the query

Q(n) :− student(n, l, c), language attendance(n, ’Greek’),

asking for the names of students attending Greek language courses.
Suppose that the language attendance table is known to be com-

plete. Then this alone does not imply the completeness of Q, be-
cause records in the student table might be missing.

Now, assume that we additionally find that in our database that
the table language attendance contains no record about Greek.

As the language attendance table is known to be complete, no
such record can be missing either. There can be no record about
Greek at all. If no record about Greek can be in present in the table
language attendance, it does not matter which tuples are missing
in the student table. The result of Q must always be empty, and
hence we can conclude that Q is complete in this case.

Formally, the question of TC-QC entailment w.r.t. a database
instance is formulated as follows: given an available database in-
stance Ď, a set of table completeness statements C, and a query
Q, is it the case that for all ideal database instances D̂ such that
(D̂, Ď) |= C, we have that Q(Ď) = Q(D̂)? If this holds, we write

Ď, C |= Compl(Q).

THEOREM 14. TC-QC entailment w.r.t. a database instance has
polynomial data complexity and is ΠP

2 -complete in combined com-
plexity for all combinations of languages among LLRQ, LLCQ,
LRQ, and LCQ.

PROOF. For the ΠP
2 -hardness in combined complexity, a reduc-

tion from ∀∃3-SAT to TC-QC(LLRQ,LLRQ) w.r.t. an instance is
included in Appendix H.

For tractability, consider the following naive algorithm: Given
Q, C and Ď, one first evaluates Q over Ď. Then, one tries to find

an ideal database instance D̂ such that Q evaluated over D̂ returns
a tuple that is not returned over Ď, and (D̂, Ď) satisfies C. If such
an ideal database instance can be found, the completeness of Q is
not entailed by C and Ď.

There are only finitely many databases D̂ to consider, as it suf-
fices to consider those that are the result of adding instantiations of
the body of Q to Ď. For these instantiations, it suffices to only use
the constants already present in the database plus one fresh con-
stant for every variable inQ, thus giving polynomial data complex-
ity. For the combined complexity, observe that for showing that the
entailment does not hold, it suffices to guess one such database D̂
and evaluate Q and C over D̂ to show that (D̂, Ď) satisfies C but
violates Compl(Q).

5.3 Aggregate Queries
As we have seen in our school data example, completeness of

statistics, which are essentially aggregate queries, is one of the
goals of completeness management. In this subsection we draw
upon our results for non-aggregate queries to investigate when TC-
statements imply completeness of aggregate queries.

We consider queries with the aggregate functions count, sum,
and max. Results for max can easily be reformulated for min. Note
that count is a nullary function while sum and max are unary. An
aggregate term is an expression of the form α(ȳ), where ȳ is a tuple
of variables, having length 0 or 1. Examples of aggregate terms are
count() or sum(y). IfQ(x̄, ȳ) :−L,M is a conjunctive query, and
α an aggregate function, then we denote byQα the aggregate query
Qα(x̄, α(ȳ)) :−L,M . We say that Qα is a conjunctive aggregate
query and thatQ is the core ofQα. Over a database instance,Qα is
evaluated by first computing the answers of its core Q under mul-
tiset semantics, then forming groups of answer tuples that agree on
their values for x̄, and finally applying for each group the aggregate
function α to the multiset of y-values of the tuples in that group.

A sufficient condition for an aggregate query to be complete over
D is that its core is complete over D under multiset semantics.
Hence, Corollary 2 gives us immediately a sufficient condition for
TC-QC entailment.

PROPOSITION 15. Let Qα be an aggregate query and C be a
set of TC statements. Then C |= CQ implies C |= Compl(Qα).

For count-queries, completeness of Qcount is the same as com-
pleteness of the core Q under multiset semantics. Thus, we can
reformulate Theorem 1 for count-queries.

THEOREM 16. Let Qcount be a count-query and C be a set of
TC statements. Then C |= Compl(Qcount) if and only if C |= CQ.

In contrast to count-queries, a sum-query can be complete over a
partial database (D̂, Ď) although its core is incomplete. The reason
is that it does not hurt if some tuples from D̂ that only contribute
0 to the overall sum are missing in Ď. Nonetheless, we can prove
an analogue of Theorem 16 if there are some restrictions on TC
statements and query.

We assume that all comparisons range over a dense order, like
the rational numbers. We say that a set of comparisons M is re-
duced, if for all terms s, t it holds that M |= s = t only if s and
t are syntactially equal. A conjunctive query is reduced if its com-
parisons are reduced. Every satisfiable query can be equivalently
rewritten as a reduced query in polynomial time. We say that a
sum-query is nonnegative if the summation variable y can only be
bound to nonnegative values, that is, if M |= y ≥ 0.

THEOREM 17. Let Qsum be a reduced nonnegative sum-query
and C be a set of relational TC statements. Then C |= Compl(Qsum)
if and only if C |= CQ.

754

Query Language
LRQ LCQ RQ CQ

TC
Statement
Language

LRQ polynomial polynomial NP-complete ΠP
2 -complete

RQ polynomial polynomial NP-complete ΠP
2 -complete

LCQ coNP-complete coNP-complete ΠP
2 -complete ΠP

2 -complete
CQ coNP-complete coNP-complete ΠP

2 -complete ΠP
2 -complete

Table 1: Complexity of deciding TC-QC entailment. Observe the asymmetry of the axes, as the step into NP appears when allowing
repeated relation symbols in the query, while the step into coNP appears when having comparisons in the TC statements.

PROOF. See Appendix I.

In the settings of Theorems 16 and 17, to decide TC-QC en-
tailment, it suffices to decide the corresponding TC-TC entailment
problem with the canonical statements of the query core. By The-
orem 5, these entailment problems can be reduced in PTIME to
containment of unions of conjunctive queries.

We remark without proof that for the query languages considered
in this work, TC-TC entailment has the same complexity as TC-QC
entailment (cf. Table 1), with the exception of TC-TC(LLRQ,LCQ)
and TC-TC(LRQ,LCQ). The TC-QC problems for these combina-
tions are ΠP

2 -complete, while the corresponding TC-TC problems
are in NP.

While for count and sum-queries the multiplicity of answers to
the core query is crucial, this has no influence on the result of a
max-query. Cohen et al. have characterized equivalence of max-
queries in terms of dominance of the cores [5]. A query Q(s̄, y)
is dominated by query Q′(s̄′, y′) if for every database instance D
and every tuple (d̄, d) ∈ Q(D) there is a tuple (d̄, d′) ∈ Q(D)
such that d ≤ d′. For max-queries it holds that Qmax

1 and Qmax
2

are equivalent if and only if Q1 dominates Q2 and vice versa. In
analogy to Theorem 6, we can characterize query completeness of
max-queries in terms of dominance.

THEOREM 18. Let C be a set of TC-statements and Qmax be a
max-query. Then C |= Compl(Qmax) iff Q is dominated by QC .

Dominance is a property that bears great similarity to contain-
ment. For queries without comparisons it is even equivalent to con-
tainment while for queries with comparisons it is characterized by
the existence of dominance mappings, which ressemble the well-
known containment mapppings (see [5]). This allows us to prove
that the upper and lower bounds of Theorems 9 and 13 hold also for
max-queries. If L is a class of conjunctive queries, we denote by
Lmax the class of max-queries whose core is in L. For languages
L1, Lmax

2 , the problem TC-QC(L1,Lmax
2) is defined as one would

expect. With this notation, we can state the following theorem.

THEOREM 19. For all languages L1, L2 among LLRQ, LLCQ,
LRQ and LCQ, the complexity of TC-QC(L1,Lmax

2) is the same as
the one of TC-QC(L1,L2).

6. QUERY COMPLETENESS ENTAILING
QUERY COMPLETENESS

To find out whether completeness of a set queries entails com-
pleteness of a given query, Motro [19] had the idea of looking for
rewritings of that query using queries known to be complete. Exis-
tence of such a rewriting entails completeness of the query because
then the answers of the given query can be computed from the an-
swers of the complete queries.

A problem closely related to the existence of rewritings is the
one of query determinacy, which had not yet been introduced at

the time of Motro’s work. Formally, a query Q is determined by a
set of queriesQ, writtenQ →→ Q, if for any two database instances
D1 and D2, we have that Q′(D1) = Q′(D2) for all Q′ ∈ Q im-
plies Q(D1) = Q(D2). The decidability of query determinacy for
conjunctive queries is an open question so far. But as shown by
Segoufin and Vianu [22], for conjunctive queries, the existence of
a rewriting and query determinacy coincide. It is clear that query
determinacy is a sufficient condition for QC-QC entailment, as ex-
pressed by the following proposition:

PROPOSITION 20. LetQ∪ {Q } be a set of queries. Then

Compl(Q) |= Compl(Q) if Q →→ Q.

PROOF. The definitions of query determinacy and QC-QC en-
tailment are exactly the same, except that query determinacy con-
siders arbitrary database instances D1, D2, while QC-QC entail-
ment considers only partial databases, that is pairs of instances
(D1, D2) where D1 ⊇ D2.

Whether the existence of a rewriting and thus query determinacy
is also a necessary condition for QC-QC entailment is not known
so far. We were able, however, to show this for conjunctive queries
that are boolean and relational.

THEOREM 21. Let Q ∪ {Q } be a set of boolean relational
conjunctive queries. Then

Q →→ Q if Compl(Q) |= Compl(Q).

PROOF. Both determinacy and QC-QC entailment hold exactly
if there exists a rewriting ofQ in terms ofQ. The sufficiency of this
condition is trivial, for the necessity, observe that if Q cannot be
rewritten in terms ofQ, then a counterexample of a partial database
can be constructed where completeness of the queries in Q holds
but completeness of Q not. This partial database instance then is
also a counterexample that Q is not determined byQ.

Whether determinacy and QC-QC entailment coincide also in
the general case, remains an open question.

7. PRACTICAL ISSUES
In this section we briefly discuss practical issues regarding com-

pleteness statements. Clearly, any completeness inference is only
as correct as the statements it is derived from. It is therefore impor-
tant to understand on which basis completeness statements can be
given and how this can be alleviated.

Except of cases where the ideal database is formalized but hid-
den, e.g., for authoritative or performance reasons, given complete-
ness statements cannot be verified. They can only be given on basis
of information that is outside the available database:

1. Someone may know some part of the ideal world. As an
example, a class teacher knows all the student in his class,
and can therefore guarantee completeness for all students of
his class if they are present in the available database.

755

2. The method of data collection may be known to be complete.
E.g., if every student has to fill in an enrolment form online
which is then stored in the database, then this policy assures
that by the deadline of enrolment, the table containing the
enrolment information must be complete. In contrast to 1.,
no one could assure this by inspecting the available data.

3. Cardinalities of parts of the ideal world may be known. E.g.,
if a number of 117 schools in the province is known and the
available database contains 117 schools, then under the rea-
sonable assumption that no one enters invalid schools, com-
pleteness of the schools can be concluded.

Schema constraints over the ideal database can be useful, e.g.,
foreign keys can allow to simplify (canonical) completeness state-
ments, or finite domains can allow to replace TC statements by
smaller, equivalent ones.

Finally, database instance information can have similar useful
aspects, but which to explain is beyond the scope of this paper (for
a very simple example, see section 5.2).

8. CONCLUSION
We outlined the importance of data completeness in the field of

data quality and illustrated the research questions with the example
of the management of school data in the province of Bolzano. We
argued that a general approach to database completeness manage-
ment is necessary.

In this paper, we developed a framework for describing com-
pleteness of databases and query answers, drawing upon earlier
work by Motro [19] and Halevy [18]. We distinguished between
the table completeness (TC) statements introduced by Halevy and
the query completeness (QC) statements introduced by Motro.

We identified TC-QC entailment as the central problem. We
showed that in certain cases weakest preconditions for TC-QC en-
tailment can be identified, which then allow to reduce TC-QC en-
tailment to TC-TC entailment, which is equivalent to query con-
tainment. For TC-QC problems where no characterization of pre-
conditions was possible, we provided a reduction to a particular
problem of query containment. We showed decidability of all these
problems for conjunctive queries, closing a crucial gap in previous
work by Halevy [18], and presented detailed complexity results.

For the problem of QC-QC entailment, we outlined the strong
connection to the open problem of deciding conjunctive query de-
terminacy.

In addition, we showed that by taking into account concrete data-
base instances, more completeness statements can be derived. How-
ever, TC-QC entailment becomes computationally harder.

We also discussed practical issues regarding gathering of com-
pleteness assertions in organisations.

A limitation of previous work, which we have not yet addressed,
is that databases are assumed to be null free. Furthermore, weak-
est preconditions also for queries containing comparisons remain
open.

Acknowledgement
We are thankful to Zeno Moriggl and Martin Prosch from the school
IT department of the province of Bolzano for introducing us to their
problem of query completeness and to Dmitrijs Milajevs for having
explored this problem in his BSc thesis. We thank Balder ten Cate
and Leonid Libkin for pointing out important connections to our
work. This work has been partially supported by the project ACSI,
funded by the EU under FP7 grant agreement n. 257593.

9. REFERENCES
[1] S. Abiteboul, P. Kanellakis, and G. Grahne. On the

representation and querying of sets of possible worlds. In
Proc. SIGMOD, pages 34–48, 1987.

[2] S. Abiteboul, L. Segoufin, and V. Vianu. Representing and
querying XML with incomplete information. ACM TODS,
31(1):208–254, 2006.

[3] J. Biswas, F. Naumann, and Q. Qiu. Assessing the
completeness of sensor data. In Proc. DASFAA, pages
717–732, 2006.

[4] E. F. Codd. Understanding relations (installment #7). FDT –
Bulletin of ACM SIGMOD, 7(3):23–28, 1975.

[5] S. Cohen, W. Nutt, and Y. Sagiv. Deciding equivalences
among conjunctive aggregate queries. J. ACM, 54(2), 2007.

[6] R. Demolombe. Answering queries about validity and
completeness of data: From modal logic to relational
algebra. In FQAS, pages 265–276, 1996.

[7] R. Demolombe. Database validity and completeness:
Another approach and its formalisation in modal logic. In
KRDB, pages 11–13, 1999.

[8] M. Denecker, A. Cortés-Calabuig, M. Bruynooghe, and
O. Arieli. Towards a logical reconstruction of a theory for
locally closed databases. ACM TODS, 35(3), 2010.

[9] P. Doherty, W. Lukaszewicz, and A. Szalas. Efficient
reasoning using the local closed-world assumption. In
AIMSA, pages 49–58, 2000.

[10] C. Elkan. Independence of logic database queries and
updates. In Proc. PODS, pages 154–160, 1990.

[11] O. Etzioni, K. Golden, and D. S. Weld. Sound and efficient
closed-world reasoning for planning. AI, 89(1-2):113–148,
1997.

[12] R. Fagin, P. Kolaitis, R. Miller, and L. Popa. Data exchange:
Semantics and query answering. In Proc. ICDT, pages
207–224, 2002.

[13] W. Fan and F. Geerts. Relative information completeness. In
PODS, pages 97–106, 2009.

[14] W. Fan and F. Geerts. Capturing missing tuples and missing
values. In PODS, pages 169–178, 2010.

[15] T. Imieliński and W. Lipski, Jr. Incomplete information in
relational databases. J. ACM, 31:761–791, 1984.

[16] A. C. Klug. On conjunctive queries containing inequalities.
J. ACM, 35(1):146–160, 1988.

[17] M. Lenzerini. Data integration: A theoretical perspective. In
Proc. PODS, pages 233–246, 2002.

[18] A. Levy. Obtaining complete answers from incomplete
databases. In Proc. VLDB, pages 402–412, 1996.

[19] A. Motro. Integrity = Validity + Completeness. ACM TODS,
14(4):480–502, 1989.

[20] F. Naumann, J.-C. Freytag, and U. Leser. Completeness of
integrated information sources. Inf. Syst., 29:583–615,
September 2004.

[21] Y. Sagiv and M. Yannakakis. Equivalence among relational
expressions with the union and difference operation. In
VLDB, pages 535–548, 1978.

[22] L. Segoufin and V. Vianu. Views and queries: Determinacy
and rewriting. In Proc. PODS, pages 49–60, 2005.

[23] R. van der Meyden. The complexity of querying indefinite
data about linearly ordered domains. In PODS, pages
331–345, 1992.

756

APPENDIX
A. PROOF OF THEOREM 1

THEOREM 1. LetQ be a conjunctive query. Then for all partial
database instances D,

D |= Compl(Q) iff D |= CQ,

provided one of the following conditions holds: (i) Q is evaluated
under multiset semantics, or (ii) Q is a projection-free query.

PROOF. (i) “⇒” Indirect proof: Suppose, one of the complete-
ness assertions in CQ does not hold over D, for instance, asser-
tion C1 for atom A1. Suppose, R1 is the relation symbol of A1.
Let C1 stand for the TC statement Compl(A1; B1) where B1 =
B \ {A1 } and B is the body of Q. Let Q1 be the query associated
to C1.

Then Q1(D̂) 6⊆ R1(Ď). Let t be a tuple that is in Q1(D̂), and
therefore in R1(D̂), but not in R1(Ď). By the fact that Q1 has the
same body as Q, the valuation υ of Q1 over D̂ that yields t is also
a satisfying valuation for Q over D̂. So we find one occurence of
some tuple t′ ∈ Q(D̂), where t′ is υ applied to the distinguished
variables of Q.

However, υ does not satisfyQ over Ď because t is not inR1(Ď).
By the monotonicity of conjunctive queries, we cannot have an-
other valuation yielding t′ over Ď but not over D̂. Therefore,Q(Ď)

contains at least one occurence of t′ less than Q(D̂), and hence Q
is not complete over D.

(i) “⇐” Direct proof: We have to show that if t is n times in
Q(D̂) then t is also n times in Q(Ď).

For every occurence of t in Q(D̂) we have a valuation of the
variables ofQ that is satisfying over D̂. We show that if a valuation
is satisfying for Q over D̂, then it is also satisfying for Q over Ď.
A valuation υ for a conjunctive condition G is satisfying over a
database instance if we find all elements of the instantiation νG
in that instance. If a valuation satisfies Q over D̂, then we will
find all instantiated atoms of νG also in Ď, because the canonical
completeness conditions hold in D by assumption. Satisfaction
of the canonical completeness conditions requires that for every
satisfying valuation of υ of Q, for every atom A in the body of
Q, the instantionation atom νA is in Ď. Therefore, each satisfying
valuation for Q over D̂ yielding a result tuple t ∈ Q(D̂) is also a
satisfying valuation over Ď and hence Q is complete over D.

(ii) Follows from (i). When a query with projections is complete
under multiset semantics, any variant of it that contains projections
is complete as well.

B. PROOF OF THEOREM 3

THEOREM 3. Let Q be a conjunctive query with at least one
non-distinguished variable. Then no set of table completeness state-
ments is characterizing for Compl(Q) under set semantics.

PROOF. We show that for queries containing projections, no set
of table completeness statements exists that can exactly character-
ize the query completeness. We present the principle for simple
query first, and discuss then how it extends to arbitrary queries with
projections.

Consider the relation schema Σ = {R/1 } and the boolean
query Q() :−R(x). Furthermore, assume a characterizing set of
TC statements C for Q existed. Now consider the partial database

instances D1, D2 and D3 such that:

D̂1 = {R(a), R(b) } Ď1 = {R(a) }

D̂2 = {R(a), R(b) } Ď2 = {R(b) }

D̂3 = {R(a), R(b) } Ď3 = { }.

Then, Compl(Q) holds in D1 and D2 but not in D3, and there-
fore all table completeness statements in C have to hold in D1 and
D2, but at least one of them must not hold in D3. Let us call that
condition C.

The statement C must be of the form Compl(R(x), G). Then
G = true does not hold in D1 and D2 (because in both cases there
is a tuple in R(D̂i) that is not in R(Ďi)). Other relation symbols
to introduce do not exist and repeating R with a variable generates
only equivalent conditions. Adding an equality atom for x with
some constant generates a table completeness statement that does
not hold either in D1 or D2. So the only form G can have such
that Compl(R(x), G) holds in D1 and D2 is G = false. However,
Compl(R(x), false) holds in D3 as well.

The proof for this specific query can be extended to any query
with a nondistinguished variable x: Following the same idea, one
constructs three partial database instances, where the ideal database
instances contain the frozen body of the query plus the frozen body
where only x has been replaced by another symbol. The three avail-
able database instances are once the frozen body, once the frozen
body with x changed, and once the empty set. If the complete-
ness statements cannot detect that in the first two instances once
the frozen body and once the isomorphic structure is missing, they
will not detect that in the third instance both are missing. But over
the third instance, the query is clearly incomplete.

C. PROOF OF THEOREM 4

THEOREM 4. Let Q be a minimal relational conjunctive query
and C be a set of table completeness statements containing no com-
parisons. Then

C |= Compl(Q) implies C |= CQ
PROOF. By contradiction. Assume Q is minimal and C is such

that C |= Compl(Q), but C 6|= CQ. Then, because C 6|= CQ, there
exists some partial database D such that D |= C, but D 6|= CQ.
Since D 6|= CQ, we find that one of the canonical completeness
statements in CQ does not hold in D. Let B be the body of Q.
Wlog, assume that D 6|= C1, where C1 is the canoncial statement
for A1 = R1(t̄1), the first atom in B. Let Q1 be the query associ-
ated toC1. Thus, there exists some tuple ū1 such that ū1 ∈ Q1(D̂),
but ū1 6∈ R1(Ď).

Now we construct a second partial database D0. To this end let
B′ be the frozen version ofB, that is, each variable inB is replaced
by a fresh constant, and let A′1 = R1(t̄′1) be the frozen version of
A1. Now, we define D0 = (B′, B′ \ {A′1 }).

Claim: D0 satisfies C as well

To prove the claim, we note that the only difference between D̂0

and Ď0 is that A′1 /∈ Ď0, therefore all TC statements in C that
describe table completeness of relations other than R1 are satisfied
immediately. To show that D0 satisfies also all statements in C that
describe table completeness of R1, we assume the contrary and
show that this leads to a contradiction.

Assume D0 does not satisfy some statement C ∈ C. Then
QC(D̂0) \ R1(Ď0) 6= ∅, where QC(x̄C) is the query associ-
ated with C. Since QC(D̂0) ⊆ R1(D̂0), it must be the case that
t̄′1 ∈ QC(D̂0) \R1(Ď0). Let BC be the body of QC .

757

Then, t̄′1 ∈ QC(D̂0) implies that there is a valuation δ such
that δBC ⊆ B′ and δx̄C = t̄′1, where x̄C are the distinguished
variables of C. As ū1 ∈ Q1(D̂), and Q1 has the same body as Q,
there exists another valuation θ such that θB ⊆ D̂ and θt̄1 = ū1,
where t̄1 are the arguments of the atom A1.

Composing θ and δ, while ignoring the difference between B
and its frozen version B′, we find that θδBC ⊆ θB′ = θB ⊆ D̂
and θδx̄C = θt̄′1 = θt̄1 = ū1. In other words, θδ is a satisfying
valuation for QC over D̂ and thus ū1 = θδx̄C ∈ QC(D̂). How-
ever, ū1 /∈ R1(Ď), hence, D would not satisfy C. This contradicts
our initial assumption. Hence, we conclude that also D0 satisfies
C.

Since D0 satisfies C and C |= Compl(Q), it follows that Q is
complete overD0. As D̂0 = B′, the frozen body ofQ, we find that
x̄′ ∈ Q̂(D0), with x̄′ being the frozen version of the distinguished
variables x̄ of Q. As Q is complete over D0, we should also have
that x̄′ ∈ Q(Ď0). However, as D̂0 = B′ \ {A′1 }, this would re-
quire a satisfying valuation from B to B′ \ {A′1 } that maps x̄ to
x̄′. This valuation would correspond to a non-surjective homomor-
phism from Q to Q and hence Q would not be minimal.

D. PROOF OF LEMMA 7

LEMMA 7. Let C be a set of TC statements. Then

1. fC(D) ⊆ D, for all database instances D;

2. (D̂, Ď) |= C iff fC(D̂) ⊆ Ď, for all Ď ⊆ D̂;
3. QC(D) = Q(fC(D)), for all conjunctive queries Q and

database instances D.

PROOF. (i) Holds because of the specific form of the queries as-
sociated with C. (ii) Follows from the definition of when a partial
database satisfies a set of TC statements. (iii) Holds because un-
folding Q using the queries in C and evaluating the unfolding over
the original database D amounts to the same as computing a new
database fC(D) using the queries in C and evaluating Q over the
result.

E. PROOF OF LEMMA 8

LEMMA 8. Let Q(s̄) :−L,M be a conjunctive query, let C be
a set of TC statements, and let Θ be a set of assignments that is
representative for the variables in Q and the constants in L and C
relative to M . Then:

1. If Q ∈ LLCQ, and C ⊆ LRQ, then

Q ⊆ QC iff L = fC(L).

2. If Q ∈ LLCQ and C ⊆ LCQ, then

Q ⊆ QC iff θL = fC(θL) for all θ ∈ Θ.

PROOF. (i) “⇒” Suppose fC(L) 6⊆ L. Then there is an atom
A such that A ∈ L \ fC(L). We consider a satisfying assignment
θ for Q and create the database D = θL. Then Q(D) 6= ∅ and,
due to containment, QC(D) 6= ∅. At the same time, QC(D) =
Q(fC(D)) = Q(fC(θL)). However, since A 6∈ fC(L), there is no
atom in fC(D) with the same relation symbol as A and therefore
Q(fC(D)) = ∅.

“⇐” Let c̄ ∈ Q(D). We show that c̄ ∈ QC(D). There exists
an assignment θ such that θ |= M , θL ⊆ D, and θs̄ = c̄. Since
L = fC(L), we conclude that θL = fC(θL) ⊆ fC(D). Hence, θ
satisfiesQ over fC(D). Thus c̄ = θs̄ ∈ Q(fC(D)) = QC(D).

(ii) Straightforward generalization of the proof for (i).

F. PROOF OF LEMMA 11
LEMMA 11.
1. ContU(LLRQ,LLCQ) is coNP-complete.
2. Cont(LRQ,LLRQ) is NP-complete.
3. Cont(LRQ,LLCQ) is ΠP

2 -complete.

The upper bounds are straightforward. For the lower bounds,
consider the following reductions.

F.1 ContU(LLRQ,LLCQ) is coNP-hard
3-UNSAT is a coNP-complete problem. A 3-SAT formula is

unsatisfiable exactly if its negation is valid.
Let φ be a 3-SAT formula in disjunctive normal form as follows:

φ = γ1 ∨ . . . ∨ γk,

where each clause γi is a conjunction of literals li1, lil2 and li3, and
each literal is a positive or negated propositional variable pi1, pi2
or pi3, respectively.

We define queries Q, Q′1, . . . , Q′k as follows:

Q() :−C1(p11, p12, p13), . . . , Ck(pk1, pk2, pk3),

Q′i() :−Ci(x1, x2, x3), x1 ◦1 0, x2 ◦2 0, x3 ◦3 0,

where ◦j = “ ≥ ” if lij is a positive proposition and ◦j = “ < ”
otherwise.

Clearly, Q is a linear relational query and the Q′i are linear con-
junctive queries.

LEMMA 22. Let φ be a 3-SAT formula in disjunctive normal
form and Q and Q1 to Qk be constructed as above. Then

φ is valid iff Q ⊆
⋃

i=1..k

Q′i.

PROOF. Observe first that the comparisons in theQ′i correspond
to the disambiguation between positive and negated propositions,
that is, whenever a variable is interpreted as a constant greater
or equal zero, this corresponds to the truth value assignment true,
while less zero corresponds to false false.

“⇒” If φ is valid, then for every possible truth value assignment
of the propositional variables p, one of the clauses Ci evaluates to
true. Whenever Q returns true over some database instance, the
query Q′i that corresponds to the clause Ci that evaluates to true
under that assignment, returns true as well.

“⇐” If the containment holds, then for every instantiation of Q
we find a Q′i that evaluates to true as well. This Q′i corresponds to
the clause Ci of φ that evaluates to true under that variable assign-
ment.

F.2 Cont(LRQ,LLRQ) is NP-hard
Let φ be a 3-SAT formula in conjunctive normal form as follows:

φ = γ1 ∧ . . . ∧ γk,

where each clause γi is a conjunction of literals li1, li2 and li3, and
each literal is a positive or negated propositional variable pi1, pi2
or pi3, respectively.

We define queries Q and Q′ as follows:

Q() :−F (7)
1 , . . . , F

(7)
k ,

where F (7)
i stands for the 7 ground instances of the predicate Ci

over { 0, 1 }, under which, when 0 is considered as the truth value
false and 1 as the truth value true, the clause γi evaluates to true,
and

Q′() :−C1(p11, p12, p13), . . . , Ck(pk1, pk2, pk3).

758

Clearly, Q is a relational query and Q′ a linear relational query.

LEMMA 23. Let φ be a 3-SAT formula in conjunctive normal
form and let Q and Q′ be constructed as shown above. Then

φ is satisfiable iff Q ⊆ Q′.
PROOF. “⇒” If φ is satisfiable, there exists an assignment of

truth values to the propositions, such that each clause evaluates to
true. This assignment can be used to show that whenever Q returns
a result, every Ci in Q′ can be mapped to one ground instance of
that predicate inQ. “⇐” If the containment holds, Q′ must be sat-
isfiable over a database instance that contains only the ground facts
in Q. The mapping from the variables in Q′ to the constant { 0, 1 }
gives a satisfying assignment for the truth values of the propositions
in φ.

F.3 Cont(LRQ,LLCQ) is ΠP
2 -hard

Checking validity of a universally-quantified 3-SAT formula is
ΠP

2 -complete problem. A universally-quantified 3-SAT formula φ
is a formula of the form

∀x1, . . . , xm∃y1, . . . , yn : γ1 ∧ . . . ∧ γk,

where each γi is a disjunction of three literals over propositions pi1,
pi2 and pi3, and {x1, . . . , xm } ∪ { y1, . . . , yn } are propositions.

Let the Ci be again ternary relations and let Ri and Si be bi-
nary relations. We first define conjunctive conditionsGj andG′j as
follows:

Gj = Rj(0, wj), Rj(wj , 1), Sj(wj , 0), Sj(1, 1),

G′j = Rj(yj , zj), Sj(zj , xj), yj ≤ 0, zj > 0.

Now we define queries Q and Q′ as follows:

Q() :−G1, . . . , Gk, F
(7)
1 , . . . , F (7)

m ,

where F (7)
i stands for the 7 ground instances of the predicate Ci

over { 0, 1 }, under which, when 0 is considered as the truth value
false and 1 as the truth value true, the clause γi evaluates to true,
and

Q′() :−G′1, . . . , G′m, C1(p11, p12, p13), . . . , Ck(pk1, pk2, pk3).

Clearly, Q is a relational query and Q′ is a linear conjunctive
query.

LEMMA 24. Let φ be a universally quantified 3-SAT formula
as shown above and let Q and Q′ be constructed as above. Then

φ is valid iff Q ⊆ Q′.
PROOF. Observe first the function of the conditions G and G′:

Each condition Gj is contained in the condition G′j , as whenever
a structure corresponding to Gj is found in a database instance,
G′j is also found there. However, there is no homomorphism from
G′j to Gj as xj will either be mapped to 0 or 1, depending on the
instantiation of wj (see also figure 1).

“⇒” If φ is valid, then for every possible assignment of truth
values to the universally quantified propositions, a satisfying as-
signment for the existentially quantified ones exists.

Whenever a database instance D satisfies Q, each condition Gj
must be satisfied there, and wj will have a concrete value, that de-
termines which value xj in G′j can take. As φ is valid, however, it
does not matter which values the universally quantified variables x
take, there always exists a satisfying assignment for the other vari-
ables, such that each atom Cj can be mapped to one of the ground
instances F (7)

j that are in D since Q is satisfied over D. Then, Q′

will be satisfied over D as well and hence Q ⊆ Q′ holds.

“⇐” If Q is contained in Q′, for every database D that instan-
tiates Q, we find that Q′ is satisfied over it. Especially, no matter
whether we instantiate the wj by a positive or a negative number,
and hence whether the xj will be mapped to 0 or 1, there exists an
assignment for the existentially quantified variables such that each
Cj is mapped to a ground instance from F

(7)
j . This directly cor-

responds to the validity of φ, where for every possible assignment
of truth values to the universally quantified variables, a satisfying
assignment for the existential quantified variables exists.

Figure 1: Structure of Gj and G′j . Depending on the value
assigned to wj , xj becomes either 0 or 1.

G. PROOF OF LEMMA 12

LEMMA 12. There is a PTIME many-one reduction from ∀∃3-
SAT to TC-QC(LLRQ,LCQ).

In Section F.3, we have seen that Cont(LRQ,LLCQ) is ΠP
2 -

hard, because validity of ∀∃3-SAT formulas can be translated into
a Cont(LRQ,LLCQ) instance.

We now show ΠP
2 -hardness of TC-QC(LLRQ,LCQ) by translat-

ing those Cont(LRQ,LLCQ) instances into TC-QC(LLRQ,LCQ)
instances.

Recall that the Cont(LRQ,LLCQ) problems were of the form

“Q
?

⊆ Q′?”, where Q and Q′ were

Q() :−G1, . . . , Gm, F
(7)
1 , . . . , F

(7)
k ,

Q′() :−G′1, . . . , G′m, C1(p11, p12, p13), . . . , Ck(pk1, pk2, pk3),

and Gj and G′j were

Gj = Rj(0, wj), Rj(wj , 1), Sj(wj , 0), Sj(1, 1),

G′j = Rj(yj , zj), Sj(zj , xj), yj ≤ 0, zj > 0.

Now consider a set C of completeness statements containing for
every 1 ≤ j ≤ m the statements

Compl(Rj(0,); true),

Compl(Rj(, 1); true),

Compl(Sj(, 0); true),

Compl(Sj(, 1); true),

and containing for every 1 ≤ i ≤ k the statements

Compl(Ci(1, ,); true),

Compl(Ci(0, ,); true),

where, for convenience, “ ” stands for arbitrary variables.
Clearly, C contains only statements that are in LLRQ andQ∩Q′

is in LCQ.

759

LEMMA 25. Let Q and Q′ be queries constructed from the re-
duction of a ∀∃ 3-SAT instance, and let C be constructed as above.
Then

C |= Compl(Q ∩Q′) iff Q ⊆ Q′.

PROOF. “⇐” Assume Q ⊆ Q′. We have to show that C |=
Compl(Q∩Q′). Because of the containment,Q∩Q′ is equivalent
to Q, and hence it suffices to show that C |= Compl(Q).

Consider a partial database D such that D |= C and D̂ |= Q.
Because of the way in which C is constructed, all tuples in D̂ that
made Q satisfied are also in Ď, and hence Ď |= Q as well.

“⇒” Assume Q 6⊆ Q′. We have to show that C 6|= Compl(Q ∩
Q′).

Since the containment does not hold, there exists a database D0

that satisfies Q but not Q′. We construct a partial database D with

D̂ = D0 ∪ σBQ′

Ď = D0,

where σBQ′ is an instantiation of the body of Q′ that uses only the
constants -3 and 3.

By that, the tuples from σBQ′ , missing in Ď do not violate C,
that always has constants 0 or 1 in the heads of its statements, so C
is satisfied by D. But as D̂ satisfies Q ∩ Q′ and Ď does not, this
shows that C 6|= Compl(Q ∩Q′).

H. PROOF OF THEOREM 14

THEOREM 14. TC-QC entailment w.r.t. a database instance has
polynomial data complexity and is ΠP

2 -complete in combined com-
plexity for all combinations of languages among LLRQ, LLCQ,
LRQ, and LCQ.

To show the ΠP
2 -hardness of TC-QC(LLRQ,LLRQ) entailment

w.r.t. a concrete database instance, we give a reduction of the pre-
viously seen problem of validity of an universally quantified 3-SAT
formula.

So consider φ to be an allquantified 3-SAT formula of the form

∀x1, . . . , xm∃y1, . . . , yn : γ1 ∧ . . . ∧ γk.

where each γi is a disjunction of three literals over propositions pi1,
pi2 and pi3, and {x1, . . . , xm } ∪ { y1, . . . , yn } are propositions.

We define the query completeness problem

Γφ = (Ď, C
?

|= Compl(Q))

as follows. Let the relation schema Σ be {B1/1, . . . , Bm/1, R1/1,
. . . , Rm/1, C1/3, . . . , Ck/3 }. Let Q be a query defined as

Q() :−B1(x1), R1(x1), . . . , Bm(xm), Rm(xm).

Let Ď be such that for all Bi, Bi(Ď) = { 0, 1 }, and for all i =
1, . . . ,m let Ri(Ď) = {} and let Ci(Ď) contain all the 7 triples
over { 0, 1 } such that γi is mapped to true if the variables in γi
become the truth values true for 1 and false for 0 assigned.

Let C be the the set containing the following TC statements

Compl(B1(x), true), . . . ,Compl(Bm(x), true)

Compl(R1(x1); R2(x2), . . . , Rm(xm),

C1(p11, p12, p13), . . . , Ck(pk1, pk2, pk3)),

where the z̄i are the variables from γi in φ.

LEMMA 26. Let φ be a ∀∃3-SAT formula as shown above and
let Q, C and Ď be constructed as above. Then

φ is valid iff Ď, C |= Compl(Q).

PROOF. Observe first, that validity of φ implies that for every
possible instantiation of the x variables, there exist an instantiation
of the y variables such that C1 to Ck in the second TC statement in
C evaluate to true.

Completeness of Q follows from C and Ď, if Q returns the same
result over Ď and any ideal database instance D̂ that subsumes Ď
and C holds over (D̂, Ď).
Q returns nothing over Ď. To make Q return the empty tuple

over D̂, one value from { 0, 1 } has to be inserted into each ideal
relation instance R̂i, because every predicate Ri appears in Q, and
every extension is empty in Ď. This step of adding any value from
{ 0, 1 } to the extensions of the R-predicates in D̂ corresponds to
the universal quantification of the variables X .

Now observe, that for the query to be complete, none of these
combinations of additions may be allowed. That is, every such ad-
dition has to violate the table completeness constraint C. As the ex-
tension of R1 is empty in Ď as well, C becomes violated whenever
adding the values for the R-predicates leads to the existence of a
satisfying valuation of the body of C. For the existence of a satisfy-
ing valuation, the mapping of the variables y is not restricted, which
corresponds to the existential quantification of the y-variables.

The reduction is correct, because whenever C, Ď |= Compl(Q)
holds, for all possible additions of { 0, 1 } values to the extensions
of the R-predicates in D̂ (all combinations of x), there existed a
valuation of the y-variables which yielded a mapping from the C-
atoms in C to the ground atoms of C in Ď, that satisfied the exis-
tential quantified formula in φ.

It is complete, because whenever φ is valid, then for all valua-
tions of the x-variables, there exists an valuation for the y-variables
that satisfies the formula φ, and hence for all such extensions of the
R-predicates in D̂, the same valuation satisfied the body of C0,
thus disallowing the extension.

I. PROOF OF THEOREM 17

THEOREM 17. Let Qsum be a reduced nonnegative sum-query
and C be a set of relational TC statements. Then

C |= Compl(Qsum) if and only if C |= CQ.

PROOF. The direction C |= CQ implies C |= Compl(Qsum)
holds trivially. It remains to show that C |= Compl(Qsum) implies
C |= CQ.

Assume this does not hold. Then C |= Compl(Qsum) and there
exists some D = (D̂, Ď) such that D |= C, but D 6|= CQ. W.l.o.g.
assume that condition C1 of CQ, which corresponds to the first
relational atom, say A1, of the body of Q, is not satisfied by D.
Then there is an assignment θ such that M |= θ and θL ⊆ D̂, but
θA1 /∈ Ď. If θy 6= 0, then we are done, because θ contributes a
positive value to the overall sum for the group θx̄. Otherwise, we
can find an assignment θ′ such that (i) θ′ |= M , (ii) θ′y > 0, (iii) if
θ′z 6= θz, then θ′z is a fresh constant not occurring in D, and (iv)
for all terms s, t, it holds that θ′s = θ′t only if θs = θt. Such a
θ′ exists because M is reduced and the order over which our com-
parisons range is dense. Due to (iii), in general we do not have that
θ′L ⊆ D̂.

We now define a new partial database D′ = (D̂′, Ď′) by adding
θ′L \ { θ′A } both to D̂ and Ď. Thus, we have that (i) θ′L ⊆ D̂′,
(ii) θ′L 6⊆ Ď′, and (iii) D′ |= C. The latter claim holds because
any violation of C by D′ could be translated into a violation of C
by D, using the fact that C is relational. Hence, θ′ contributes the
positive value θ′y to the sum for the group θ′x̄ overD′, but not over
D. Consequently, the sums for θ′x̄ over D̂′ and Ď′ are different (or
there is no such sum over Ď′), which contradicts our assumption
that C |= Compl(Qsum).

760

