
Graph Indexing of Road Networks for Shortest Path
Queries with Label Restrictions

Michael Rice
University of California, Riverside

Riverside, CA 92521
mrice@cs.ucr.edu

Vassilis J. Tsotras
University of California, Riverside

Riverside, CA 92521
tsotras@cs.ucr.edu

ABSTRACT
The current widespread use of location-based services and
GPS technologies has revived interest in very fast and scal-
able shortest path queries. We introduce a new shortest path
query type in which dynamic constraints may be placed on
the allowable set of edges that can appear on a valid short-
est path (e.g., dynamically restricting the type of roads or
modes of travel which may be considered in a multimodal
transportation network). We formalize this problem as a
specific variant of formal language constrained shortest path
problems, which we call the Kleene Language Constrained
Shortest Paths problem. To efficiently support this type of
dynamically constrained shortest path query for large-scale
datasets, we extend the hierarchical graph indexing tech-
nique known as Contraction Hierarchies. Our experimental
evaluation using the North American road network dataset
(with over 50 million edges) shows an average query speed
and search space improvement of over 3 orders of magni-
tude compared to the näıve adaptation of the standard Di-
jkstra’s algorithm to support this query type. We also show
an improvement of over 2 orders of magnitude compared to
the only previously-existing indexing technique which could
solve this problem without additional preprocessing.

1. INTRODUCTION
Due to its ubiquitous usage over the web and in many

commercial navigation products, point-to-point shortest path
search on graphs has again become a major topic of inter-
est over the last decade, with much research being devoted
to designing practical indexing techniques for extremely fast
graph searches. Graph indexing techniques have been widely
explored for establishing efficient data structures for prun-
ing and/or directing the search of shortest path algorithms,
while still guaranteeing the optimality of the resulting paths.
Such techniques have resulted in many improvements over
the standard Dijkstra’s algorithm [6], and may also be used
to minimize the overall I/O costs incurred by the graph
search for very large, external-memory graph datasets [10,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 37th International Conference on Very Large Data Bases,
August 29th - September 3rd 2011, Seattle, Washington.
Proceedings of the VLDB Endowment, Vol. 4, No. 2
Copyright 2010 VLDB Endowment 2150-8097/10/11... $ 10.00.

15]. However, focus thus far has been mostly on static short-
est paths with no constraints.

In this research, we focus on a variant of shortest path
queries in which dynamic constraints may be placed upon
the type of edges which may appear on a valid shortest path.
For example, the shortest path from Irvine, CA to Riverside,
CA travels along State Route 261, which is a local toll road
through this area. However, consider the case where the
traveler does not wish to pay the toll fee, and would there-
fore rather find the shortest path from Irvine to Riverside
that actually avoids all toll roads. As yet another exam-
ple, trucks delivering certain hazardous materials may not
be allowed to cross over some types of roadways, such as
bridges or railroad crossings, due to the public health and
safety risks of any potential accidents. Therefore, this query
type can be seen to have practical applications in both per-
sonalized location-based services, as well as in many logistics
and commercial transportation scenarios. Making this query
highly efficient on real-world, large-scale graphs, such as the
road network of the continental United States, is therefore
crucial to effectively supporting such practical applications.

1.1 Related Work
In recent years, hierarchical graph indexing techniques

have been shown to be some of the most time- and space-
efficient approaches towards indexing graphs for shortest
path computations [8, 15, 16, 4, 13, 14, 12]. Hierarchi-
cal techniques generally involve some classification of the
vertices/edges within the graph into mutually-exclusive, or-
dered levels of hierarchy, based on some notion of impor-
tance within the graph structure. Shortest path queries
carried out on a hierarchical graph index typically prefer
searching towards higher (i.e., more important) levels of the
graph hierarchy, while progressively ignoring lower (i.e., less
important) levels of the hierarchy, in order to more effec-
tively reduce the overall search space explored by the query.

Schultes and Sanders [16] have previously explored a vari-
ant of their hierarchical indexing techniques designed to sup-
port dynamic changes in graph edge weights or cost func-
tions. However, support for this dynamic approach requires
either explicit recomputation of the graph index online as
the weights (or cost functions) change or the query algo-
rithm must make increasingly limited use of the information
available in the static graph index based on the dynamic
changes.

Yet another practical graph indexing approach is the goal-
directed approach of the ALT algorithm [9, 10]. The ALT
algorithm is based primarily on the concepts of A* search
[11], in which the search from a source node is “directed”

69

towards the target node by the use of a potential function to
estimate the shortest path cost to the target. The ALT algo-
rithm allows preprocessing in which a set of so-called land-
mark nodes is selected from the graph and the shortest path
is computed for each landmark node to/from all other nodes
in the graph. Using properties of the triangle inequality de-
rived from the costs to/from all landmark nodes, a highly
efficient potential function can be constructed, thus greatly
reducing the resulting search space. This technique has been
further studied within the context of dynamic graphs in [5],
and it can be shown that the potential functions from the
original landmark preprocessing remain correct for all short-
est paths as long as the edge weights can only increase in a
dynamic scenario.

In the context of our own constrained shortest path query
presented here, the idea of dynamically restricting an edge
from being allowed in the search for a particular query can
be seen as equivalent to simply increasing the weight of that
edge to infinity for the lifetime of the query. Thus, the ALT
technique is the only existing indexing technique directly
applicable to our query type without requiring additional or
specialized preprocessing.

1.2 Our Contributions
To the best of our knowledge, this is the first work to

address this practical variant of shortest path query. In
particular, our contributions can be summarized as follows.
We formalize this problem as a restricted class of language
constrained shortest paths, thus tying it to the existing lit-
erature and giving this new problem some relative context.

To efficiently support this type of dynamically constrained
shortest path query, we detail a practical and efficient ap-
proach to extend the hierarchical graph indexing technique
known as Contraction Hierarchies [8, 7]. Given implicit
knowledge of the range of possible constraints for short-
est path queries on a graph, we propose to incorporate this
knowledge directly into the graph index construction to avoid
the overhead of reconstructing the index for each possible
constraint scenario at query time.

Using one of the largest commercial real-world road net-
work datasets, we present experimental results with im-
provements of over 3 orders of magnitude compared to the
näıve adaptation of the standard Dijkstra’s algorithm1 to
support this query type. We also show an improvement of
over 2 orders of magnitude compared to the dynamic ALT
algorithm examined in [5].

The remainder of the paper is organized as follows. In Sec-
tion 2, we present the concept of constraints on the allowable
edges for a given shortest path query as a specific variant
of language constrained shortest paths. Section 3 presents
an overview of Contraction Hierarchies. Section 4 extends
this technique with the proposed algorithms for constructing
and querying the hierarchical graph index to support these
constraints for shortest path queries. Section 5 presents our
experimental analysis of this technique. Finally, Section 6
concludes the paper with future research.

2. LANGUAGE CONSTRAINED SHORTEST
PATHS

Language constrained shortest paths [3] are shortest paths
whose edge labels must satisfy some formal language con-

1We refer here to the more efficient bidirectional version.

straint over a fixed alphabet Σ. We define this concept more
formally as follows. Let G = (V, E, w, Σ, `) be a directed
graph, where V is the set of vertices in G, E is the set of
edges in G, w : E → R+ is a function mapping edges in G to
a positive, real-valued weight, Σ is a finite alphabet used for
labeling of edges in G, and ` : E → Σ is a function mapping
edges in G to a label in Σ.

Let Ps,t = 〈e1, e2, · · · , ek〉 be any path in G from some ver-
tex s ∈ V to some vertex t ∈ V , such that e1 = (s, v1) ∈ E,
ek = (vk−1, t) ∈ E, and for 1 < i < k, ei = (vi−1, vi) ∈ E.
Let w(Ps,t) =

P
1≤i≤k w(ei) be the total weight of all edges

in Ps,t. Let `(Ps,t) = `(e1)`(e2) · · · `(ek) be the concate-
nation of the labels of all edges in Ps,t. Given any formal
language L ⊆ Σ∗, a language constrained shortest path is a
path P ′

s,t in G such that `(P ′
s,t) ∈ L and ∀ Ps,t in G where

`(Ps,t) ∈ L, w(P ′
s,t) ≤ w(Ps,t).

The Regular Language Constrained Shortest Paths (RLC-
SP) problem is a basic variant of language constrained short-
est paths where the constraint language L must be a regu-
lar language. In [3, 1], Barrett et al. show that RLCSP is
solvable in polynomial time by performing a shortest path
search in the product graph of the original graph and the
non-deterministic finite automaton (NFA) graph represent-
ing the specified regular language.

The Linear Regular Expression (LRE) constrained short-
est paths problem [2] is a variation of RLCSP in which the
regular expressions representing the constraint-language L
must be of a specific form related to a restricted subclass
of regular languages. In particular, linear regular expres-
sions must be of the form x+

1 x+
2 · · ·x

+
k , where for 1 ≤ i ≤ k,

xi ∈ Σ, and x+
i = xix

∗
i .

LRE is presented primarily as a means of expressing modal
constraints on real-world transportation networks, where a
traveler knows the exact modes of travel (i.e., labels) they
wish to consider and the exact order in which they wish to
travel through these modes. One drawback to this approach
is that such information may not always be known by the
traveler in advance. For example, the traveler may not know
the best order of modes to take in their trip; however, they
are still likely to know exactly which modes they are ulti-
mately willing to take (as well as those modes which they
are unwilling to take). Therefore, we present a new vari-
ant of language constrained shortest paths (below) designed
specifically to support this more flexible scenario.

2.1 Kleene Language Constrained Shortest
Paths

We present the Kleene Language Constrained Shortest Pa-
ths (KLCSP) problem as a variant of language-constrained
shortest paths based on another (simpler) subclass of regular
languages which we shall call here the Kleene languages.

A Kleene language may be defined in this context as the
Kleene closure of any subset of Σ. More formally, ∀A ⊆ Σ,
L(A∗) defines a Kleene language over alphabet A. Note that
the subset alphabet A merely defines the set of allowable
labels that can appear on a valid shortest path for a KLCSP
problem. However, unlike LRE, the labels in A are not
required to appear on a shortest path for a KLCSP problem
and the sequence of the labels of such a path is irrelevant.
Additionally, for any Kleene language over A ⊆ Σ, there is
an implicitly defined subset of restricted labels R = Σ \ A,
such that no labels in R may appear on any valid KLCSP
solution. A Kleene language over A ⊆ Σ may therefore

70

be equivalently defined simply by specifying the set of such
restricted labels, R, where A = Σ \R. Given this definition,
the KLCSP problem is designed to support the specification
of language constraints on the allowed (restricted) set of
labels which may (not) appear over a given shortest path, in
any permutation. It is considered more common in practice
to specify this constraint as the set of restricted labels, R,
so we will adopt this approach for the remainder of this
document.

For example, consider a transportation network consist-
ing of labels Σ = {l, h, i, t, f}, which represent local roads,
highways, interstates, toll roads, and ferries, respectively.
A traveler may wish to find the shortest path between two
locations in the network that avoids both toll roads and fer-
ries. A Kleene language supporting this constraint could be
defined as L((Σ \ {t, f})∗).

The practical applications of KLCSP are also not restricted
merely to modal constraints on a shortest path query. A la-
bel in Σ can correspond to any arbitrary predicate condition
associated with the edges of the graph. In later sections deal-
ing with the graph index construction, we must extend the
notion of edge labels to include support for multiple labels
per edge. This also proves highly useful in scenarios where
a given edge can support multiple such predicate conditions
simultaneously.

In order to support this, we redefine the function ` to
support multiple labels per edge as follows: ` : E → P(Σ)
is the labeling function mapping edges to a set of labels in
Σ (where P(Σ) denotes the power set of Σ). Since this new
function can now map a given edge to multiple potential
labels, we must also redefine what it means for a path Ps,t

to be valid for a given Kleene language constraint. We say
that an R-restricted path is any path Ps,t = 〈e1, e2, · · · , ek〉,
such that, for 1 ≤ i ≤ k, `(ei) ∩ R = ∅ (i.e., the path
avoids all restricted labels in R). We denote the shortest
R-restricted path from s ∈ V to t ∈ V as P R

s,t.
Unlike the algorithms for RLCSP and LRE, which require

a search through a product graph, this simple subclass of
regular languages allows for a much more efficient optimiza-
tion of the constrained shortest path search. In particu-
lar, we need now only verify that a given edge’s labels do
not belong to the restricted subset of labels, as indicated
by R, before relaxing the edge in the search. We present
the pseudocode for solving the KLCSP problem using a
straightforward adaptation of Dijkstra’s algorithm in Algo-
rithm 1. Note that a similar bidirectional search can also be
performed instead of the unidirectional search presented in
this pseudocode. We present the unidirectional variant here
merely for simplicity and greater ease of understanding.

3. CONTRACTION HIERARCHIES (CH)
CH [8, 7] have been proposed as an efficient graph in-

dexing technique for supporting static point-to-point short-
est path queries. The primary idea of CH is to establish
some absolute ordering of the vertices in the graph (i.e., the
ordering defines a bijective function φ : V → {1, ..., |V |})
with respect to some notion of general, relative importance.
Given such an ordering, preprocessing proceeds by “con-
tracting” one vertex at a time, in increasing order of impor-
tance. When a vertex, v, is contracted, it is removed from
the current graph “in such a way that shortest paths in the
remaining...[sub]graph are preserved” [8]. In particular, for
any pair of remaining vertices, u and w, adjacent to v in the

Algorithm 1 KLCSP-Dijkstra(G, s, t, R)

Input: Graph G = (V, E, w, Σ, `), s, t ∈ V , restricted alpha-
bet R ⊆ Σ
Output: Cost of shortest path P R

s,t

1: PQ← ∅
2: for all v ∈ V do
3: d[v]←∞
4: end for
5: d[s]← 0
6: PQ.Insert(s, d[s])
7: while ¬PQ.Empty() do
8: u← PQ.ExtractMin()
9: if u = t then

10: return d[t]
11: end if
12: for all e = (u, v) ∈ E do
13: if `(e) ∩R = ∅ ∧ d[u] + w(e) < d[v] then
14: d[v]← d[u] + w(e)
15: if v /∈ PQ then
16: PQ.Insert(v, d[v])
17: else
18: PQ.DecreaseKey(v, d[v])
19: end if
20: end if
21: end for
22: end while
23: return ∞

original graph whose only shortest u-w path is 〈u, v, w〉, a
so-called shortcut edge (u, w) must be added with the weight
of the original shortest path cost through v (see Figure 1 for
an example). However, if there is an equivalent- or lesser-
cost path from u to w other than 〈u, v, w〉, then no such
shortcut edge is needed. Such a path is called a witness
path. In order to detect witness paths, a local search from
all nodes u, such that (u, v) ∈ E and φ(u) > φ(v), to all
nodes w, such that (v, w) ∈ E and φ(v) < φ(w), is carried
out to determine if a (u, w) shortcut edge is necessary.

(7)

(4)

(3
)

(3
)

(2)

(3
)

v

u

w

x

y

Figure 1: Contracting node v. Edges are labeled
with their weights. The shortcut edge is represented
with a dashed line.

Note that the number of shortcut edges added when con-
tracting a graph is heavily dependent on the given ordering.
Therefore, establishing a good ordering is one of the most
crucial aspects of this methodology. In [8], Geisberger et
al. establish several metrics to be associated with a given
node that can help in determining the overall priority of
that node in the ordering. In this context, vertex order-

71

ing is directly integrated into the contraction phase by first
simulating the contraction of a given node to determine its
resulting priority terms, and ordering the nodes in a priority
queue based on a linear combination of these terms. Some
of these metrics include: the difference between the num-
ber of shortcut edges added and the number of adjacent
edges removed when contracting a node (edge difference),
the number of neighbors of a node that have already been
contracted (contracted neighbors), and the number of orig-
inal edges represented by any new shortcuts added when
contracting a node (original edges). The interested reader
is referred to [8, 7] for a more exhaustive list and greater
details on each priority term considered. At each iteration,
the node with minimum priority value is removed from the
priority queue, contracted, and the priority values of all of
its neighboring vertices are updated for the next iteration.

Once the set of shortcut edges, E′, has been established
for a given ordering, shortest path queries may then be car-
ried out using a bidirectional Dijkstra search variant which
performs a simultaneous forward search in the upward graph
G↑ = (V, E↑), where E↑ = {(v, w) ∈ E ∪ E′ | φ(v) < φ(w)},
and backward search2 in the downward graph G↓ = (V, E↓),
where E↓ = {(u, v) ∈ E ∪ E′ | φ(u) > φ(v)}. A tentative
shortest path cost is maintained and is updated only when
the two search frontiers meet to form a shorter path. The
search in a given direction may be aborted once the mini-
mum key for the priority queue in that direction exceeds the
cost of the best tentative path seen so far. Once both search
directions are finished, the best path seen thus far represents
the shortest path cost. An illustration of this bidirectional
search is given in Figure 2.

s t

GG

Figure 2: CH bidirectional search query. The re-
sulting shortest path is indicated by the thick lines.

As with any graph search algorithm, the efficiency of the
search process is directly proportional to the number of
nodes and edges explored during the search. The effective-
ness of the CH search technique therefore comes from the
use of the newly-added shortcut edges, which allow the Di-
jkstra search to effectively bypass irrelevant nodes during
the search, without invalidating correctness, thus resulting
in a greatly-reduced search space (and therefore, better run-
time), as compared to the standard Dijkstra search on the
original graph.

4. CONTRACTION HIERARCHIES WITH
LABEL RESTRICTIONS (CHLR)

Despite the näıve adaptation of Dijkstra’s algorithm to
support the Kleene language constrained shortest paths, as

2Backward search in a graph G = (V, E) is the equivalent
of performing a standard (i.e., forward) search in the graph
Ḡ = (V, Ē), where Ē = {(v, u) | (u, v) ∈ E}.

presented in Algorithm 1, this variation is still prohibitively
slow on large graph datasets, as will be demonstrated later
in our experimental results section. We therefore present the
first enhancements to the hierarchical graph indexing con-
cepts of Contraction Hierarchies to support KLCSP prob-
lems as follows. We start with a brief overview of the ex-
isting limitations of Contraction Hierarchies for solving this
particular problem below.

4.1 Limitations of CH
In order to showcase the limitations of CH for Kleene lan-

guage constrained shortest paths, let us consider a simple ex-
ample graph with label alphabet Σ = {r, g, b}, representing
the colors red, green, and blue, respectively. This example
graph is illustrated in Figure 3, where the edges have been
colored according to their respective labels. In this scenario,
when node v is contracted, a local search will be performed
to find a potential witness path from node u to node w in the
graph induced by the set of nodes “higher” in the hierarchy
than node v (e.g., nodes u, w, x, and y). This local search
will find a witness path, 〈u, x, y, w〉, with cost equal to 8,
which happens to be less than the cost of the path 〈u, v, w〉,
which is 10. In this case, no shortcut will be added between
nodes u and w during the pre-processing. However, if we
later wish to perform a Kleene language constrained short-
est path query from u to w, in which we restrict the color
red from our shortest path (i.e., our language constraint is
L((Σ \ {r})∗)), then the bidirectional search will be unable
to find any such path between u and w (since there are no
valid shortcuts between u and w and the edge (x, y) will be
invalid based on its red label), even though there exists a
valid shortest path that avoids the color red in this graph:
the path 〈u, v, w〉 with cost 10.

One näıve solution to this problem would be to establish
a separate graph index for all possible subsets of the label
alphabet Σ, and then use the appropriate index based on the
incoming query constraints R. However, this is prohibitive,
and would require the construction and maintenance of 2|Σ|

separate index datasets. Therefore, in the following sections,
we propose methods to extend the concepts of Contraction
Hierarchies to properly support any Kleene language con-
straints, and we prove the correctness of this approach, as
well as providing experimental evidence in favor of this ap-
proach over other existing techniques (e.g., ALT).

(?)

(6,{g})

(4
,{b
})

(3
,{
b}
)

(2,{r})

(3
,{b
})

v

u

w

x

y

Figure 3: Contracting a labeled graph. Each edge,
e, is labeled as (w(e), `(e)).

4.2 CHLR Index Construction
The revised contraction algorithm for graph index con-

struction (shown in Algorithm 2) works as follows. The

72

Algorithm 2 KLCSP-Contraction(G, φ)

Input: Graph G = (V, E, w, Σ, `) and bijective node order
function φ : V → {1, ..., |V |}
Output: Augmented graph G′ = (V, E ∪ E′, w, Σ, `), where
E′ represents newly-added shortcut edges

1: G′ ← G
2: E′ ← ∅
3: for all v ∈ V ordered by φ do
4: for all e↓ = (u, v) ∈ E ∪ E′ ordered by w(e↓) :

φ(u) > φ(v) do
5: for all e↑ = (v, w) ∈ E ∪ E′ ordered by w(e↑) :

φ(v) < φ(w) ∧ w 6= u do
6: G′

v ← G′[{z ∈ V | φ(v) < φ(z)}]
7: R← Σ \ {`(e↓) ∪ `(e↑)}
8: shortcutCost← w(e↓) + w(e↑)
9: witnessCost← KLCSP-Dijkstra(G′

v, u, w, R)
10: if shortcutCost < witnessCost then
11: e′ ← (u, w)
12: w(e′)← shortcutCost
13: `(e′)← {`(e↓) ∪ `(e↑)}
14: E′ ← E′ ∪ {e′}
15: G′ ← G′ ∪ E′

16: end if
17: end for
18: end for
19: end for
20: return G′

algorithm processes each node v ∈ V in the order defined by
φ (which, for simplicity, we may assume is pre-defined). For
each such node v, the algorithm considers all possible pairs of
incoming edges e↓ = (u, v) and outgoing edges e↑ = (v, w),
such that both u and w occur after v in the ordering de-
fined by φ (i.e., they occur “higher” in the hierarchy). For
each such pair of edges, the algorithm performs a KLCSP-
Dijkstra search in the subgraph defined by G′

v (the subgraph
of G′ induced by nodes with “higher” hierarchy than v), us-
ing the set of restricted labels, R, defined to be the set of
labels “avoided” (or not supported) by both e↓ and e↑. If
the KLCSP-Dijkstra search is able to find an equivalent- or
lesser-cost path than the path 〈u, v, w〉, which also avoids the
same set of restricted labels avoided by both e↓ and e↑, then
no shortcut edge is necessary (since there can be no possible
constraint scenario for which the path 〈u, v, w〉 is required).
Edges are processed in order of increasing weight (see Lines
4 and 5) to ensure that the total number of shortcut edges
constructed by this process is minimal for the given ordering
φ. See the appendix for a formal proof of both correctness
and minimality.

4.2.1 Multi-Edge Support
One important aspect of the enhancements to the graph

contraction algorithm shown above is that our graph index
must now support multi-edges (i.e., parallel edges) due to
the potential for multiple possible paths between a given
pair of nodes in the graph, depending upon the set of re-
stricted labels chosen for the query. For example, in the
graph illustrated in Figure 4, if the nodes are contracted in
order from bottom to top, we must now insert two separate
shortcut edges between nodes u and w: edge e is neces-
sary when contracting node v and edge e′ is necessary when
contracting node v′. Note that, in this particular case, we

cannot simply replace one shortcut edge with the other when
added, since they might both be necessary for ensuring cor-
rectness of the resulting shortest paths, depending upon the
set of restricted labels. In particular, if the restricted label
set is R = {r, b}, then the shortest path between u and w
will make use of the shortcut edge e, giving a cost of 10 and a
final (expanded) path of 〈u, v, w〉. However, if the restricted
label set is R = {r, g}, then the shortest path between u and
w will make use of the shortcut edge e′, giving a cost of 12
and a final (expanded) path of 〈u, v′, w〉.

(7,{b
})

(5
,{b
})

v'

(6,{g})

(4
,{g
})

(3
,{
b}
)

(2,{r})

(3
,{b
})

v

u

w

x

y

e (10,{g})
e' (12,{b})

Figure 4: Multi-edge example.

4.3 CHLR Index Queries
Once the CHLR hierarchy has been established with the

shortcut edge set, E′, shortest path queries for any given
restricted label set, R ⊆ Σ, may then be carried out as
follows. The search algorithm employed is the same bidirec-
tional Dijkstra search variant as is used for the static CH
query algorithm (described in Section 3). However, we must
now further augment the resulting upward and downward
search graphs explored for a given query, respective of R.
We redefine the upward search graph as G↑ = (V, E↑), where
E↑ = {e = (v, w) ∈ E ∪ E′ | φ(v) < φ(w) ∧ `(e) ∩ R = ∅},
and the downward graph as G↓ = (V, E↓), where E↓ = {e =
(u, v) ∈ E ∪ E′ | φ(u) > φ(v) ∧ `(e) ∩ R = ∅}. The CHLR
query will now explore only those edges whose label sets are
valid for the given query constraints.

4.4 Optimizations
As indicated in the KLCSP-Contraction index construc-

tion algorithm, during the contraction of a given node v,
where I↓v = {(u, v) ∈ E ∪ E′ | φ(u) > φ(v)} and O↑

v =
{(v, w) ∈ E ∪ E′ | φ(v) < φ(w)}, the algorithm performs a
total of |I↓v | · |O↑

v | calls to KLCSP-Dijkstra3. While correct
and minimal (for a given ordering φ), the overall efficiency
of the contraction of v can be improved by instead perform-
ing only a single local search from the source, u, of each
incoming edge e↓ = (u, v) ∈ I↓v until all nodes in the set
W = {w ∈ V | (v, w) ∈ O↑

v} have been settled, or until a
distance of w(e↓) + max{w(e↑) | e↑ = (v, w) ∈ O↑

v , w 6= u}
has been reached (this is similar to the approach used in
[8]). Using this approach we can set R ← Σ \ `(e↓) and
pass this restricted label set to the augmented version of
KLCSP-Dijkstra. Note that this does not affect the correct-
ness of the resulting index, since the set R that we pass to
KLCSP-Dijkstra in this case is a superset of the restricted
label set passed to the KLCSP-Dijkstra calls in the original
algorithm, for all possible pairs of incoming and outgoing

3Pairs 〈e↓ = (u, v), e↑ = (v, w)〉 where u = w are ignored.

73

edges. This means that any resulting witness paths are still
valid (i.e., they are more constrained than normal) and this
approach can only result in a superset of (potentially super-
fluous) shortcuts to that of the original approach. Therefore,
by taking this approach, we lose the property of minimal-
ity. However, initial experiments indicate that this approach
scales much better in practice.

A more complex bidirectional version of this technique is
used in [8] in which they first perform a single-hop backward
search from all nodes w ∈W to their immediate neighbors in
X = {x ∈ V | (x, w) ∈ E ∪E′, w ∈W, x 6= v}, and then per-
form the forward search from u to the target set X (instead
of W). This allows the distance bound of the forward search
to be further reduced to w(e↓) + max{w(e↑) −min{w(e) |
e = (x, w) ∈ E ∪ E′} | e↑ = (v, w) ∈ O↑

v , w 6= u}. We fur-
ther adapt this technique to our own language constrained
variant by performing the restricted forward search from u
as indicated in the paragraph above and by relaxing only
edges e = (x, w) for each node w ∈ W in the single-hop
backward search if `(e) ⊆ {`(e↓)∪ `(e↑)}, where e↑ = (v, w),
thus preserving correctness.

Additionally, we employ the technique of using hop limits
[8], in which we specify a limit on the number of hops that
the paths on our local search can take. Each local search is
aborted once the number of hops on the paths found by the
search exceeds the specified constant limit. This can greatly
speed up the local search times, but, like our other opti-
mization, may result in unnecessary shortcuts being added
during contraction. We use this optimized version of our
algorithm for all subsequent experimental results.

5. EXPERIMENTAL ANALYSIS

5.1 Environment and Implementation
All experiments were carried out on a 64-bit server ma-

chine running Linux CentOS 5.3 with 2 quad-core CPUs
clocked at 2.53 GHz with 72 GB RAM (although only one
core was used per experiment). Our implementation of the
CHLR technique is an extended implementation of the orig-
inal Contraction Hierarchies source code, written in C++,
and further detailed in [7]. Our implementation of the ALT
algorithm (used for comparison against CHLR) is based on
the algorithm described in [5]. All programs were compiled
using gcc version 4.1.2 with optimization level 3.

5.2 Test Instances
For our experiments, we used the continent-wide graph

dataset of North America (this includes only the US and
Canada), represented by a total of 21, 133, 774 nodes and
52, 523, 592 edges. 6, 779, 795 edges support one or more
labels in this dataset, with 0.21 labels per edge, on aver-
age. Table 1 offers some additional information on the 16
different real-world labels supported in the North American
graph dataset. This dataset (including labels) was derived
from NAVTEQ transportation data products, under their
permission.

5.3 Node Ordering
Our initial experiments were focused on determining a

good approach for node ordering in the context of Kleene
language constrained shortest paths. For this experiment,
we took an approach similar to that of [7], in which we con-
sidered several different ordering metrics, along with several

Table 1: Graph Label Support for North America
Label # Edges
Ferry 2,610
Toll Road 47,388
Unpaved Road 3,645,458
Private Road 1,662,314
Limited Access Road 682,396
4-Wheel-Drive-Only Road 139,284
Parking Lot Road 160,850

Hazmat Prohibited 45,950
All Vehicles Prohibited 64,414
Delivery Vehicles Prohibited 148,010
Trucks Prohibited 475,472
Taxis Prohibited 147,628
Buses Prohibited 151,272
Automobiles Prohibited 114,192
Pedestrians Prohibited 1,253,030
Through Traffic Prohibited 2,050,562

different combinations of weighted coefficients for each met-
ric tested. In particular, we considered 6 unique ordering
metrics (the first 5 of which come from [7]): edge difference,
contracted neighbors, original edges, search space depth, local
search space size, and a new priority term introduced here,
which represents the number of new multi-edges introduced
during the contraction of a node (new multi-edges).

For each metric, we defined a range of possible values for
their associated weight coefficient (e.g, 0−300), as well as an
incremental step size (e.g., 100). We then carried out exper-
iments on all possible combinations of coefficients for these
metrics, using the specified ranges and step sizes. In all,
we tested 4, 096 (i.e., 46) combinations of the 6 different or-
dering metrics on a subgraph of the North American graph,
representing the state of Virginia (with 483, 504 nodes and
1, 113, 602 edges). For each configuration of coefficient val-
ues for these 6 metrics, the graph index was constructed us-
ing that particular configuration, and then a series of 10, 000
uniform random shortest path queries were run on the index
(the same random pairs were used for each configuration for
consistency). For each pair of nodes in the set of random
test cases, we ran both a non-restricted search (i.e., no labels
were restricted; R = ∅) and a fully-restricted search (i.e., all
labels were restricted; R = Σ)4.

From these results, we calculated the product of the con-
struction time of the index and the average overall query
time (considering both the unrestricted and restricted re-
sults together), and then chose the configuration with the
smallest such product value. The smallest of these prod-
ucts can be seen as a good compromise of construction time
and query time. From these experiments, we found that a
combination of only 2 particular ordering metrics was suffi-
cient to produce the best overall results for the graphs tested
here. In particular, for all subsequent experiments carried
out here, we have chosen to use only the edge difference met-
ric, with a weighted coefficient of 100, and the original edges
metric, with a weighted coefficient of 200.

5.4 Comparative Results
In Table 2, we present the results of this approach when

applied to the full North American graph. This table com-

4This is feasible since not all edges support labels in our test
datasets.

74

pares both the preprocessing and query results of CHLR
against the bidirectional adaptation of Dijkstra’s algorithm,
as well as the ALT algorithm, constructed using 64 land-
marks (ALT-64). As with the original node ordering ex-
periments, for the queries, we take the averages of 10, 000
random unrestricted queries (where R = ∅) and 10, 000 ran-
dom restricted queries (where R = Σ). Even though the
CHLR technique requires nearly 3 times the preprocessing
time than that of ALT-64 for the North American graph,
we are able to achieve 3 orders of magnitude improvements
in both search space and query times over both the Dijkstra
algorithm and ALT-64, on average (this is due primarily
to the effectiveness of the shortcut edges in CHLR, which
greatly reduce the resulting search space, and thus, the
query times). However, as we will see in later experiments,
the overall performance of these techniques can strongly de-
pend on the chosen set of restricted labels.

Table 2: Experiments on the North American Graph
Dataset

Preprocessing Queries
Time Space # Settled Time

Technique [H:M] [B/node] Nodes [ms]
Bidir. Dijkstra 0:00 0 6,799,486 3,043.89

ALT-64 0:49 512 1,141,430 1,528.80

CHLR 2:10 62 993 2.18

5.5 Degree Limits
An adverse side effect to the fact that this new approach

must now support multi-edges is that of degree explosion
during the graph index construction. As indicated in Fig-
ure 5a, as the index construction proceeds for the North
American graph, the average degree of the remaining sub-
graph quickly grows from 10 to 271 during contraction of
the last 2% of the nodes. This degree explosion can also
be seen to have a strong impact on the overall runtime of
the index construction algorithm in practice, where, for the
North American graph, roughly 90% of the runtime was
spent contracting only the last 1% of the nodes (see Figure
5b).

In order to combat this effect, we introduce the concept
of a degree limit within the construction algorithm, in which
contraction of the remaining nodes is aborted as soon as the
average degree of the remaining nodes reaches some critical
threshold, as defined by the limit. The remaining (uncon-
tracted) nodes in the graph make up what are called the
core nodes of the graph index (a concept introduced and
explored in [13] and also in [7] for many-to-many shortest
path searches and in [4] for goal-directed routing). Once the
contraction is aborted after reaching the degree limit, then,
for all remaining nodes, v, in the core, we set φ(v) = |V | 5.
To maintain correctness of results, we then need only adjust
our search graphs as follows. We set G↑ = (V, E↑), where
E↑ = {e = (v, w) ∈ E ∪ E′ | φ(v) ≤ φ(w) ∧ `(e) ∩ R = ∅}
and G↓ = (V, E↓), where E↓ = {e = (u, v) ∈ E∪E′ | φ(u) ≥
φ(v) ∧ `(e) ∩ R = ∅} (i.e., we no longer maintain a strict
node ordering, but instead rely only on a partial ordering).
Using these search graphs, the algorithm still maintains cor-
rectness; however, searching in the core becomes more ex-

5The function φ is no longer a bijective function in this
context.

271

1

10

100

1000

0% 20% 40% 60% 80% 100%

A
ve

ra
ge

 D
e

gr
e

e
 o

f
 R

e
m

ai
n

in
g

 S
u

b
gr

ap
h

Percent of Contracted Nodes

(a) Average Degree Progression

0.00%

0.01%

0.10%

1.00%

10.00%

100.00%

0% 20% 40% 60% 80% 100%

P
e

rc
e

n
t

 o
f

 R
u

n
ti

m
e

Percent of Contracted Nodes

(b) Runtime Percentage

Figure 5: Effects of Degree Explosion During Con-
struction of the North American Graph Dataset

haustive due to the relaxed filtering.
Table 3 shows the results of our experiments over several

different degree limits on the North American graph. As
can be seen, the index construction time can be greatly re-
duced by using reasonable degree limits, without sacrificing
too much of the overall speed of any subsequent queries on
the index. Even for the smallest degree limit of 10, with
the worst query times, we are still able to outperform the
ALT-64 results from Table 2 by an order of magnitude (on
average), requiring only 6 minutes of preprocessing time.

Table 3: Degree Limit Experiments on the North
American Graph Dataset

Preprocessing Queries
Degree Time Space # Settled Time Core
Limit [H:M] [B/node] Nodes [ms] Size

10 0:06 60 238,513 130.14 252,719
20 0:13 61 59,244 40.44 64,153
30 0:18 62 28,732 25.32 30,863
40 0:23 62 16,807 17.12 17,677
50 0:29 62 11,212 11.63 11,541

100 0:57 62 3,577 4.96 3,184
200 1:43 62 1,236 2.63 498

5.6 Effects of Restriction Cardinality
Here we present experiments on the overall effects of the

number of restricted labels chosen for a given KLCSP query.
For this set of experiments, we compare the CHLR technique
against the ALT-64 technique. Since the North American

75

graph supports only 16 different labels, we perform 17 sets of
experiments, one for each possible size of the restricted label
set, |R| = 0, · · · , 16. For each of the 17 possible cardinalities
of R, we perform a set of 10, 000 uniform random shortest
path queries. For each of the random pairs of vertices in
the test set for a given cardinality, i, we choose a random
restricted label set R ⊆ Σ, such that |R| = i. The results of
this experiment are presented as a box-and-whisker plot in
Figure 6.

An interesting property emerges from our proposed CHLR
technique, as compared to ALT-64 in these experiments. In
particular, we can see that, the more restricted the shortest
path query is, the better the CHLR technique performs, in
general. Alternatively, the performance of ALT-64 actually
becomes much worse as the query becomes more restricted
(by up to an order of magnitude). The improvements in
performance of the CHLR technique as the queries become
more restricted can be attributed to the fact that more of the
shortcut edges are also now likely to be restricted, thus prun-
ing the search space even more than in the relatively unre-
stricted cases. The degradation of performance for ALT-64
is primarily due to the fact that the potential functions com-
puted during preprocessing become much weaker in general
as the dynamic constraints on the graph continue to change,
as indicated in [5].

1E-7

1E-6

1E-5

1E-4

1E-3

1E-2

1E-1

1E+0

1E+1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Q
u

e
ry

 T
im

e
 (

se
co

n
d

s)

Cardinality of Restricted Label Set

ALT-64

CHLR

Figure 6: Experiments on Restriction Cardinality

6. CONCLUSION
We have presented and formalized a new shortest path

query type as a variant of language constrained shortest path
problems. We have also successfully extended the graph in-
dexing technique known as Contraction Hierarchies to ef-
ficiently support this new dynamically constrained query
type. Experimental results on real-world graph data indi-
cate that this new technique is several orders of magnitude
better than Dijkstra’s algorithm and the ALT algorithm,
both in terms of query time and search space. Additionally,
the performance of this technique also seems to improve un-
der more heavily constrained query scenarios, making it a
perfect candidate for supporting this new query type.

While this technique has proven highly applicable on real-
world road network data, in the future, we would like to
further explore the overall robustness of our technique on
different synthetically labeled graph configurations. It is
anticipated that this will allow us to examine the proper-
ties of graph labeling which can affect the relative perfor-

mance and scalability of our proposed technique. Initial ex-
periments indicate that this technique remains practical for
graphs which exhibit high average label autocorrelation (i.e.,
local self-similarity of edge labels) and/or high average la-
bel density (i.e., average proportion of supported labels per
edge), although more thorough experimentation is needed.

Additional future work also includes extending the con-
cepts of this research to more complex edge restriction types,
such as height and weight restrictions for road networks.

7. ACKNOWLEDGEMENTS
We would like to thank R. Geisberger and P. Sanders for

providing us with their original implementation of the source
code for static Contraction Hierarchies. We would also like
to thank NAVTEQ for allowing us the use of their trans-
portation data products in our analysis. Finally, we thank
M. Chrobak for his helpful feedback. This work was partially
supported by NSF grants IIS-0705916 and IIS-0803410.

8. REFERENCES
[1] C. L. Barrett, K. Bisset, M. Holzer, G. Konjevod, M. V.

Marathe, and D. Wagner. Engineering label-constrained
shortest-path algorithms. In AAIM, pages 27–37, 2008.

[2] C. L. Barrett, K. Bisset, R. Jacob, G. Konjevod, and M. V.
Marathe. Classical and contemporary shortest path
problems in road networks: Implementation and
experimental analysis of the transims router. In ESA, pages
126–138, 2002.

[3] C. L. Barrett, R. Jacob, and M. V. Marathe.
Formal-language-constrained path problems. SIAM J.
Comput., 30(3):809–837, 2000.

[4] R. Bauer, D. Delling, P. Sanders, D. Schieferdecker,
D. Schultes, and D. Wagner. Combining hierarchical and
goal-directed speed-up techniques for Dijkstra’s algorithm.
In WEA, pages 303–318, 2008.

[5] D. Delling and D. Wagner. Landmark-based routing in
dynamic graphs. In WEA, pages 52–65, 2007.

[6] E. W. Dijkstra. A note on two problems in connexion with
graphs. Numerische Mathematik, 1:269–271, 1959.

[7] R. Geisberger. Contraction hierarchies: Faster and simpler
hierarchical routing in road networks. Master’s thesis,
Institut fur Theoretische Informatik Universitat Karlsruhe,
2008.

[8] R. Geisberger, P. Sanders, D. Schultes, and D. Delling.
Contraction hierarchies: Faster and simpler hierarchical
routing in road networks. In WEA, pages 319–333, 2008.

[9] A. V. Goldberg and C. Harrelson. Computing the shortest
path: A* search meets graph theory. In SODA, pages
156–165, 2005.

[10] A. V. Goldberg and R. F. Werneck. Computing
point-to-point shortest paths from external memory. In
ALENEX/ANALCO, pages 26–40, 2005.

[11] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis
for the heuristic determination of minimum cost paths. In
IEEE Transactions on System Science and Cybernetics,
volume 4, 1968.

[12] M. Holzer, F. Schulz, and D. Wagner. Engineering
multilevel overlay graphs for shortest-path queries. ACM
Journal of Experimental Algorithmics, 13, 2008.

[13] S. Knopp, P. Sanders, D. Schultes, F. Schulz, and
D. Wagner. Computing many-to-many shortest paths using
highway hierarchies. In ALENEX, 2007.

[14] P. Sanders and D. Schultes. Engineering highway
hierarchies. In ESA, pages 804–816, 2006.

[15] P. Sanders, D. Schultes, and C. Vetter. Mobile route
planning. In ESA, pages 732–743, 2008.

[16] D. Schultes and P. Sanders. Dynamic highway-node
routing. In WEA, pages 66–79, 2007.

76

APPENDIX
A. CORRECTNESS AND MINIMALITY

Lemma A.1. Let P R′
s,t define an R′-restricted shortest path

from s ∈ V to t ∈ V for some R′ ⊆ Σ. For any R ⊆ R′,

w(P R
s,t) ≤ w(P R′

s,t).

Proof. Suppose there exists an R-restricted shortest path

P R
s,t such that w(P R

s,t) > w(P R′
s,t). The path P R′

s,t is clearly a
valid path for the restricted label set R too, since R ⊆ R′

and, by definition, P R′
s,t must therefore avoid all restricted

labels in R as well. However, this contradicts the optimality
of P R

s,t.

Theorem A.2. Given a graph G′ = (V, E ∪ E′, w, Σ, `)
constructed by the KLCSP-Contraction algorithm, the query
algorithm is correct for any s ∈ V , t ∈ V , and R ⊆ Σ.

Proof. For consistency, we extend the original proof of
correctness presented in [7] for static Contraction Hierar-
chies to support our new language constrained variant. For
a given path Ps,t = 〈s = v0, · · · , vi, · · · , vk = t〉, let MPs,t =
{vi ∈ Ps,t | 0 < i < k, φ(vi−1) > φ(vi) < φ(vi+1)} (i.e.,
the set of all local minima in Ps,t with respect to φ). We
can classify all paths, Ps,t, in a given graph into one of two
basic forms: (1) those with MPs,t = ∅ and (2) those with
MPs,t 6= ∅.

Since the search algorithm only searches forward in the
upward graph G↑ and backward in the downward graph G↓
(i.e., φ is strictly increasing in each search direction), then
it will explore only paths of the form (1) during the search.
For any origin node s ∈ V , destination node t ∈ V , and
restricted label set R ⊆ Σ, suppose there exists a shortest
path P R

s,t of the form (2) above in the original graph. We
must now prove the claim that there must also exist an al-
ternate (and equivalent) shortest path of the form (1) above
after the KLCSP-Contraction algorithm has been run on the
graph.

Since MP R
s,t
6= ∅, let m(P R

s,t) = min{φ(v) | v ∈ MP R
s,t
}.

Let vi be the node in path P R
s,t such that φ(vi) = m(P R

s,t)
(i.e., vi is the lowest order node in MP R

s,t
). For edges ei =

(vi−1, vi) and ei+1 = (vi, vi+1) in a shortest path P R
s,t of

the form (2) above, let R′ = Σ \ {`(ei) ∪ `(ei+1)}. We first
demonstrate that R ⊆ R′.

Suppose for the sake of contradiction that R * R′. This
implies that ∃α ∈ R, such that either α ∈ `(ei) or α ∈
`(ei+1). In either case, the subpath 〈ei, ei+1〉 is invalid for
any R-restricted shortest path, contradicting the validity of
P R

s,t. Therefore, in this context, R ⊆ R′ must be true.
Next, let us consider the hypothetical scenario where we

perform a call to the KLCSP-Dijkstra search algorithm to
find an R-restricted shortest path P R

vi−1,vi+1 in the subgraph

G′
vi

= G′[{z ∈ V | φ(vi) < φ(z)}]. If w(P R
vi−1,vi+1) <

w(ei) + w(ei+1), then there exists a shorter R-restricted
path between vi−1 and vi+1 in G′

vi
(that does not include

ei or ei+1), contradicting the optimality of P R
s,t. Therefore,

w(P R
vi−1,vi+1) ≥ w(ei)+w(ei+1) must hold true. Given that

R ⊆ R′, then by Lemma A.1, we know that w(P R′
vi−1,vi+1) ≥

w(P R
vi−1,vi+1) must also hold true. This gives us w(P R′

vi−1,vi+1)

≥ w(ei) + w(ei+1). Note that R′ is exactly equal to the re-
stricted label set used in the search for a restricted witness

path during the graph index construction of the KLCSP-
Contraction algorithm when processing node vi, where e↓ =

ei and e↑ = ei+1. In the case where w(P R′
vi−1,vi+1) > w(ei)+

w(ei+1), then the KLCSP-Contraction algorithm will have
added a shortcut edge from vi−1 to vi+1 with weight w(ei)+

w(ei+1). In the case where w(P R′
vi−1,vi+1) = w(ei)+w(ei+1),

then this means that there already exists an alternate and
equivalent-cost path in the subgraph G′

vi
, defined above.

Either way, we can construct a new path P̄ R
s,t which by-

passes vi altogether (using either the shortcut or the path
between vi−1 and vi+1 in G′

vi
; since R ⊆ R′, either is valid

for R), such that w(P̄ R
s,t) = w(P R

s,t). If P̄ R
s,t is of the form

(1), then the proof is complete. If P̄ R
s,t is itself of the form

(2), then, since vi /∈ P̄ R
s,t and φ(vi) = m(P R

s,t), we know

that m(P̄ R
s,t) > m(P R

s,t), and we can apply the same argu-

ment (as above) recursively to P̄ R
s,t. Since there are only

a finite number of possible levels in φ (i.e., the function m
cannot increase indefinitely), then this recursive argument
must eventually produce an alternate path P̄ R

s,t, such that
MP̄ R

s,t
= ∅.

Therefore, for any shortest path P R
s,t of the form (2) above,

there also exists an alternate and equivalent shortest path
of the form (1) above. Since the query algorithm performs a
shortest path search amongst all and only the paths of the
form (1), then the query algorithm is correct for any s ∈ V ,
t ∈ V , and R ⊆ Σ.

Another property that we wish to discuss in this work,
which has not been previously addressed even for static Con-
traction Hierarchies, is that of edge minimality for a given
ordering φ. One might be easily tempted to believe that,
when processing edges e↓ = (u, v) and e↑ = (v, w) in arbi-
trary order, where R = Σ \ {`(e↓) ∪ `(e↑)}, if P R

u,w * G′
v

then a shortcut edge (u, w) is absolutely necessary for cor-
rectness. However, this is not always the case. Consider the
example graph in Figure 7. If we start the contraction of v
by first processing edges e↓ = (u, v) and e↑ = (v, w), then
clearly P R

u,w * G′
v (since G′

v contains only the edges (u, x)
and (y, w)). Regardless, it turns out that there is still no
need to add a (u, w) shortcut edge for this scenario (since
P R

u,w 6= 〈u, v, w〉). To demonstrate why, consider what hap-
pens if we had first processed the edges e↓ = (x, v) and
e↑ = (v, y). In this case, we would have added a shortcut
edge (x, y) with a weight of 3. If we then process edges
e↓ = (u, v) and e↑ = (v, w), P R

u,w ⊆ G′
v will be true, in

which case, no shortcut is necessary. In fact, in the ex-
treme case for this degenerate example, if we process the
pairs of edges in the order 〈e↓ = (u, v), e↑ = (v, w)〉, then
〈e↓ = (u, v), e↑ = (v, y)〉, then 〈e↓ = (x, v), e↑ = (v, w)〉,
and finally 〈e↓ = (x, v), e↑ = (v, y)〉, this will result in the
addition of 4 separate shortcut edges (one for each pair).
However, if we process these same pairs of edges in the re-
verse order of that above, we will have added only 1 short-
cut edge (x, y). Also note that we cannot simply remove
edges (u, v) or (v, w) from this graph, since they may be
necessary depending on the incoming label constraint (e.g.,

P
{b}
u,v = (u, v)).
Therefore, even in the case where P R

u,w 6= 〈u, v, w〉, if we
are not careful to process the adjacent edges in the correct
order, we may be unable to find a valid path P R

u,w ⊆ G′
v, re-

sulting in unnecessary shortcut edges. In particular, we need
a way to ensure that, when processing edges e↓ = (u, v) and

77

v

(2
,{
b
})

(3,{g})

(4
,{b
})

(1
,{
b}
)

(1
,{g
})

(1
,{g
})

u

w

x

y

Figure 7: Counter-example showing lack of
minimality when edges are considered in arbi-
trary order.

e↑ = (v, w), either P R
u,w = 〈u, v, w〉 or P R

u,w ⊆ G′
v always

holds true. The following lemma suggests that this prop-
erty will be met if we process all adjacent edges in order of
increasing weight (as shown in Algorithm 2).

Lemma A.3. Let e↓ = (u, v) and e↑ = (v, w) be the pair of
edges currently being processed by the KLCSP-Contraction
algorithm during contraction of node v ∈ G′. Either P R

u,w =

〈u, v, w〉 or P R
u,w ⊆ G′

v must hold true.

Proof. Suppose for the sake of contradiction that P R
u,w 6=

〈u, v, w〉 and P R
u,w * G′

v. Note that P R
u,w * G′

v implies that

v ∈ P R
u,w, while P R

u,w 6= 〈u, v, w〉 implies that (u, v) /∈ P R
u,w,

or (v, w) /∈ P R
u,w, or both.

Consider the case where e = (v, w) /∈ P R
u,w. Since we

know that v ∈ P R
u,w, then P R

u,w = 〈u, · · · , v, y, · · · , w〉 such

that e′ = (v, y) ∈ E ∪ E′ (i.e., if (v, w) /∈ P R
u,w and v ∈

P R
u,w, then v must reach node w through some other edge

e′ = (v, y)). This means that w(e′) < w(e), otherwise we
could construct a lesser-cost path P R

u,w that actually includes
(v, w). However, since we process all outgoing edges e↑ in or-
der of increasing weight in the construction algorithm, then
w(e′) < w(e) implies that we must have already processed
the pair 〈e↓ = (u, v), e↑ = (v, y)〉. By definition, this means
that P R

u,y ⊆ G′
v, so, using this subpath, we can construct a

path from u to w that avoids v such that P R
u,w ⊆ G′

v, lead-
ing to a contradiction. A symmetric argument holds for the
case where e = (u, v) /∈ P R

u,w, relative to the fact that we
process all incoming edges in order of increasing weight as
well.

Theorem A.4. Given a fixed node ordering function, φ,
the edge set E′ constructed by the KLCSP-Contraction al-
gorithm is minimal (i.e., there is no algorithm which can
produce a smaller set of shortcut edges, while still guaran-
teeing correctness).

Proof. Suppose there exists some algorithm which can
construct a set of shortcut edges, E′′, from the ordering
φ, such that |E′′| < |E′|, and the set E′′ is correct for
any possible restricted label set R ⊆ Σ. This means there
must exist some edge e = (u, w), such that e ∈ E′ and
e /∈ E′′. Since e ∈ E′, then by definition, there must
also exist some node v, such that φ(u) > φ(v) < φ(w),
e↓ = (u, v), e↑ = (v, w) ∈ E ∪E′, and w(e) = w(e↓)+w(e↑).
Let R = Σ \ {`(e↓) ∪ `(e↑)}. By Lemma A.3, we know
that, when processing e↓ and e↑ to contract node v, either
P R

u,w = 〈u, v, w〉 or P R
u,w ⊆ G′

v must hold true. If P R
u,w ⊆ G′

v,

then, by definition, if such a path exists, the index con-
struction algorithm would not have added a shortcut from
u to w, contradicting the fact that e ∈ E′. However, if
P R

u,w = 〈u, v, w〉, then E′′ is incorrect for the query to find

P R
u,w, since e /∈ E′′. Either case leads to a contradiction.

B. ALTERNATIVE INDEX CONSTRUCTION
Another way of looking at the previous problem suggested

by Figure 7 is that, by always omitting the junction v from
the induced subgraph G′

v, the local search will never be able
to find witness paths of the form P R

u,w = 〈u, · · · , x, v, y, · · · , w〉
such that u 6= x and/or y 6= w, resulting in the possibility of
adding (u, w) shortcuts unnecesssarily. One alternative so-
lution to that suggested above is not to omit v from G′

v, but
rather, to include v, and instead model a “turn restriction”
in the local search, in which we do not allow the local search
to perform a transition from the incoming edge (u, v) to the
outgoing edge (v, w). This will ensure that we find the best
possible path from u to w other than the path 〈u, v, w〉, in-
cluding any valid witness paths of the above form. If this
alternate path cost is less than or equivalent to the cost of
path 〈u, v, w〉, then no shortcut is needed, and both mini-
mality and correctness remain preserved.

Using this alternative approach, the order of the local
searches relative to v then becomes irrelevant, making this
methodology more efficient in practice (since we no longer
have to rely on sorting adjacent edges). However, this re-
quires a more complex redefinition of the local search algo-
rithm.

Here we present the pseudocode for these alternative local
search and index construction algorithms, as well as a brief
discussion of correctness and minimality. For the purposes of
this discussion, we shall call the new local search and index
construction algorithms KLCSP-Dijkstra-Alt and KLCSP-
Contraction-Alt, respectively.

We start with the revised local search algorithm (KLCSP-
Dijkstra-Alt). This local search algorithm behaves almost
exactly the same as before, except we now keep track of the
parent node for each node in the current shortest path tree.
We store this information in the newly added p array. This
information is used to ensure that we do not allow the local
search to make a transition from the incoming edge (s, r) to
the outgoing edge (r, t), as defined by the input parameter
constraints. This “turn restriction” is enforced in Line 13
when deciding which edges to relax from the current node
during the search. Here, the search will skip the relaxation
of the edge (u, v) if (p[u] = s) ∧ (u = r) ∧ (v = t) is true,
which indicates the restricted transition from (s, r) to (r, t).
We note, however, that this constraint alone is not sufficient
to fully guarantee that we always find the best alternate
path from s to t, other than 〈s, r, t〉.

For example, consider the graph presented in Figure 7.
Assume that we have reduced the weight of edge (u, v) in
this graph to 2. If we call KLCSP-Dijkstra-Alt to find the
shortest path from u to y other than 〈u, v, y〉, then node v
will be relaxed from parent edge (u, v) first during the search
(giving p[v] = u and d[v] = 2). By the time we relax edge
e = (x, v) in the local search, we will not be able to improve
the value d[v] at Line 15 (since d[x] + w(e) = d[v]). If we
leave p[v] = u, then we will be unable to find any valid path
from u to y, since we will ultimately restrict the relaxation
of edge (v, y) due to the transition from (u, v). However,
there is still an equivalent cost shortest path from u to y

78

other than 〈u, v, y〉: 〈u, x, v, y〉.
To ensure that we are able to find such alternate, equiv-

alent paths, we must include the additional condition at
Line 23 to always “prefer” equivalent-cost paths from node
s to node r other than the incoming edge (s, r) in the local
search, thus eliminating this problem. Note that we do not
have to add similar constraints for preferring equivalent-cost
paths from r to t other than (r, t), since the edge (r, t) will
only be relaxed if p[r] 6= s.

Algorithm 3 KLCSP-Dijkstra-Alt(G, s, r, t, R)

Input: Graph G = (V, E, w, Σ, `), s, r, t ∈ V , restricted al-
phabet R ⊆ Σ
Output: Cost of shortest path P R

s,t, such that P R
s,t 6=

〈s, r, t〉
1: PQ← ∅
2: for all v ∈ V do
3: d[v]←∞
4: p[v]← null
5: end for
6: d[s]← 0
7: PQ.Insert(s, d[s])
8: while ¬PQ.Empty() do
9: u← PQ.ExtractMin()

10: if u = t then
11: return d[t]
12: end if
13: for all e = (u, v) ∈ E : (p[u] 6= s) ∨ (u 6= r) ∨ (v 6= t)

do
14: if `(e) ∩R = ∅ then
15: if d[u] + w(e) < d[v] then
16: d[v]← d[u] + w(e)
17: p[v]← u
18: if v /∈ PQ then
19: PQ.Insert(v, d[v])
20: else
21: PQ.DecreaseKey(v, d[v])
22: end if
23: else if d[u] + w(e) = d[v] ∧ u 6= s ∧ v = r then
24: p[v]← u
25: end if
26: end if
27: end for
28: end while
29: return ∞

The index construction algorithm (KLCSP-Contraction-
Alt) is then changed to omit the ordering of the edges rel-
ative to v by weight (since this is no longer necessary, as
we will show below), as well as to include v in the induced
subgraph G′

v, and, finally, to call the new local search algo-
rithm.

For the remainder of the discussion, we must first clarify
some potentially troublesome notation. We note that, in
the context of the original KLCSP-Contraction algorithm
pseudocode, the induced subgraph G′

v is defined such that
v /∈ G′

v when contracting node v. However, in the context
of the new KLCSP-Contraction-Alt algorithm pseudocode,
we have that v ∈ G′

v. We shall refer here only to this latter
subgraph definition of G′

v.
In Lemma A.3, we showed that, by processing adjacent

edges in order of increasing weight when contracting node

Algorithm 4 KLCSP-Contraction-Alt(G, φ)

Input: Graph G = (V, E, w, Σ, `) and bijective node order
function φ : V → {1, ..., |V |}
Output: Augmented graph G′ = (V, E ∪ E′, w, Σ, `), where
E′ represents newly-added shortcut edges

1: G′ ← G
2: E′ ← ∅
3: for all v ∈ V ordered by φ do
4: for all e↓ = (u, v) ∈ E ∪ E′ : φ(u) > φ(v) do
5: for all e↑ = (v, w) ∈ E ∪ E′ : φ(v) < φ(w) ∧ w 6= u

do
6: G′

v ← G′[{z ∈ V | φ(v) ≤ φ(z)}]
7: R← Σ \ {`(e↓) ∪ `(e↑)}
8: shortcutCost← w(e↓) + w(e↑)
9: witnessCost←KLCSP-Dijkstra-Alt(G′

v, u, v, w, R)

10: if shortcutCost < witnessCost then
11: e′ ← (u, w)
12: w(e′)← shortcutCost
13: `(e′)← {`(e↓) ∪ `(e↑)}
14: E′ ← E′ ∪ {e′}
15: G′ ← G′ ∪ E′

16: end if
17: end for
18: end for
19: end for
20: return G′

v, we can guarantee that, when processing edges e↓ = (u, v)
and e↑ = (v, w), either P R

u,w = 〈u, v, w〉 or P R
u,w ⊆ G′

v \ {v}
must (already) be true. Here, we prove a slightly different
claim for the KLCSP-Contraction-Alt algorithm.

Lemma B.1. Let e↓ = (u, v) and e↑ = (v, w) be the pair of
edges currently being processed by the KLCSP-Contraction-
Alt algorithm during contraction of node v ∈ G′. Either
P R

u,w = 〈u, v, w〉 is true or P R
u,w ⊆ G′

v \ {v} will eventually
be true (specifically, by the time we are finished contracting
node v).

Proof. It suffices to consider the case where P R
u,w 6=

〈u, v, w〉 in G′
v and P R

u,w * G′
v \ {v}. This implies that

v ∈ P R
u,w, and, therefore, P R

u,w = 〈u, · · · , x, v, y, · · · , w〉 such

that u 6= x and/or y 6= w. However, since P R
x,y = 〈x, v, y〉,

then when the construction algorithm (eventually) processes
the edges e↓ = (x, v) and e↑ = (v, y), the algorithm will be
forced to add shortcut edge (x, y), by definition. Therefore,
when the contraction of v is complete, there must exist a
path P R

u,w = 〈u, · · · , x, y, · · · , w〉 ⊆ G′
v \ {v}.

Note that this property holds true even in the context of
the original KLCSP-Contraction algorithm. However, for
the original construction algorithm, we had to prove the
stronger claim that, if P R

u,w 6= 〈u, v, w〉, then P R
u,w ⊆ G′

v \
{v} must (already) be true. This is because the previous
algorithm would only avoid adding a (u, w) shortcut if this
latter condition already held. However, the new local search
algorithm is able to find witness paths of the form shown
in the above lemma (to detect that P R

u,w ⊆ G′
v \ {v} will

eventually be true), and no shortcut edge will be added in
this scenario. We now have that the KLCSP-Contraction
algorithm and the KLCSP-Contraction-Alt algorithm will
both only add a shortcut edge (u, w) if P R

u,w = 〈u, v, w〉
(and this is the only shortest path) when processing edges

79

e↓ and e↑ (based on the properties of Lemmas A.3 and B.1,
respectively). Therefore, they will generate the exact same
shortcut edge set for a given ordering φ. Correctness and
minimality of the KLCSP-Contraction-Alt algorithm thus
follows from equivalence.

C. ADDITIONAL EXPERIMENTS
In this section, we present additional experiments on sev-

eral large, statewide graphs, with different overall topologies
and label distributions (based on the same 16 available la-
bels presented in the earlier Experiments section). This is
intended to further showcase the CHLR technique’s general
applicability across a range of large, relatively-diverse, real-
world road networks. In Table 4, we present the datasets
tested here, including their respective sizes.

Table 4: Statewide Graph Datasets
Name # Nodes # Edges

Alabama 405,205 988,040
California 1,478,976 3,623,111
Georgia 640,455 1,542,577

Louisiana 330,250 805,565
New York 624,220 1,536,789

North Carolina 687,648 1,609,475
Pennsylvania 718,318 1,805,931

South Carolina 381,349 929,420
Virginia 483,504 1,113,602

For each of these statewide graphs, we have constructed
the CHLR index and performed 10,000 random unrestricted
(R = ∅) queries and 10,000 random restricted (R = Σ)
queries. The index construction times and data storage over-
head for each graph are presented in Table 5, along with the
average query search space size and runtimes.

Table 5: Experiments on the Statewide Graph
Datasets

Preprocessing Queries
Time Space # Settled Time

Dataset [H:M:S] [B/node] Nodes [ms]
Alabama 0:00:18 59 374 0.215
California 0:02:16 61 369 0.295
Georgia 0:00:37 57 632 0.42

Louisiana 0:00:16 61 255 0.135
New York 0:01:06 66 453 0.34

North Carolina 0:00:44 54 425 0.305
Pennsylvania 0:01:07 64 507 0.395

South Carolina 0:00:13 57 371 0.175
Virginia 0:00:24 56 305 0.185

As can be seen from these results, the overall performance
metrics remain very efficient across each of these separate
graphs. Despite the variable differences in some of the met-
rics shown here for each graph (which arise due to differences
in graph topologies, edge costs, and label distributions),
the results suggest that the CHLR technique performs quite
successfully across all of these diverse, real-world datasets.
Specifically, preprocessing times on the order of minutes and
sub-millisecond query times for such large graphs are con-
sidered highly-effective and practical for any real-world ap-
plications.

However, a more thorough analysis is still required to fur-
ther assess the actual effects that different graph topologies,
edge costs, and label distributions and densities can have on
the resulting graph index construction for CHLR. As indi-
cated in the Conclusion section of this paper, a reasonable
next step in this assessment would be to carry out more rig-
orous experiments on different synthetically-labeled graph
datasets, in order to simulate the range of possible labelings
for a given graph topology.

80

