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Department of Computer Science, Ludwig-Maximilians-Universität München
{bernecker,emrich,kriegel,renz,zankl,zuefle}@dbs.ifi.lmu.de

ABSTRACT
Given a query object q, a reverse nearest neighbor (RNN) query
in a common certain database returns the objects having q as their
nearest neighbor. A new challenge for databases is dealing with
uncertain objects. In this paper we consider probabilistic reverse
nearest neighbor (PRNN) queries, which return the uncertain ob-
jects having the query object as nearest neighbor with a sufficiently
high probability. We propose an algorithm for efficiently answer-
ing PRNN queries using new pruning mechanisms taking distance
dependencies into account. We compare our algorithm to state-of-
the-art approaches recently proposed. Our experimental evaluation
shows that our approach is able to significantly outperform previ-
ous approaches. In addition, we show how our approach can easily
be extended to PRkNN (where k > 1) query processing for which
there is currently no efficient solution.

1. INTRODUCTION
A Reverse k-Nearest Neighbor (RkNN) query retrieves all ob-

jects having a given query object as one of their k nearest neigh-
bors. The RkNN query processing has been studied extensively
on certain data [16, 25, 26]. However, due to the immense num-
ber of applications dealing with uncertain data, novel solutions to
cope with uncertain objects are required. The main challenge here
is that the event that an object belongs to an RkNN result set, is
no longer a predicate, but a random variable that may be true with
some probability. In this paper, we study the problem of prob-
abilistic reverse k-nearest neighbor (PRkNN) search in uncertain
databases. A PRkNN query returns the set of objects having a suf-
ficiently high probability to be the reverse k-nearest neighbor of a
query object. Let us note that the query object can be uncertain as
well. Traditional methods as proposed in [25, 26] do not qualify
for uncertain objects, since an uncertain object – instead of being
a single point in a multi-dimensional space – is a random variable
defined by the probability distribution over the distance space. Ac-
cording to the possible worlds model [1], an uncertain database can
be viewed as a set of possible database instances (worlds), to which
traditional pruning methods can be applied to. Since the number of
possible worlds is exponential in the number of objects, we need
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Figure 1: Uncertain object example: user ratings.

special methods to avoid consideration of all possible worlds.
There is a wide field of applications for PRNN queries (k=1),

e.g. decision support, marketing, location-based services among
others [9, 20]. For instance, consider a movie recommendation
system that reports a list of movies that are similar to other movies
that a user likes. What a user likes is however a very subjective
variable that depends on user-specific preferences which cannot be
measured. Therefore, each movie record is assumed to be associ-
ated with a set of user reviews, each consisting of a set of attribute
values. Examples of such attributes are classification of the genre,
humoristic value and suspense. An example for two such records
is given in Figure 1. Thus, each movie record is represented by
multiple records from different users. Differences between records
of the same movie reflect the uncertainty in the user ratings. The
advantage of using this uncertain data instead of simply using the
average user recommendation of each movie record is shown by the
following example: Consider a movie like “Monty Python’s The
Life of Brian” [8]: Many users will rate this movie as extremely
funny. However, since this movie is based on a rather black sense
of humor, some users may rate this movie as absolutely not funny.
Thus, this movie would have an average of “moderately funny” and
would result in a very large distance to other funny movies. Thus,
this movie would never be recommended to users purchasing funny
movies, even though there is a high probability that a user looking
for funny movies may indeed be interested in this movie.

In this paper, we first propose novel efficient methods for the
PRNN (PRkNN with k = 1) query that outperforms the latest state-
of-the-art solutions and then show how this approach can be ex-
tended to efficiently answer PRkNN queries (for k ≥ 1) as a first
solution of this problem. The contributions of this paper are:

• We propose a general framework for PRNN query algorithms
and show how the two state-of-the-art approaches fit into it.

• By means of a recently proposed spatial pruning criterion
[14] we derive an efficient probabilistic pruning filter crite-
rion. This criterion is shown to be correct in accordance the
possible worlds semantics as it treats inherent distance de-
pendencies in a correct way.
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Figure 2: Examples for RNN and PRNN.

• We show how the new techniques for spatial pruning, proba-
bilistic pruning and verification are combined to obtain an ef-
ficient PRNN algorithm. Additionally we show how this al-
gorithm can be extended in order to answer PRkNN queries,
which is the first solution to this problem.

• For the case where the objects are given by a discrete un-
certainty model, we will show that all proposed techniques
are correct and the algorithm efficiently yields the exact re-
sult. In the continuous case, where verification cannot be per-
formed efficiently, the algorithm is able to approximate the
exact result as tight as needed and returns the error bounds.

• We experimentally show that our proposed algorithm per-
forms better than the two existing solutions under various
settings. To the best of our knowledge, this is the first com-
parison of the two existing PRNN solutions.

The rest of this paper is organized as follows: First we formally
define the problem of PRNN queries in Section 2. In Section 3, we
describe the framework for PRNN query processing. In Section 4,
we introduce novel spatial and probabilistic pruning filter criteria
on uncertain data. In Section 5 we show how to extend the PRNN
framework and algorithm to efficiently answer PRkNN queries. All
proposed techniques are experimentally evaluated in Section 6. Fi-
nally Sections 7 and 8 review related work and conclude this paper.

2. PROBLEM DEFINITION
In this section, we give a formal definition of the Probabilistic

Reverse Nearest Neighbor (PRNN) problem in uncertain databases.
Therefore, we briefly review conventional reverse nearest neighbor
queries and the uncertainty model used in this work.

DEFINITION 1. Given a set of (certain) point objects P ⊂ Rd
and a query object q ∈ Rd, a reverse nearest neighbor query
(RNNq) returns all points p ∈ P which have q as their nearest
neighbor, formally:

RNNq = {p|∀p′ ∈ P \ p : dist(p, q) ≤ dist(p, p′)},

where dist() is the Euclidean distance in Rd.

An example is illustrated in Figure 2(a). Consider the point ob-
ject set (p1−5 ∈ P ) with q as query object. Here, the result of an
RNN query would contain the objects p1 and p2.

2.1 Uncertainty Model
Following the Block-Independent Disjoint Scheme ([17]) which

is one of the most commonly used uncertainty models, we assume
the following: a probabilistic database D is given by a set of un-
certain objects D = {U1, . . . , Un} with d uncertain attributes. An
uncertain object Ui is represented by a set of d-dimensional points
u1, . . . , um reflecting all possible instances of Ui. Each instance
uj is assigned with a probability P (uj) denoting the probability
that Ui appears at uj , i.e. all instances of Ui reflect the proba-
bility distribution of Ui. The probability distributions of each two

objects are pairwise independent and the events of occurrence of
all instances u ∈ Ui are mutually exclusive. For clarity we as-
sume P (Ui) = Σmj=1uj = 1, although the proposed algorithms
can easily be adapted to the case where P (Ui) ≤ 1. A possi-
ble world W = u1, . . . , un is a set of instances containing one
instance from each object and occurring with an appearance proba-
bility of P (W ) = Πn

i=1P (ui). Let Ω denote the set of all possible
worlds, then ΣW∈ΩP (W ) = 1.

2.2 PRNN Queries in Uncertain Databases
For PRNN queries on uncertain databases the threshold param-

eter τ is introduced (cf. [9, 20]). Using τ as threshold, the user
can restrict the result set to objects which have at least a predefined
probability to be in the result in order to avoid reporting unnecessar-
ily many results that are unlikely. A probabilistic nearest neighbor
query PRNNτ

Q then returns the set of all objects Ui ∈ D where
P (Ui ∈ RNNQ) (in the following denoted by P (RNNQ(Ui)))
≥ τ . Naively, this probability can be calculated by performing a
(non-probabilistic) RNN query on each possible world:

P (RNNQ(Ui)) =
∑
W∈Ω

P (W ) · δ(RNNW
Q (Ui))

where δ(RNNW
Q (Ui)) is an indicator function that is 1 if Ui is

a reverse nearest neighbor of Q in world W and 0 otherwise. In
the example given in Figure 2(b),RNNQ(U1) holds in all possible
worlds, therefore P (RNNQ(U1)) = 1. In contrast,
P (RNNQ(U2)) = P (RNNQ(U4)) = P (RNNQ(U5)) = 0,
since there is no possible world in whichRNNQ(U2),RNNQ(U4)
or RNNQ(U5) hold, as in each possible world the nearest neigh-
bor of U2 is U1 and the nearest neighbor of U4 is U5 and vice versa.
For U3, we obtain the probability P (RNNQ(U3)) by building the
sum of the probabilities of all possible worlds where at least one of
the objects Ui (i ∈ {1, 2, 4, 5}) is closer to U3 than Q to U3. Ob-
viously, this brute-force approach taking each possible world into
account is in general not applicable because the number of possible
worlds grows exponentially with the number of involved uncertain
objects.

In order to reduce the computational overhead of such queries,
in this paper we introduce efficient filter methods used to exclude
(prune) as many objects as possible from the expensive query eval-
uation process. An objectB can be pruned if we find another object
A that is closer toB than the query objectQ. Since the event that an
uncertain object A prunes another uncertain object B with respect
to an uncertain query object Q, i.e. dist(A,B) < dist(Q,B), is
a random variable, in the following denoted by A ≺Q B, we need
the concept of probabilistic pruning.

DEFINITION 2 (PROBABILISTIC PRUNING). Given three un-
certain objects A, B and the query object Q. The probability
P (A ≺Q B) denotes the probability that A prunes B w.r.t. Q.

Naively, we can compute P (A ≺Q B) by simply adding the
probabilities of all possible worlds in whichA prunesB, exploiting
inter-object independency:

P (A ≺Q B) =
∑
ai∈A

∑
bj∈B

∑
qk∈Q

δ(ai, bj , qk)·P (ai)·P (bj)·P (qk)

(1)
where the function δ(a, b, q) returns 1 if dist(a, b) < dist(q, b)
and 0 otherwise.

The problem of this naive approach is the computational cost
of the triple-sum which is cubic in the number of instances of the
uncertain objects. The number of instances xi of an uncertain ob-
ject X may in general be large, for example if the instances are
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obtained by Monte-Carlo sampling of an unknown PDF. Another
problem is that the probability P (A ≺Q B) cannot directly be
used to derive the probability that an object B is the RNN of Q.
For two uncertain objects A1 and A2, the two events A1 ≺Q B
and A2 ≺Q B are mutually dependent because both events depend
on the assumptions made for object B (more details will be found
in Section 4.3.2). In order to keep correctness w.r.t. the possible
worlds semantics, this problem has to be taken into account.

3. PRNN ALGORITHM SKETCH
Before introducing details of our PRNN query method, we will

give a general framework for efficient PRNN query processing in
an abstract fashion.

Approximation of Objects
The probability distribution (or more specifically the uncertainty re-
gion) assigned to an uncertain object can become arbitrarily com-
plex causing expensive distance computations at query time. A
common solution to overcome this problem is to use conservative
approximations, like spheres or rectangles providing efficient dis-
tance computation in a filter step. For efficient processing, these
approximations are often organized in a hierarchical spatial index
structure like the R-tree [15].

Spatial Pruning
It is possible to (spatially) prune objects without considering their
probability distributions when using only the (spatial) approxima-
tions of the objects. Therefore, a pruning technique is needed. For
instance an object B can be pruned by an object A for a query
Q if MaxDist(A,B) < MinDist(B,Q). The used pruning
technique for uncertain objects efficiently organized by an index is
easily extendable for pruning higher-level pages of the index.

Probabilistic Pruning
Probabilistic pruning is performed for objects that cannot be pruned
spatially. In the probabilistic pruning step, the uncertainty regions
of objects are partitioned. The aim of this partitioning is to prune
more objects based on the probability threshold τ .

Verification
An object Ui which cannot be pruned by the pruning techniques is
denoted as candidate. The next step requires each candidate to be
verified, which means it has to be checked if P (RNNQ(Ui)) ≥ τ .
This involves finding all objects which affect this probability and
considering these objects in more detail. The verification step is
very expensive, since many possibilities have to be considered.

4. HIERARCHICAL PRNN PROCESSING
In this section, we propose our approach for PRNN processing

implementing the above framework in consideration of the discrete
uncertainty model. For a comparison with state-of-the-art solu-
tions, in Appendix A we show how the two existing solutions by
Cheema et al. [9] (in the following called CLWZP) and by Lian et
al. [20] (in the following called LC) are implemented according to
this framework. The complete algorithm of our PRNN query pro-
cessing approach can be found in Appendix D and in Appendix E
we show how the proposed approaches can be extended to contin-
uous uncertainty models.

4.1 Approximation
Similar to the approximation technique used for the CLWZP al-

gorithm ([9]), in order to approximate uncertain objects we use

minimum bounding boxes covering the uncertainty regions. This
approximation is mainly used for spatial pruning. For probabilistic
pruning, we need a more detailed object approximation. Therefore,
we additionally assume that each uncertainty region of an object
X ∈ D ∪ {Q} is hierarchically decomposed using a hierarchical
space partitioning scheme. Specifically, we use an R∗-tree [3] to
hierarchically organize the instances of X . In addition to the spa-
tial keys, each index entry stores the aggregated probability of all
instances in the corresponding subtree. When traversing the index
assigned to an uncertain object X in a breadth-first manner, each
level of the R*-tree provides a disjoint and complete partitioningX
of X such that each partition X ′ ∈ X contains a non-empty set of
m′ ≤ m instances {x′1, ..., x′m′} and⋃
X′∈X

= {x1, ..., xm} and ∀X ′i ∈ X , X ′j 6=i ∈ X : X ′i ∩X ′j = ∅.

An index entry representing partition X ′i contains the aggregated
probability P (X ′i) =

∑
x′

j∈X
′
i
P (x′j). Note that disjoint property

implies that any instance x ∈ X is contained in at most one parti-
tion. The rectangular approximations of the instances contained in
each R∗-tree node however may overlap.

Let us note that we have to carefully select the refinement reso-
lution since the PRNN computation is CPU-bound, as we will see
in our experiments (cf. Section 6). We obtain a good control of
this variable by using a very low R∗-tree node capacity, e.g. in our
experiments we used less than four entries per node.

To summarize, we use a memory-resident R*-tree to organize
the objects X ∈ D (global R*-Tree). The leaf entries containing
the MBRs of the objects point to the local R*-trees of the objects.
The local R*-trees are stored in a breadth-first manner, such that
the highest levels of the trees can be obtained with one single scan.

4.2 Spatial Pruning
In accordance with our framework, here we propose a spatial

pruning method that uses only the spatial keys of the uncertainty
regions of the uncertain objects without taking into account further
knowledge about the probability distribution. Our spatial pruning
approach adopts the spatial domination concepts proposed in [14]
in the context of certain data.

LEMMA 1 (COMPLETE PRUNING). LetA,B,Q be uncertain
objects with rectangular uncertainty regions, then:

d∑
i=1

max
bi∈{Bmin

i ,Bmax
i }

(MaxDist(Ai, bi)2 −MinDist(Qi, bi)2) < 0

⇒ P (A ≺Q B) = 1 (2)

where Xi (X ∈ {A,B,Q}) denotes the projection interval of the
rectangular uncertainty region of X on the ith dimension, Xmin

i

(Xmax
i ) denotes the lower (upper) bound of the interval Xi, and

MaxDist(I, p) (MinDist(I, p)) denotes the maximal (minimal) dis-
tance between a one-dimensional interval I and a one-dimensional
point p. In the following, we will use the notation A ≺2

Q B for the
predicate on the left-hand side of the implication in Equation 2.

A formal proof can be found in Appendix B.1.
An example is given in Figure 3(a), where the uncertainty re-

gions of the uncertain objects A, B and Q are depicted. In addi-
tion, the pruning region of A is shown in grey, that is the region
containing exactly the points p in space for which it holds that p
is definitely closer to all points in A than to any point in Q. Note
that the pruning regions do not have to be materialized, here we
only use them for illustration purposes. In this example, object B
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Figure 3: Visualization of different pruning techniques (a)-(c) and object decompositioning (d)-(e).

is completely contained in the pruning region of A and thus the
predicate A ≺2

Q B holds. Exploiting Equation 2, we can safely
prune B. In fact, to decide whether B is completely contained in
the pruning region we only have to apply Lemma 1.

In addition, we can use Lemma 1 to determine the objects A that
cannot prune B in any possible world:

COROLLARY 1 (COMPLETE NON-PRUNING).

P (A ≺Q B) = 0⇔ P (Q ≺A B) = 1.

PROOF. The above corollary is evident, since in any world with
instances ai ∈ A, bj ∈ B and qk ∈ Q, it holds that dist(qk, bj) <
dist(ai, bj) ⇔ ¬(dist(ai, bj) < dist(qk, bj)) due to the anti-
symmetry of <.

This corollary allows to efficiently determine if object A cannot
possibly prune B, by evaluating Q ≺2

A B using Lemma 1. An
example is given in Figure 3(b) where object B is completely con-
tained in the pruning region ofQ and thus,A cannot possibly prune
B. Consequently, we can return any object B ∈ D as a true hit, if
for all objects A ∈ D \ {B} the predicate Q ≺2

A B holds.

4.3 Probabilistic Pruning
Using the techniques proposed in the previous section, we can ef-

ficiently prune any uncertain object B ∈ D for which it holds that
there exists an uncertain object A ∈ D \ {B} such that A ≺2

Q B
holds, exploiting Lemma 1. Now, we consider the case where the
probability that A prunes B is between 0 and 1. In consideration
of the possible worlds semantics, that means that there exist worlds
in which A prunes B, but not all possible worlds satisfy this cri-
terion. An exemplary situation is given in Figure 3(c): here, the
uncertainty region of B is not completely contained in the prun-
ing region of A. Thus, there may exist instances bi ∈ B that are
not located in the pruning region of A. That in turn means, that
there may be instances ai ∈ A, bj ∈ B and qk ∈ Q such that
dist(bj , qk) < dist(bj , ai) and, thus, P (A ≺Q B) < 1.

4.3.1 Individual Object Pruning
In general, the exact computation of P (A ≺Q B) is very expen-

sive (O(m3)). In this section we show how to compute lower/upper
bounds of P (A ≺Q B) efficiently. This allows us to quickly de-
tect in a filter step whether the probability that B can be pruned is
at least 1− τ (or cannot exceed τ ) in order to prune B (or to return
B as a true hit).

The key idea is to decompose the uncertainty region of an ob-
ject X into subregions for which we know the probability that
X is located in that subregion (cf. Section 4.1). Therefore, if
P (A ≺Q B) < 1, then there may still exist subregions A′ ⊂ A,
B′ ⊂ B and Q′ ⊂ Q such that P (A′ ≺Q′ B′) = 1. Examples of
such situations are given in Figures 3(d) and 3(e). In Figure 3(d),

some partitions of the uncertain object B are pruned by the uncer-
tainty region of A. Given the total sum S of the probabilities of
all partitions of B that cannot be pruned, we can conclude that B
is an RNN of Q with a probability of at most S. In Figure 3(e),
object A is divided into two partitions A1 and A2. It can be ob-
served that B is fully contained in the pruning region of A1 but
not in the pruning region of A2. Given the probability P of A1,
we can conclude that A prunes B with a probability of at least P .
Thus, given a complete and disjoint object partitioning A, B and
Q as described in Section 4.1, we can identify triples of subregions
(A′ ∈ A, B′ ∈ B, Q′ ∈ Q) for which P (A′ ≺Q′ B′) = 1 (cf.
Equation 2) holds. Let δ(A′, B′, Q′) be the following indicator
function (which can be computed efficiently by using Lemma 1):

δ(A′, B′, Q′) =

{
1, if A′ ≺2

Q′ B′

0, else

LEMMA 2. Let A,B and Q be uncertain objects with disjoint
and complete object decompositions A,B and Q, respectively. To
derive a correct lower bound PLB(A ≺Q B) of the probability
P (A ≺Q B) thatA prunesB, we can accumulate the probabilities
of combinations of these subregions as follows:

PLB(A ≺Q B) =

∑
A′∈A,B′∈B,Q′∈Q

P (A′) · P (B′) · P (Q′) · δ(A′, B′, Q′).

A formal proof can be found in Appendix B.2.
Analogously, we can define an upper bound of

P (A ≺Q B) using the intuition of Corollary 1:

LEMMA 3. An upper bound PUB(A ≺Q B) of
P (A ≺Q B) can be derived as follows:

PUB(A ≺Q B) = 1− PLB(Q ≺A B).

Following the partitioning concept proposed in Section 4.1, we can
control the resolution and can refine the partitioning on demand.
Naturally, the more refined the object partitions are, the tighter
are the bounds that can be computed but the higher are the cor-
responding cost of deriving them. In particular, starting from the
entire MBRs of the objects, we can progressively partition them
by traversing the object instance index to iteratively derive tighter
probability bounds until a desired degree of certainty is achieved
(based on some threshold). In general, this allows us to signifi-
cantly prune the space of candidate objects. However, the RNN
probability of a given objectB cannot be straightforwardly derived
with the use of these bounds, as we will see in the following sec-
tion.
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4.3.2 Joint Object Pruning
Given the probability bounds PLB(A ≺Q B) and PUB(A ≺Q

B), the next problem is to accumulate these probabilities to ob-
tain an approximation of the probability P (RNNQ(B)) that ob-
ject B is an RNN of Q. Note that in the scope of this paper the
term “approximation of a probability” means a conservative bound
(consisting of an upper and lower bound) of the exact probability.
The problem at issue is that, though all objects are assumed to be
mutually independent, the two events A1 ≺Q B and A2 ≺Q B
are generally mutually dependent. For example, consider a case
where Q is a (certain) point and A1 and A2 are (certain) points, as
well, having the same location. B is an uncertain object such that
P (A1 ≺Q B) = P (A2 ≺Q B) = 50%. Since A1 and A2 have
the same location, it holds that A1 ≺Q B ⇔ A2 ≺Q B, i.e. if
and only if A1 prunes B, then A2 prunes B. The reason for this
dependency is that both random events depend on the positions of
B and Q.

To avoid this problem, we present a way to conservatively ap-
proximate the probability P (RNNQ(B)) while accounting for the
dependencies between the random variables Ai ≺Q B (Ai ∈ D).

4.3.3 Decomposition of Database Object Ai
Let I = {A1, ..., A|I|} denote the set of influence objects of

B, which neither completely prune B w.r.t. Q nor are completely
pruned by B.1 Only the set {A1 ≺Q B, ..., A|I| ≺Q B} of ran-
dom events has to be considered, since any object Ai for which
P (Ai ≺Q B) = 0 holds has no influence on P (RNNQ(B)), and
if there exists an object Ai for which it holds that Ai ≺2

Q B, then
we can already conclude that P (RNNQ(B)) = 0. But due to
the problem of mutual dependencies between pruning events (cf.
Section 4.3.2), here we cannot simply use the probability bounds
PLB(Ai ≺ QB) and PUB(Ai ≺ QB) (cf. Lemma 2) directly, as
this would yield incorrect results. However, we can use the obser-
vation that the objects Ai are mutually independent and each can-
didate object Ai only appears in a single random variable A1 ≺Q
B, ..., A|I| ≺Q B. Exploiting this observation, we can decom-
pose2 the objects A1, ..., A|I| only to obtain mutually independent
bounds for the probabilities P (A1 ≺Q B), ..., P (A|I| ≺Q B), as
stated by the following lemma:

LEMMA 4. If B and Q are not decomposed, i.e. if B = {B}
andQ = {Q}, then P (RNNQ(B)) is lower bounded by

PLB(RNNQ(B)) =
∏
Ai∈I

1− PUB(Ai ≺Q B).

PROOF. In a nutshell, the lemma can be proven by showing that
the probability bounds PUB(Ai ≺Q B), 1 ≤ i ≤ |I| can be
computed independently of each other, since the computation of
Ai ≺2

Q B for Ai ∈ A makes no assumptions on the positions of
objects B and Q. This independence can be shown by exploiting
that the bounds PUB(Ai ≺Q B) are using the unpartitioned ob-
jects B and Q as parameters. Due to this independence, the proba-
bility bounds can simply be multiplied to derive the joint probabil-
ity. A formal proof of this lemma is found in Appendix B.3.

An upper bound can be derived analogously:

PUB(RNNQ(B)) =
∏
Ai∈I

1− PLB(Ai ≺Q B).

1This set can be determined using the concept of partial domination
[14]. For more details see Algorithm 3.
2e.g. using the bounding boxes of the R∗-trees of the objects

In summary, we can now derive, for each uncertain candidate
objectB a lower and an upper bound of the probability thatB is an
RNN of Q. However, these bounds may still be rather loose, since
we only consider the full uncertainty region of B and Q so far,
without any decomposition. In the following section, we will show
how to obtain more accurate, still mutually independent probability
bounds based on decompositions of B and Q.

4.3.4 Decomposition of Candidate and Query Object
Since the uncertain objectsB andQ appear in each random event

Ai ≺Q B (Ai ∈ D) that has to be evaluated, we cannot split the
objects B and Q independently (cf. Section 4.3.2). Intuitively, the
reason for this dependency is that any knowledge about the random
event Ai ≺Q B may impose constraints on the position of B and
Q. However, Lemma 4 directly yields the following corollary:

COROLLARY 2. Given partitions B′ ⊆ B and Q′ ⊆ Q, then

PLB(RNNQ′(B′)) =
∏
Ai∈I

1− PUB(Ai ≺Q′ B′).

Note that the probability PLB(RNNQ′(B′)) is equal to the prob-
ability PLB(RNNQ(B)|B ∈ B′, Q ∈ Q′), where B ∈ B′, Q ∈
Q′ is a constraint to all possible worlds whereB is located in parti-
tionB′ andQ is located in partitionQ′. This allows us to individu-
ally consider the subset of possible worlds where B ∈ B′ and Q ∈
Q′ and use Lemma 2 to efficiently compute PLB(RNNQ′(B′))
and PUB(RNNQ′(B′)). This can be performed for each pair
(B′, Q′) ∈ B × Q, where B and Q denote the decompositions
of B and Q, respectively. Now, we can treat pairs of partitions
(B′, Q′) ∈ B × Q independently, since all pairs of partitions rep-
resent disjoint sets of possible worlds due to the assumption of a
disjoint partitioning. Exploiting this independency, we can derive
tighter bounds PLB(RNNQ(B)) and PUB(RNNQ(B)) for the
probability that B is an RNN of Q by computing a lower and an
upper bound of P (RNNQ′(B′)) for each (Q′ ∈ Q) and each
(B′ ∈ B) and then computing the weighted sum of these bounds
as follows:

PLB(RNNQ(B)) =∑
B′∈B,Q′∈Q

PLB(RNNQ′(B′)) · P (B′) · P (Q′). (3)

4.4 Verification
For the verification step, we perform, for each remaining can-

didate B, a probabilistic nearest neighbor query using the algo-
rithm proposed in [6] for probabilistic ranking queries (and setting
k = 1). This algorithm takes Q, B and D \ B (in particular this
set can be reduced, as shown in Appendix D) as input and returns
P (NNB(Q)) which is equivalent to P (RNNQ(B)). If this value
is above τ , then B is returned as result, otherwise it is discarded.
This algorithm avoids enumeration of all (exponentially many) pos-
sible worlds by sorting the instances of the influence objects I w.r.t.
the distance toB and performing a distance browsing on this sorted
list.

4.5 Complexity Analysis
In this section we will analyze the runtime complexity of each

part of the proposed PRNN algorithm:
Spatial Pruning: The basic spatial pruning takes each pair of

objects A,B ∈ D where A 6= B and checks whether A ≺2
Q B.

Thus the runtime is O(|D|2). In the average case, this step can
be accelerated by the use of a spatial index structure to (O(|D| ·
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log(|D))), but the worst-case runtime remains O(|D|2). The spa-
tial pruning provides us with a set of candidate objects Scnd where
each candidate Ci ∈ Scnd is associated with a set of influence ob-
jects Siifl.

Probabilistic Pruning: The probabilistic pruning step considers
each candidate object Ci separately and partitions the candidate
object, the query Q and the influence objects Siifl. Assuming a
branching factor of the spatial index of b, each object consists of at
most bdepth partitions, where depth is a parameter chosen before
query processing. The pruning relation A′ ≺2

Q′ Ci
′ is used for

each pair of partitions Q′ ∈ Q,Ci′ ∈ Ci and each partition A′ of
objects A in Siifl. This leads to a runtime of O(b2·depth · |Siifl| ·
bdepth) = O(|Siifl| · b3·depth) for each candidate Ci. In the worst
case, where |Siifl| ∈ O(|D|), |Scnd| ∈ O(|D|) and bdepth = m

this yields a total runtime of O(|D|2 ·m3), where m is the number
of instances in each object.

Verification: After the probabilistic pruning step, a smaller set
of candidates S′cnd(⊆ Scnd) remains. For each candidate Ci ∈
S′cnd verification is performed. Using the algorithm proposed in
[6], this requires to sort allm · |Siifl| instances of objects in Siifl ac-
cording to allm instances in Ci. We derive a runtime ofO(|S′cnd| ·
|Siifl| ·m2 · log(|Siifl| ·m)). In the worst case, this is in O(|D|2 ·
log(|D|), assuming m to be constant.

The parameter depth: It can be observed, that for the case
where m is large, the runtime of the probabilistic pruning step may
exceed the runtime of the verification step. In our experimental
section, we will verify this observation, and show how to choose
values for the parameter depth such that this problem is avoided.

5. PROBABILISTIC RKNN QUERIES
In this section we show how our proposed techniques can be ex-

tended to probabilistic RkNN queries. An RkNN query is defined
as follows: Given a set of (certain) points P , a query object q,
and a positive integer k, a reverse nearest neighbor query (RNNq)
returns all p ∈ P which have q in their k-nearest neighbor set,
formally ([26]): RkNNq = {p ∈ P |dist(p, q) ≤ dist(p, pk)},
where pk is the k-th nearest neighbor of p. In the context of un-
certain objects, a PRkNNτ

Q query returns the set of all objects
Ui ∈ D, for which the probability P (Ui ∈ RkNNQ) that Ui is a
RkNN of Q is at least τ .

Approximation: Analogous to the k = 1 case, we approximate
uncertain objects using MBRs and hierarchical partitioning.

Spatial Pruning: In the case where k > 1, the random event
Ai ≺Q B must hold for at least k uncertain objects Ai, 1 ≤ i ≤
|D| in order to prune candidate B. Therefore, an uncertain candi-
date object can safely be pruned if there exist at least k objects for
which the complete pruning criterion (cf. Lemma 1) holds. The
complexity for the spatial pruning step isO(|D|2) and independent
of k, since in the worst case where a candidateB cannot be pruned,
all objects may have to be considered.

Probabilistic Pruning: For probabilistic pruning, the task is to
determine for a candidate objectB, if its probability to be RkNN of
Q is definitely less than τ (at least τ ) in order to prune B (return B
as a true hit). Analogous to the k = 1 case, we can derive the fol-
lowing bounds for the probability P (A ≺Q B) that A ∈ D \ B is
closer to B than Q: a lower bound PLB(A ≺Q B) (using Lemma
2) and an upper bound PUB(A ≺Q B) (using Lemma 3). Given
these bounds, we can apply the concept of uncertain generating
functions [5] in order to compute for each 0 ≤ j < k a lower bound
PLB(#Pruners = j) and an upper bound PUB(#Pruners =
j) of the probability of the random event that for exactly j uncer-
tain objects Ai, Ai ≺Q B is true. A summary of the uncertain

generating functions technique is given in Appendix C. Bounds for
the probability of the event RkNNQ(Ui) that Ui is a RkNN of Q
can then be derived as follows:

PLB(RkNNQ(Ui)) =
∑

0≤j<k

PLB(#Pruners = j)

PUB(RkNNQ(Ui)) =
∑

0≤j<k

PUB(#Pruners = j)

An uncertain object Ui can be pruned if PUB(RkNNQ(Ui)) < τ
and returned as a true hit if PLB(RkNNQ(Ui)) > τ .

As shown in [5], the computational complexity is linear in k,
yielding a total of O(|DB|2 × k) for the probabilistic pruning.

Verification: The verification step can be performed analogously
to the k = 1 case using the algorithm proposed in [6], which has
been designed for k ≥ 1. The total complexity of this algorithm is
O(|D|2 · log(|D|) + k · |D|2).

6. EXPERIMENTS
In the experimental section, we compare our approach which we

call HP (hierarchical pruning) with the two state-of-the-art PRNN
query algorithms CLWZP [9] and LC [20]. For the implementa-
tion of CLWZP and LC we replaced R-trees by R*-trees wherever
they were used. For the global R∗-tree we use a page size of 1024
byte. For the local R∗-trees indexing the instances of an uncertain
object, we set the page size to a maximal capacity of three entries.
The page size was chosen small in order to minimize CPU-cost,
which we will see is the main bottleneck of a PRNN query. We
tested the three approaches under various parameter and data set-
tings. For each setting, we performed 100 queries and averaged
the measures. Since our experiments have been conducted against
discrete uncertain datasets, we have adapted the LC algorithm to
the discrete case for a fair comparison. The involved parameters
and their default values (bold) can be seen in Table 1. For our
experiments, we used one real-world dataset and several synthetic
datasets to show the effect of changes in dimensionality and size.
The datasets are described as follows: We generate synthetic uncer-
tain objects in the [0, 1]d space by uniformly selecting the expected
position of the objects in the space. A rectangle is generated around
the expected position with a fixed total sum of side lengths (referred
to as extent) with a default value of 0.05. By default, the extent is
distributed uniformly on the dimensions, so there is a diversity of
MBR shapes, some that are nearly cuboid, while others have a very
large extent in few dimensions only. The object instances within
the MBR are distributed uniformly by default.

As a real-world dataset, we utilize the International Ice Patrol
(IIP) Iceberg Sightings Dataset3. This data set contains informa-
tion about iceberg activity in the North Atlantic in the years 1960 to
2010. It contains the latitude and longitude values of 6216 sighted
icebergs. An uncertain object is generated for each iceberg, by
generating 100 Normal-distributed instances having a mean value
corresponding to the position of its most recent sighting at the date
31.12.2009 and a variance corresponding to the time period be-
tween this date and the sighting. To avoid extreme impact of ice-
bergs that have not been seen for decades, any instances outside a
square of extent 0.0004 centered at the mean are cut off. The in-
stances of an iceberg are Normal-distributed with a variance based
on the time since the its sighting.

The experiments were run on a Windows 7 notebook with an In-
tel Core i5 processor (2.27 GHz), 6GB RAM. Besides the following
experiments, an additional evaluation can be found in Appendix F.
3The IIP dataset is available at the National Snow and Ice Data
Center (NSIDC) web site (http://nsidc.org/data/g00807.html).
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parameter values synthetic values real
db size 2000 - 10000 6216
dimensionality 2, 3, 4, 5 2
# instances 50, 100, 200, 400 100
τ 0.1 0.2, 0.3 0.2
maxdepth 0, 1, 2, 3, 4 2
MBRextent 0.01, 0.02, 0.03, 0.04, 0.05 N/A

Table 1: Parameters and their default values.
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Figure 4: Comparison of different pruning techniques.

6.1 Spatial Pruning
The first set of experiments compares the spatial pruning tech-

niques of the three competing algorithms and the MinDist/MaxDist
based pruning (cf. Section 3) called MinMax. We generated 2000
uncertain 3-D objects uniformly distributed in the [0, 1]3 space.
Each object consists of 100 instances. 100 RNN queries were is-
sued and we compared the number of candidates which were left
after the spatial pruning step for the competing techniques. For the
experiments shown in Figure 4(a), we tested the influence of differ-
ent extensions in the dimensions of the objects. Three cases were
compared: Random (random extension in each dimension, with
fixed maximum), Equal (each dimension had the same extension =
hypercube) and Dominant (one dimension has 5 times higher ex-
tension than the others). The results show that the spatial pruning
technique from our algorithm has the highest pruning power in al-
most all settings. Only for objects equally extended in each dimen-
sion the LC-pruning is competitive. This is due to the reason that
in this case, a sphere is a tight approximation for an uncertain ob-
ject. However, in the other settings the LC-pruning yields the worst
performance. We also compared the spatial pruning techniques for
data with different dimensionality. Figure 4(b) illustrates that the
advantage of HP-pruning is stable over varying dimensionality.

6.2 I/O-Cost
Next, we investigated the number of page accesses of the three

algorithms needed on the global R*-tree (the index organizing the
uncertain object approximations). The results are shown in Fig-
ure 5(a) for synthetic data with different database size. The LC
algorithm needs by far the most page accesses which is reasonable,
due to the handicaps mentioned in Appendix A.3. The CLWZP al-
gorithm performs even slightly better than the HP algorithm. The
reason is mainly founded by the step to get the influence objects
for each candidate. CLWZP here performs a search based on all
instances of a candidate which produces a tighter bound than only
using the approximation of the candidate (as performed in HP). The
drawback of this tighter bound is a much higher computational ef-
fort, which can be seen in the experiments in the next section. In
summary, even for a small page size of 1 kB, the main bottleneck
of a probabilistic RNN query are the CPU-cost, not the I/O-cost.

6.3 CPU-Cost
The Parameter depth: The main tuning parameter of the HP

algorithm is depth. This parameter offers a tradeoff between the
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Figure 5: Performance of the PRNN Algorithm.
computational overhead for the probabilistic pruning and the veri-
fication step. This behavior can be seen in Figure 5(c), where by
increasing depth, it is possible to dramatically reduce the CPU-
cost in the verification step and thus the overall costs. It can be
observed that for a low value of depth, the verification step is the
main bottleneck. This is clear, since for a low value of depth, the
set of partitions of each object X that is used for the probabilis-
tic pruning is very small and contains large partitions. On the one
hand, a small number of partitions leads to a very fast probabilistic
pruning step, since only a small number of combinations of parti-
tions has to be considered. On the other hand, the pruning power of
the probabilistic pruning step is low in this case, due to the coarse
approximations. The effect of the depth parameter in this setting
is typical: there exists an optimal depth value depthopt. Our ex-
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periments have shown that depthopt correlates to the height H of
the R∗-Tree. In all of our experiments, choosing depth = H/2 has
shown to be a good heuristic. Determining better heuristics to find
depthopt is part of our future work.

Scalability Experiments: Figure 5(b) shows the effects of the
database size on the runtime of the LC, CLWZP and HP algorithms.
It can be observed that the LC algorithm has an extremely high
CPU-cost. The reason is that the LC algorithm was proposed for
continuous uncertain objects and thus requires to consider the set of
all possible worlds in the verification step, which is exponential in
the number of influence objects. In contrast, both CLWZP and HP
scale linear in the database size. Regarding the effect of the num-
ber of instances size S, Figure 5(d) shows that the both algorithms
CLWZP and HP scale super-linearly. The reason is that both algo-
rithms require to sort instances of a set of influence objects in the
verification step, leading to a leading to a runtime ofO(S ·log(S)).

Impact of τ : Figures 5(e) and 5(f) show that the runtime of
the HP algorithm decreases for an increasing value of τ for both
synthetic and real datasets. The rationale is that a high value of
τ reduces the minimal probability 1 − τ required for an uncertain
object A ∈ D \B to prune B.

PRkNN: We augmented our algorithm to answer PRkNN queries
as proposed in Section 5 and evaluated the performance of this al-
gorithm on the synthetic dataset using default parameters (cf. Table
1). In the first experiment (cf. Figure 6(a)), we varied the parameter
k. It can be observed that the runtime scales slightly worse than lin-
early, which can be explained by the usage of uncertain generating
functions that show a complexity of O(k2) ([5]). This is notable,
since naive approaches need to consider all

(
N
k

)
possible results. In

the remaining experiments (Figures 6(b) to 6(d)) we evaluated the
impact of the parameter τ , the database size and the number of in-
stances per object (when setting k = 5). Each of these parameters
scales equivalently to the k = 1 case. Note that in the experiments
shown in Figure 6(d) we set maxdepth = 3 for more than 150
instances, matching our intuition of setting maxdepth = H/2 (cf.
Section 6.3).

7. RELATED WORK
Reverse (k)-Nearest Neighbor (R(k)NN) queries on certain data

have been studied for quite a while [16, 25, 26]. Current state-of-
the-art solutions use a filter-refinement approach to minimize the
number of page accesses performed on the index organizing the
data. The authors of [26], for example, perform an incremental
nearest neighbor query in a best-first search manner where objects
are organized in a spatial index and accessed with ascending dis-
tance to the query. Each accessed object is used to prune other ob-
jects or index entries in a filter step. Finally, remaining candidates
are evaluated by means of a kNN query in a refinement step.

Uncertainty in databases is a relatively new field and has received
a lot of attention in the past few years. The main challenges here
are data representation [7, 11, 2, 22] and efficient query processing
[19, 24]. While the main goal for RkNN queries on certain data
is to minimize the I/O-cost, in the context of uncertain data, the
CPU-cost also have a dramatic impact on the overall runtime.

Thus, for Probabilistic Reverse Nearest Neighbor (PRNN) queries
particularly two challenges arise: minimizing I/O-cost and mini-
mizing CPU-cost. To the best of our knowledge, there are cur-
rently two approaches for answering PRNN queries. The approach
from Chen et al. [20] which is designed for PRNN queries on un-
certain objects represented by continuous probability density func-
tions (PDFs) and the approach from Cheema et al. [9] which works
for the discrete case only. Both algorithms are discussed in more
detail in Appendix A.

8. CONCLUSIONS
In this paper, we developed a general framework for probabilis-

tic reverse nearest neighbor queries on uncertain data. We showed
how two existing approaches and our new algorithm fit into the
framework. Through new techniques to improve important parts
of the framework, our algorithm is able to outperform the exist-
ing approaches under various settings. In addition, we proposed
an efficient extension for probabilistic reverse k-nearest neighbor
queries. For future work, we want to evaluate techniques to dy-
namically adapt the parameter depth in the probabilistic pruning
step to the distribution of instances within an object.
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APPENDIX
A. PRNN ALGORITHMS

A.1 LC Algorithm
Approximation: This algorithm is designed for the case where

the appearance probability of uncertain objects is represented as a
continuous PDF. Though it can easily be adapted to the discrete
case. Each uncertain object is approximated by a sphere.

Spatial Pruning: The proposed pruning technique is based on
trigonometric functions and can only be applied for spherical ob-
jects. Thus, it cannot be directly applied to the index pages (the
authors use an R-tree as index structure). To overcome this short-
coming, each (rectangular) page of the index is at runtime approx-
imated by a sphere containing this page.

Probabilistic Pruning: Additionally, a second sphere is com-
puted for each database object in a preprocessing step. This sphere
has the same center as the first sphere, but the radius is chosen as
the minimal radius covering instances with a cumulated probability
of at least 1 − τ . The idea of this approach is that if this second
sphere can be pruned, then the corresponding object is pruned with
a probability of at least 1−τ , so it must have a probability less than
τ to be an RNN of Q, and thus, it cannot be a PRNN of Q.

Verification: In the verification step, a range query around each
candidate Ui is issued. The result contains all objects Uj such that
MinDist(Uj , Ui) < MaxDist(Ui, Q), i.e. all objects which af-
fect P (RNNQ(Ui)). Then P (RNNQ(Ui)) is calculated by con-
sidering all possible worlds of the involved objects.

A.2 CLWZP Algorithm
Approximation: The CLWZP algorithm uses minimum bound-

ing rectangles for the approximation of the uncertain objects. Ad-
ditionally, each uncertain object has a local R-tree which organizes
its instances.

Spatial Pruning: The pruning is performed using several prun-
ing techniques arranged in series. The first used technique is Min-
Max. As shown in [14], MinMax is not sufficient, which means
that, based on rectangular approximations, MinMax cannot detect
valid pruning in all cases. Therefore, a second technique is pro-
posed for special spatial relations of the query object and the pruner.
If this technique cannot be applied, a general technique is used
which considers all corners of the pruner for prune evaluation (see
[9] for details). All proposed techniques (except MinMax) generate
a pruning region defined by the pruner and the query. In this region
objects can safely be pruned.

Probabilistic Pruning: Probabilistic pruning utilizes the gen-
erated pruning regions. Based on these regions, it may happen
that only parts of a prunee get pruned. In this case, the prunee
is trimmed down and further represented by an MBR containing
all instances which could not be pruned (using a computational ge-
ometry algorithm). Additionally, the authors propose to partition
object Q, to further improve the pruning.

Verification: In this phase, a range query is issued for each can-
didate Ui containing all objects affecting P (RNNQ(Ui)). For
each instance ui of a candidate, the instances of these objects are
sorted by the distance to ui and inserted in a list. Based on these
lists it is possible to calculate P (RNNQ(Ui)).

A.3 Discussion
Although the LC algorithm is the only PRNN algorithm so far

which can handle uncertain objects represented by a continuous
PDF, it has the following drawbacks:

Parameter τ : Since the probabilistic pruning sphere has to be

pre-computed using τ , it is not possible to change τ at query time.
In a dynamic query environment however, the parameter may be
adapted to the user’s preferences, which is not possible in this ap-
proach.

Spherical Approximation: The main challenge, especially for the
higher-dimensional case, is to find a small enclosing sphere of an
uncertain object for effective pruning results. Finding the smallest
enclosing sphere of an arbitrarily shaped object however has ex-
ponential runtime (w.r.t. to the number of vertices of the object),
which allows only finding good but not best possible spheres in
reasonable computational time. Additionally, as stated in [20], the
spatial pruning technique is only conservative but not optimal for
dimensions larger than 2. A third problem regarding the spherical
approximation is the approximation of pages of the R-tree, which
are rectangular by definition. A spherical approximation of an in-
dex page will therefore rarely be tight yielding low pruning power.

Verification: The verification step using integration of all re-
maining objects is based on the used uncertainty model. However,
if the objects consist of discrete instances, there are more efficient
solutions for the verification step (e.g. [19]). Note that also for the
case where objects are represented by continuous PDFs, this step
can be performed more efficiently, as we will show later.

The CLWZP algorithm however has a very complex spatial prun-
ing technique which requires 2d distance calculations in the worst
case (where d is the dimensionality of the data). This makes the
approach practically inapplicable for the high-dimensional case.
Just as the LC pruning, the CLWZP pruning is conservative which
means that there are cases where pruning is not performed although
possible (we omit the proof due to space limitations, but will show
this by experimental evidence). Regarding the probabilistic prun-
ing of CLWZP, the problem is that trimming requires expensive
geometric computation but is used extensively in the algorithm.

B. PROOFS

B.1 Proof of Lemma 1
PROOF. In [14] it is shown that the right hand side of

Equation 2 is equivalent to the following statement:

∀a ∈ A, b ∈ B, q ∈ Q : dist(a, b) < dist(q, b)

which is true if and only if for each a ∈ A, b ∈ B, q ∈ Q it
holds that a is closer to b than q, where A,B,Q are rectangular
approximations. By definition of the possible worlds model, the set
of combinations a ∈ A, b ∈ B, q ∈ Q corresponds to a superset of
all possible worlds. Consequently, it holds that ∀a ∈ A, b ∈ B, q ∈
Q : δ(a, b, q) = 1. Using Equation 1 we obtain the triple-sum

P (A ≺Q B) =∑
ai∈A

∑
bj∈B

∑
qk∈Q

1 · P (ai) · P (bj) · P (qk)

As we can see, the above triple-sum is equal to the sum of the
probabilities of all possible worlds which is equal to one4. Conse-
quently, we obtain P (A ≺Q B) = 1.

B.2 Proof of Lemma 2
PROOF. The probability of a combination (A′, B′, Q′) can be

computed by P (A′) ·P (B′) ·P (Q′) due to the assumption of mu-
tually independent objects. These probabilities can be aggregated
4Here we assume no existential uncertainty on the uncertain ob-
jects. If we have existential uncertainty, P (A ≺Q B) = P (Q) ·
P (A) · P (B).
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due to the assumption of disjoint subregions, which implies that
any two different combinations of subregions (A′ ∈ A, B′ ∈ B,
Q′ ∈ Q) and (A′′ ∈ A, B′′ ∈ B, Q′′ ∈ Q, A′ 6= A′′ ∧ B′ 6=
B′′ ∧ Q′ 6= Q′′) must represent disjoint sets of possible worlds.
By definition it holds that, if δ(A′, B′, Q′) = 1, then A prunes B
in all possible worlds defined by combinations of instances (ai ∈
A′, bj ∈ B′, qk ∈ Q′). But not all possible worlds whereA prunes
B are covered by these combinations and, thus, do not contribute
to PLB(A ≺Q B). Consequently, PLB(A ≺Q B) lower bounds
P (A ≺Q B).

B.3 Proof of Lemma 4
PROOF. The event that B is an RNN of Q is (by definition)

equal to the event that no database object Ai in I prunes B. Due to
Corollary 3 (see below), the event Ai ≺Q B is independent of the
computation of PLB(Aj ≺Q B) for i 6= j. Therefore, the bounds
PLB(Ai ≺Q B) are also independent of PLB(Aj ≺Q B). This
independence allows to derive a lower bound of the joint proba-
bility that all objects A1, ..., A|I| prune B by simply taking the
product of the bounds

∏|I|
i=1 PLB(Ai ≺Q B). The same applies

for the joint probability of the complementary events (i.e. the prob-
ability of the events that the Ai’s do not prune B). Since we only
have bounds of P (Ai ≺Q B), we need to use the upper bounds
PUB(Ai ≺Q B) in order to minimize the complementary proba-
bility 1 − PUB(Ai ≺Q B) to derive a lower bound of the event
that no Ai prunes B.

Analogously, we can derive an upper bound of the probability
that none of the A1, ..., Ak prunes B by multiplying the counter
probabilities

∏k
i=1 1− PLB(Ai ≺Q B).

COROLLARY 3. Let A1, ..., A|I| be uncertain objects with dis-
joint object decompositions A1, ...,A|I|, respectively. Also, let B
and Q be uncertain objects without any decomposition,
i.e. B = {B} and Q = {Q}. The random event Ai ≺Q B
is independent of the result of the computation of the probability
bounds PLB(Ai ≺Q B) and PUB(Ai ≺Q B).

PROOF. Consider the random variable Ai ≺Q B conditioned
on the event PLB(Aj ≺Q B) = p.

P (Ai ≺Q B|PLB(Aj ≺Q B) = p)

Substituting the equation in Lemma 2, this yields

P (Ai ≺Q B|
∑

Aj
′∈A,B′∈B,Q′∈Q

P (A′)·P (B′)·P (Q′)·δ(Aj ′, B′, Q′) = p)

Since B = {B} andQ = {Q}, this becomes equal to

P (Ai ≺Q B|
∑
Aj

′∈A

P (A′) · P (B) · P (Q) · δ(Aj ′, B,Q) = p)

Exploiting that the probability that B (Q) falls into partition
B (Q) is one, this implies

P (Ai ≺Q B|
∑
Aj

′∈A

P (A′) · δ(Aj ′, B,Q) = p)

Since Ai ≺Q B is independent of the position of Aj (and thus of
the events that A is located in A′), and since δ(Aj ′, B,Q) is not a
random event, we conclude that the above is equal to

P (Ai ≺Q B)

Finally, the equation

P (Ai ≺Q B|PUB(Aj ≺Q B) = p) = P (Ai ≺Q B)

can be shown analogously.
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Figure 7: Approximated PDF of
∑2
i=1 Xi.

C. UNCERTAIN GENERATING FUNCTIONS
Given a set ofN mutually independent but not necessarily identi-

cally distributed Bernoulli {0, 1} random variables Xi,
1 ≤ i ≤ N . Let PLB(Xi) (PUB(Xi)) be a lower (upper) bound
approximation of the probability P (Xi = 1). We consider the
random variable

∑N
i=1 Xi and make the following observation:

Xi = 1 with a probability of at least PLB(Xi), and Xi = 0 with
a probability of at least 1 − PUB(Xi). Based on this observation,
we consider the following uncertain generating function (UGF):

FN =
∏

i∈1,...,N

[PLB(Xi) · x+ (1− PUB(Xi)) · y+

(PUB(Xi)− PLB(Xi))] =
∑
i,j≥0

ci,jx
iyj .

The coefficient ci,j has the following meaning: With a probabil-
ity of ci,j , B is definitely dominated at least i times, and possibly
dominated another 0 to j times. Therefore, the minimum proba-
bility that

∑N
i=1 Xi = k is ck,0, since that is the probability that

exactly k random variables Xi are 1. The maximum probability
that

∑N
i=1 Xi = k is

∑
i≤k,i+j≥k ci,j , i.e. the total probability

of all possible combinations in which
∑N
i=1 Xi = k, may hold.

Therefore, we obtain an approximated PDF of
∑N
i=1 Xi. In the

approximated PDF of
∑N
i=1 Xi, each probability

∑N
i=1 Xi = k is

given by a conservative and a progressive approximation.

EXAMPLE 1. Let PLB(X1) = 20%, PUB(X1) = 50%,
PLB(X2) = 60% and PUB(X2) = 80%. The generating function
for the random variable

∑2
i=1 Xi is the following:

F2 = (0.2x+ 0.5y + 0.3)(0.6x+ 0.2y + 0.2)

= 0.12x2 + 0.34x+ 0.1 + 0.22xy + 0.16y + 0.06y2

This implies that, with a probability of at least 12%,
∑2
i=1 Xi = 2.

In addition, with a probability of 22% plus 6%, it may hold that∑2
i=1 Xi = 2, so that we obtain a probability bound of 12%−40%

for the random event
∑2
i=1 Xi = 2. Analogously,

∑2
i=1 Xi =

1 with a probability of 34% − 78% and
∑2
i=1 Xi = 0 with a

probability of 10%− 32%. The approximated PDF of
∑2
i=1 Xi is

depicted in Figure 7.

In order to apply uncertain generating functions to our problem
of determining the distribution of the number of objects that prune
a given candidate object B with respect to a query object Q, we
only need to substitute the random variables Xi by the random
variables Ai ≺Q B. This is feasible, since our derived approxi-
mations of the probability of the random variables Ai ≺Q B, 1 ≤
i ≤ N are independent of the other random variables Aj ≺Q B,
1 ≤ j ≤ N, j 6= i due to Lemma 4.
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D. IMPLEMENTATION
In this section, we describe the implementation of our PRNN

algorithm.

D.1 Overview
Algorithm 1 combines the main modules for PRNN processing.

The input requires an uncertain query object Q, an R-tree based
index structure organizing the uncertain objects from the database
IDB , a probability threshold τ and a parameter depth controlling
the depth of our probabilistic pruning computation. The spatial-
Pruning method fills the sets Scnd with potential result objects and
Sprn with objects (entries) which can certainly be excluded using
the spatial pruning technique proposed in Section 4.2. For each re-
maining object B ∈ Scnd, the getInfluenceObjects method returns
a set (Sifl) of all objects from the two sets (Scnd and Sprn) which
could influence P (RNNQ(B)). With these objects, probabilistic
pruning according to Section 4.3.2 is performed. Depending on the
result, the candidate is either discarded, added to the result set or
verified. In the latter case, computation following [19] and [9] is
performed to calculate the exact P (RNNQ(B)). If this probabil-
ity is above τ , the candidate can be confirmed as a result. In the
following, we explain the individual modules in detail.

Algorithm 1 PRNN query processing
Require: Q, IDB , τ , depth
1: Scnd = ∅, Sprn = ∅
2: spatialPruning(Q, IDB , Scnd, Sprn)
3:
4: Sres = ∅
5: for each B ∈ Scnd do
6: Sifl = getInfluenceObjects(Q, B, Scnd \ {B}, Sprn)
7: i := probabilisticPruning(Q, B, Sifl, τ , depth)
8: if i=1 then
9: //B cannot be RNN of Q

10: else if i=-1 then
11: //B is RNN of Q
12: Sres = Sres ∪ {B}
13: else
14: //B has to be verified
15: if verify(Q, B, Sifl, τ ) then
16: Sres = Sres ∪ {B}
17: end if
18: end if
19: end for
20: return Sres

D.2 Spatial Pruning
The spatialPruning method (cf. Algorithm 2) performs a best-

first search using a heap H prioritized by minDist(Q, e), where
e is an entry of the index IDB . The heap is implemented such
that the set of contained objects can be accessed without destroy-
ing the heap structure. For each de-heaped entry e, the predicate
e2 ≺Q e checks if this entry is pruned by another object or entry
e2 (contained in H , Sprn or Scnd) according to Q, using the prun-
ing technique as described in Section 4.2. If it can be pruned, it is
inserted in the Sprn set. Otherwise, if e contains a data object, it
is added to the candidate set Scnd and if e is a directory entry, its
children are inserted into the heap.

D.3 Getting the Influence Objects
For each candidate B, it is important for the next steps to find

the objects which influence P (RNNQ(B)). This is done by Al-
gorithm 3, which exploits Corollary 1 in order to determine those
objects that cannot possibly prune B. Therefore, each data entry e
for which Q ≺e B does not hold is inserted into the Sifl set.

Algorithm 2 spatialPruning
Require: Q, IDB , Scnd, Sprn
1: init min-heap H with root entry of IDB
2: while H is not empty do
3: de-heap an entry e from H
4: if ∃e2 ∈ H ∪ Sprn ∪ Scnd : e2 ≺Q e then
5: Sprn = Sprn ∪ {e}
6: else if e is directory entry then
7: for each child ch in e do
8: insert ch in H
9: end for

10: else if e is data entry then
11: Scnd = Scnd ∪ {e}
12: end if
13: end while

Algorithm 3 getInfluenceObjects
Require: Q, B, Scnd, Sprn
1: Sifl = ∅
2: for each e ∈ Sprn ∪ Scnd do
3: if ¬(Q ≺e B) then
4: if e is directory entry then
5: Sprn = Sprn \ {e}
6: for each child ch in e do
7: Sprn = Sprn ∪ {ch}
8: end for
9: else if e is data entry then

10: Sifl = Sifl ∪ {e}
11: end if
12: end if
13: end for
14: return Sifl

D.4 Probabilistic Pruning
Probabilistic pruning aims at estimating P (RNNQ(B)) for a

candidate B in a best possible way. If we can detect early that
P (RNNQ(B)) > τ or P (RNNQ(B)) < τ , further computation
can be saved. The parameter depth is used to control how deep
the hierarchical index structures (organizing the instances of each
uncertain object) are resolved for more accurate pruning. Thus, the
parameter offers to define a trade-off between accuracy and com-
putational efficiency in the probabilistic pruning step. In each iter-
ation the involved objects (Q, B and all I ∈ Sifl) are partitioned,
which means we consider the partitioning at the ith level of each
local R*-tree. According to Section 4.3.2, each combination of
(Q′ ∈ Q, B′ ∈ B) must be treated independently. Thus, for each
of these combinations, we first obtain bounds PLB(I ≺′Q B′) and
PUB(I ≺′Q B′) of the probability that each I ∈ Sifl prunes B′

w.r.t. Q′, using Lemmas 2 and 3. Using Corollary 4, we mul-
tiply the complement of these bounds to acquire the lower (up-
per) bound probability PLB(RNNQ′(B′)) (PUB(RNNQ′(B′)))
that no object I ∈ Sifl prunes B′ according to Q′. Since all
combinations (Q′ ∈ Q, B′ ∈ B) are independent, the results
can be summed up (weighting with the possible world probabil-
ity of (Q′ ∈ Q, B′ ∈ B)), to obtain the global probability bounds
PLB(RNNQ(B)) and PUB(RNNQ(B)) according to Equation
3. This method returns -1 if the candidate B is PRNN of Q (with
τ as threshold), and 1 if B can be pruned. If depth is not set to the
maximum height of the R*-trees, it is possible that no decision can
be made. In this case the method returns 0.

E. CONTINUOUS DISTRIBUTIONS
In this section, we show how our approach can be extended to

continuously distributed uncertainty models. Again, we assume
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Algorithm 4 probabilisticPruning
Require: Q, B, Sifl, τ , depth
1: for 1. . .depth do
2: split(Q)
3: split(B)
4: ∀I ∈ Sifl split(I)
5: PLB(RNNQ(B)) = 0, PUB(RNNQ(B)) = 0
6: for all Q′ ∈ Q and B′ ∈ B do
7: PLB(RNNQ′(B′)) = 1, PUB(RNNQ′(B′)) = 1
8: for each I ∈ Sifl do
9: PLB(I ≺Q′ B′) = 0, PUB(I ≺Q′ B′) = 1

10: for each I ′ ∈ I do
11: if (I ′ ≺Q′ B′) then
12: PLB(I ≺Q′ B′) = PLB(I ≺Q′ B′) + P (I ′)
13: else if (Q′ ≺I′ B′) then
14: PUB(I ≺Q′ B′) = PUB(I ≺Q′ B′)− P (I ′)
15: end if
16: end for
17: PUB(RNNQ′(B′)) =

PUB(RNNQ′(B′)) · (1.0− PLB(I ≺Q′ B′))
18: PLB(RNNQ′(B′)) =

PLB(RNNQ′(B′)) · (1.0− PUB(I ≺Q′ B′))
19: end for
20: PLB(RNNQ(B)) =

PLB(RNNQ(B)+P (Q′))·P (B′)·PLB(RNNQ′(B′))
21: PUB(RNNQ(B)) =

PUB(RNNQ(B)+P (Q′))·P (B′)·PUB(RNNQ′(B′))
22: end for
23: if PLB(RNNQ(B)) > τ then
24: return -1
25: else if PUB(RNNQ(B)) < τ then
26: return 1
27: end if
28: end for
29: return 0

that the database D consists of multi-attribute objects o1, ..., oN
that may have uncertain attribute values. An uncertain attribute is
defined as follows:

DEFINITION 3 (CONTINUOUS PROBABILISTIC ATTRIBUTE).
A continuous probabilistic attribute attr of an objectX is a random
variable drawn from a probability distribution with density function
fattri .

An uncertain object X has at least one uncertain attribute value.
The function fX(x) denotes the multi-dimensional probability den-
sity function (PDF) of oi that combines all density functions for all
probabilistic attributes attr of X .

Approximation: Following the convention of continuous un-
certain databases [7, 10, 11, 12, 13, 21, 23], we assume that each
uncertain object X is (minimally) bounded by a rectangular uncer-
tainty region X� such that ∀x /∈ X� : fX(x) = 0 and∫

X�
fX(x)dx ≤ 1.

If fi is an unbounded PDF, e.g., a Gaussian PDF, we truncate PDF
tails with negligible probabilities and normalize the resulting PDF.
This procedure is also used in related work [10, 11, 7]. Specifi-
cally, [7] shows that, for a reasonably low truncation threshold, the
impact on the accuracy of probabilistic ranking queries is very low.

Spatial Pruning: Since our spatial pruning approach (cf. Sec-
tion 4.2) is based on rectangular approximations only, it can be ap-
plied on continuously distributed objects without any adaptations.

Probabilistic Pruning: Our probabilistic pruning approach (cf.
Section 4.3) applies disjoint and complete partitioning schemes X
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Figure 8: Additional experiments for the PRkNN algorithm

(X ∈ D ∪ Q) to conservatively and progressively approximate
the probability P (RNNQ(B)) that an object B is an RNN of Q.
This technique is also applicable for partitions X ′ ∈ X for which
the probabilities P (X ′) are known. To derive a complete and dis-
joint partitioning scheme on continuous uncertain objects, we pro-
pose to apply a kd-tree [4] having X� in its root. In each level of
the tree, each node is split with respect to its median in dimension
d. The split-dimension d is rotated for each level of the tree. The
advantage of this partitioning scheme is that the probability of a
node on level i (here level 0 denotes the root level) of the tree, has
a total probability of 1/2i. Due to the nature of continuous PDFs,
this kd-tree has an infinite height. Therefore, we propose to restrict
the height of the kd-tree (i.e. the maximum number of splits). The
maximum number of splits is denoted by depth.

Verification: To compute the exact probability P (A ≺Q B)
that an object A prunes B for a PRNN query with query object Q,
we require to compute the following integral:∫
a∈A�

∫
b∈B�

∫
q∈Q�

fA(a) · fB(b) · fQ(q) · δ(a, b, q)da db dq

where δ(a, b, q) is the indicator function defined in Section 4.3
that returns 1 iff dist(a, b) < dist(b, q). This computation re-
quires expensive numeric integrations, since in general the integral
of the PDF fX of an uncertain object may not be representable
as a closed-form expression and the integral of δ(a, b, q) does not
have a closed-form expression. The computation of RNNQ(B)
is even more expensive, since to compute RNNQ(B), the PDFs
of all database objects may need to be considered to avoid de-
pendencies. Therefore, we propose to avoid verification by us-
ing a large depth parameter, so that the derived probability bounds
PLB(RNNQ(B)) and PUB(RNNQ(B)) become very tight and
with a high probability, no more candidates remain after the proba-
bilistic pruning step. For the remaining candidates, the best we can
do is an efficient approximation ([18]). Therefore, we propose the
following strategies:

• Our approach uses the derived probability bounds of candi-
dates to bound the error. In many applications, this bound
may be sufficient to the user and verification may be avoided.

• We can adapt the techniques as proposed by [18] to approxi-
mate the object PDFs using cubic splines that have a closed-
form solution, and approximate the rank of Q w.r.t. B.

F. ADDITIONAL EXPERIMENTS
Figure 8 illustrates additional experiments on synthetic datasets

focusing on the extent of the uncertain objects and much larger
databases. The smaller the extent of the uncertain objects the more
efficient queries can be performed (cf. Figure 8(a)). For the exper-
iment shown in Figure 8(b), we lowered the average extent of the
objects to 0.01. For this extent, the query times are still very good,
even for very large datasets (100000 objects * 100 instances = 10
million data points).
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