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ABSTRACT 

Modern RDBMSs support the ability to compress data using 

methods such as null suppression and dictionary encoding. Data 

compression offers the promise of significantly reducing storage 

requirements and improving I/O performance for decision support 

queries. However, compression can also slow down update and 

query performance due to the CPU costs of compression and 

decompression. In this paper, we study how data compression 

affects choice of appropriate physical database design, such as 

indexes, for a given workload. We observe that approaches that 

decouple the decision of whether or not to choose an index from 

whether or not to compress the index can result in poor solutions. 

Thus, we focus on the novel problem of integrating compression 

into physical database design in a scalable manner.  We have 

implemented our techniques by modifying Microsoft SQL Server 

and the Database Engine Tuning Advisor (DTA) physical design 

tool. Our techniques are general and are potentially applicable to 

DBMSs that support other compression methods. Our 

experimental results on real world as well as TPC-H benchmark 

workloads demonstrate the effectiveness of our techniques. 

 Introduction 1.
Relational database systems (RDBMSs) today support lossless 

data compression methods such as null suppression and dictionary 

encoding [5] [14] [13] on physical design structures such as 

heaps, clustered and non-clustered indexes. Depending on the 

compression method and the distribution of values in the columns 

of the index, a compressed index sometimes can require only a 

small fraction of the storage space of an uncompressed index. For 

decision support queries which often scan large indexes, 

compression can result in significantly reduced I/O costs [12]. 

While compression can improve performance, it also has the 

potential to slow down performance significantly. In most 

RDBMSs today, processing a query requires decompressing the 

data, which incurs significant CPU costs. This can slow down 

queries that are already CPU bound. Likewise, updates 

(INSERT/UPDATE statements) also require additional CPU costs 

since the updated data must be compressed. Thus, compression 

introduces a potentially significant new dimension to the physical 

database design problem. 

The problem of determining a good physical database design for a 

complex query workload is an important and challenging problem 

for database administrators (DBAs). There has been work in the 

research community as well as industry to automate the process of 

physical database design (e.g. [7] [4] [15]). In fact, most RDBMSs 

today support automated physical design tools that assist DBAs in 

making judicious physical design choices. Such tools typically 

take as input a workload of SQL query and update statements and 

a storage bound, and produce a configuration (i.e. set of indexes) 

that optimizes workload performance, while not exceeding the 

given storage bound. The performance metric that these tools try 

to optimize is the query optimizer’s total estimated costs of 

statements in workload. To the best of our knowledge however, 

none of the prior work on physical database design takes into 

account the impact of data compression.  

In this paper, we study the problem of how to effectively 

incorporate compression into automated physical database design. 

We focus primarily on indexes and briefly discuss how our 

techniques extend to other physical design structures such as 

partial indexes and materialized views (which can also be 

compressed in today’s RDBMSs). An important observation that 

motivates this work is that decoupling the decision of whether or 

not to choose an index from whether or not to compress the index 

can result in poor solutions. Intuitively this is because different 

indexes achieve different compression fractions (i.e. ratio of 

compressed size to uncompressed size), and therefore the I/O 

reduction as well as the update cost of an index for a query/update 

relative to another index can change significantly once 

compression is considered. For example, consider a simple 

strategy of staging index selection and compression; i.e. select 

indexes without considering compression, compress the selected 

indexes, and repeat the process if the space consumed is below the 

storage bound. The following example illustrates why the staged 

approach can result in poor solutions. 

Example 1. Consider a table Sales (OrderID, Shipdate, State, 

Price, Discount,…) and a query Q1 = SELECT SUM(Price * 

Discount) FROM Sales WHERE Shipdate BETWEEN ’01-01-2009’ 

and ’12-31-2009’ AND State = ‘CA’. Let index I1 = (Shipdate, State) 

and I2 = (Shipdate, State, Price, Discount) be two indexes on 

Sales. Suppose the given storage bound is 100 GB and the sizes of 

indexes I1, I2 respectively are 95 GB, 170 GB. Let IC
1 and IC

2 be 

the compressed versions of I1 and I2 respectively and let the sizes 

of IC
1 and IC

2 respectively be 50 GB and 90 GB. Observe that if 

we select indexes without considering compression, then we 

would pick I1, since I2 does not fit within the given space budget. 

Once I1 is picked, there will not be enough storage to add IC
2 later. 

On the other hand if we consider compression during the index 

selection process, we would have picked IC
2 whose size is below 

the given storage bound. IC
2 is a covering index for Q1 (i.e. it 

contains all columns required to answer Q1) and thus can improve 

the query’s I/O performance significantly.  

Similarly, choosing an index without considering how its CPU 

overhead will increase if the index is subsequently compressed 

can also result in poor solutions illustrated in the example below. 
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Example 2. Consider a covering index I3=(Shipdate, State, Price, 

Discount) on Sales for Q1. I3 significantly speeds Q1 up and is 

likely to chosen if there is enough storage. However, compressing 

I3 results in high CPU overheads to compress (during updates) and 

decompress (during Q1) its data pages. Due to the CPU overheads, 

an anecdotal outcome of blindly compressing every suggested 

index is a lower database throughput with a larger storage bound 

especially when the workload is update-intensive. 

We note that the above observation on the importance of 

integrating compression into physical database design is borne out 

in our empirical evaluations as well. 

The need to integrate compression into physical database design 

leads to several novel technical challenges, which we study in this 

paper.  First, a large number of new (compressed) indexes must be 

considered. In principle, for each index, compressed variants of 

that index must also be considered, one per compression method 

available in the RDBMS. For example, in Microsoft SQL Server 

both null suppression and dictionary encoding methods are 

available for compressing an index. For each compressed index, 

we need to accurately and efficiently estimate the size (i.e. number 

of pages) of each index, since this information is crucial for the 

query optimizer in determining the cost of the execution plan that 

uses the index. Observe that, for an uncompressed index, it is 

relatively straightforward to estimate the size once the number of 

rows and average row length is known. However, for a 

compressed index, the size can depend crucially on the 

compression method and the value distribution of columns in the 

index. An index that is dictionary compressed can have a very 

different size than if compressed using null suppression. Sampling 

has been proposed as a mechanism for speeding up size estimation 

of compressed indexes, i.e. a sample is obtained and the index is 

created on the sample. The compression fraction thus obtained is 

used to infer the size of the full compressed index. For example, 

[11] studies the accuracy of using sampling for estimating size of 

indexes compressed using null suppression and dictionary 

encoding. Although sampling results in sufficiently accurate size 

estimates in practice, the key challenge is performance since most 

of the time is spent in creating the index on the sample. Indeed, as 

we show in this paper, without additional optimizations, the 

performance of physical design tools would be unacceptable. 

Thus, we develop a new index size estimation framework that can 

significantly reduce the overhead to create indexes on the sample 

while still maintaining the desired level of accuracy.  

Second, compression greatly amplifies the space vs. time trade-off 

that physical design tools must deal with. For example, for 

scalability reasons, today’s physical design tools are architected to 

perform early pruning by eliminating indexes that are not part of 

the “best” configuration(s) for at least one query in the workload. 

Such pruning is typically done based purely on query costs. Thus 

a compressed index that reduces storage space significantly while 

only increasing query costs a little will likely be pruned. However, 

retaining such indexes can improve the overall quality of solutions 

noticeably since the reduced storage allows other indexes to be 

added (potentially benefiting many other queries). We propose 

principled adaptations to algorithms used in today’s physical 

design tools to better handle the amplification of space vs. time 

tradeoff due to compression.  

Third, physical design tools today rely on extensions to the query 

optimizer API to support “what-if” analysis: given a configuration 

and a query, this API returns the optimizer's estimated cost of the 

query under the (hypothetical) configuration. To integrate 

compression into physical design also required extending the 

query optimizer’s cost model to reflect the cost of using a 

compressed index. We have extended the cost model of Microsoft 

SQL Server 2008 R2 to make it “compression-aware”.  Our cost 

model captures CPU costs of compression and decompression as 

well as I/O cost reduction due to compression.  

We have implemented the techniques described above in 

Microsoft SQL Server’s automated physical database design tool: 

Database Engine Tuning Advisor (DTA) [3] so that it can 

recommend a combination of compressed and uncompressed 

indexes. Experimental results on the TPC-H benchmark workload 

as well as on a real-world customer workload demonstrate the 

effectiveness of our techniques. In the following sections, we first 

briefly review compression in database systems and then describe 

the details of our techniques. 

 Background 2.

2.1 Compression Methods in Databases 
The database community has studied several compression 

techniques in the context of query processing. Among the various 

compression methods, virtually all modern DBMSs provide 

dictionary encoding and NULL/prefix suppression [5] [14] [13] 

because they are relatively easy to implement and well suited for 

query processing. 

Dictionary encoding compresses a given data page by finding 

frequently occurring values and replacing them with small 

pointers to a dictionary, which contains the distinct set of replaced 

values. For example, a data page which contains the values {AA, 

BB, BB, AA} will be compressed to a dictionary {AA=1, BB=2} 

and a compressed data page {1, 2, 2, 1}. Some databases (e.g. 

IBM DB2) maintain one dictionary across all data pages in a table 

partition (global dictionary) while other databases (e.g., Oracle) 

maintain one dictionary per disk block (local dictionary). In 

general, global dictionary achieves better compression while local 

dictionary provides greater flexibility and better update 

performance. 

NULL suppression eliminates leading NULLs or blank spaces. 

Typically, databases replace them with a special character and a 

length of the sequence of NULLs or spaces. For example, a fixed 

length CHAR value with many leading NULLs “00000abc” will 

be replaced to “@5abc” where “@” is the special character to 

represent compressed NULLs. Prefix suppression is similar to 

NULL suppression, but it compresses arbitrary prefix instead of 

NULLs. For example, the values {aaabc, aaacd, aaade} share the 

leading prefix “aaa”. Prefix compression replaces them with 

{@bc, @cd, @de} where “@” represents the leading “aaa”. 

Microsoft SQL Server supports NULL suppression, prefix 

suppression and local dictionary compression. More details of 

these compression schemes can be found in [13] [10]. 

2.2 Estimating Compression Fraction 
Most benefits of data compression are due to the reduced data 

size. Thus, accurately estimating the size of a compressed index, 

or equivalently the compression fraction (CF) is important. CF is 

defined as the ratio of the size of the compressed index to the size 

of the uncompressed index. Note that the compression fraction 

depends on the compression method used. The option of scanning 

the entire data and running the compression method on it will 

yield an accurate estimate of the compression fraction of the index 

but is prohibitively expensive on large databases. Another 

approach is to estimate the compression fraction based only on 

statistics of columns in the index (e.g. histograms or the number 
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of distinct values). Such statistics are typically maintained by the 

query optimizer for purposes of cardinality estimation. For 

example, in [5] the authors develop an analytical Compression 

Estimator to estimate the fraction for delta RID compression and 

prefix suppression using those statistics. However, such a static 

approach has to assume uniform distribution (or worst-case 

distribution as assumed in the paper) and also requires index-

specific statistics (e.g., cluster ratio). Collecting such statistics for 

each index is expensive unless the index to be compressed already 

exists in the database. 

Another approach is using random sampling. In [11] the authors 

analyze the accuracy of a sampling based estimation method for 

the compression fraction (called SampleCF). SampleCF(I)  for an 

index I works as follows. It first takes a random sample of the data 

using a given sampling fraction f (e.g. a 1% sample) and creates 

the index I on the sample (say the index size is S). It then 

compresses the index using the given compression method to 

obtain the compressed index Ic (say the index size is Sc). 

SampleCF then returns the compression fraction as Sc/S.  The 

advantage of SampleCF method is that it works for every 

compression method and is agnostic to its implementation. The 

results in [11] show that SampleCF can be quite accurate for 

NULL suppression, prefix suppression and global dictionary 

compression. However, the main drawback of SampleCF is that, 

although it is much more efficient than building an index on the 

full data, it is still expensive to: (a) Take a uniform random 

sample from the original table for each invocation of SampleCF. 

(b) Create an index on a sample (due to the cost of sorting and 

compression).  

 Solution Overview 3.
We have incorporated the techniques presented in this paper for 

compression aware physical database design into Microsoft SQL 

Server’s tool Database Engine Tuning Advisor (DTA). The 

architecture of this tool along with highlights of extensions we 

made to handle compression is shown in Figure 1. We take as 

input a workload of SQL statements and a storage bound and 

produce as output a physical design recommendation consisting of 

compressed and uncompressed physical design structures (indexes 

and materialized views).  

Today’s physical design tools such as DTA rely on the ability to 

perform what-if analysis, i.e. request the query optimizer to return 

a plan for a given query and a given hypothetical physical design 

configuration. In order to deal with compressed indexes and 

materialized views, we had to extend the optimizer’s cost model 

to make it compression aware, i.e. handle compressed indexes in 

the configuration. Our new compression-aware cost model 

(described in Appendix A) considers the CPU costs to compress 

and decompress data in compressed indexes. 

As described in the introduction, a key new challenge that arises is 

accurately and efficiently estimating the size of compressed 

indexes considered by the tool. As confirmed in our empirical 

evaluation (Section 7.1), the scalability of physical design tools 

crucially depends on addressing this challenge. We use the 

sampling based method described in Section 2.2 (SampleCF), but 

also develop faster alternative methods based on deducing the size 

without need for sorting and compressing samples (Section 4). In 

Section 5 we show how given a set of indexes whose compressed 

sizes need to be estimated, we can do that efficiently (using a 

combination of SampleCF and deducing compressed sizes of 

others) while still maintaining a desired level of accuracy.  

Physical design tools must work with a given storage bound, i.e. a 

space budget. Thus, they need to deal with the space vs. 

performance trade-off. However, with compression, this trade-off 

is greatly amplified. A compressed index although sub-optimal for 

a particular query compared to the uncompressed index, may save 

a lot of space thereby allowing other indexes to benefit the same 

or other queries. We propose and evaluate principled techniques 

for addressing this space-time tradeoff that can be applied to 

today’s physical design tools. In the context of DTA, this affects 

the Candidate Selection module (where candidate indexes, MVs 

are selected based on a per query analysis), as well as the 

Enumeration module (where the search for the final configuration 

is performed over all candidates).  These extensions are detailed 

in Section 6. 

Microsoft SQL Server

Query Optimizer

(Compression Aware 
Cost Model)

Samples

Temp DB

Workload

Candidate Selection

Merging

Enumeration

Physical design 
recommendation

Size 
Estimation

What-if 
analysis

SampleCF
Database 

Engine 
Tuning 
Advisor 
(DTA)

Storage 
bound

 

Figure 1 Overview of Compression Aware Database Designer. 
 

In Section 7 we empirically evaluate our techniques on the TPC-H 

benchmark workload as well as a real world workload. We 

conclude and discuss future work in Section 8. 

 Index Size Estimation Methods 4.
As described earlier, efficient estimation of the size of a 

compressed index is crucial to physical database design. This 

section explores efficient methods to estimate the compressed 

index size. We first extend the existing SampleCF method [11] 

(described in Section 2.2) to reduce the cost of sampling. Next, we 

propose new deduction methods (Section 4.2) that can infer the 

compressed index size based on sizes of other indexes whose sizes 

are already known. Finally (in Section 4.3), for SampleCF as well 

as the new deduction methods, we empirically quantify the 

distribution of errors in size estimation that we observe over a 

large variety of datasets and indexes. 

4.1 Extending SampleCF 
SampleCF performs size estimation based on random sampling. 

However, taking a uniform random sample from a large table is 

expensive. Since a physical design tool can consider a large 

number of indexes for a workload (e.g. thousands of indexes for 

complex workloads is common), taking a random sample for 

estimating the size of each index is infeasible. Therefore, we 

propose to amortize the sampling cost across all indexes on a 

given table by taking a random sample only once per table, and 

reusing it for all indexes on that table. For partial indexes and a 

certain class of materialized views (MVs) with foreign-key joins 

and grouping, we maintain special samples based on filtering and 

join-synopses [2], a sample of pre-joined tables. For more details 

about this, we refer readers to Appendix B. 
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We empirically observed that amortizing the sampling cost 

reduces the cost of sampling by a few orders of magnitudes. 

Consequently, now the cost of creating an index on the sample 

becomes a significant cost. We therefore develop index size 

estimation methods that can avoid invoking SampleCF altogether. 

4.2 Deducing Index Size 
In this section we present techniques for deducing the size of a 

compressed index based on other indexes whose sizes are known. 

The deduction technique incurs virtually no cost to estimate the 

size of an index. We describe three deduction techniques for 

different types of compression scheme. 

Types of Compression: The way we deduce the index size 

depends on the type of compression scheme. We categorize the 

various compression schemes introduced in the background into 

two groups; Order-Independent (ORD-IND) and Order-

Dependent (ORD-DEP). ORD-IND compressions such as NULL-

suppression and global dictionary encoding have the same 

compressed size regardless of the order of tuples in the index page 

while ORD-DEP compressions such as local dictionary encoding 

and run length encoding (RLE) are sensitive to the order of tuples, 

or the value distribution in each page. 

For example, suppose two columns A, B and compressed indexes 

on them IC
AB, IC

BA. As illustrated in Figure 2, the order of tuples 

in the two composite indexes is quite different. However, NULL-

suppression suppresses the same total number of NULLs in both 

cases. Likewise, global dictionary encoding constructs the exactly 

same dictionary for the two indexes and replaces the same number 

of entries with pointers to the dictionary (assuming the DBMS 

constructs a dictionary per column). 

Column Set Deduction (ORD-IND): Thus, the first deduction 

method, as we call Column Set Deduction (ColSet), deduces the 

size of IC
AB from that of IC

BA as Size(IC
AB)=Size(IC

BA) because the 

order of data does not affect the compressed size. More generally, 

every two indexes compressed using a method in ORD-IND have 

the same size if they contain the same set of columns. ColSet 

deduction is particularly useful for clustered indexes. All clustered 

indexes on the table have the same compressed size because all of 

them contain the same set of columns. Hence, we can avoid 

SampleCF for all but one compressed clustered index per table. 

Column Extrapolation (ORD-IND): Column Extrapolation 

(ColExt) estimates the size of a composite index from subsets of 

the index. Suppose we want to estimate Size(IC
AB) and we know 

Size(IC
A) and Size(IC

B). Let R(IAB) be the size reduction achieved 

by compressing IAB, i.e., R(IAB) = Size(IAB) - Size(IC
AB). If the 

compression is ORD-IND, we can estimate R(IAB) from R(IA) and 

R(IB) as R(IAB)=R(IA) + R(IB) because ORD-IND achieves the 

same size reduction for each column. Hence, Size(IC
AB)=Size(IAB) 

- R(IA) - R(IB).  

Column Extrapolation (ORD-DEP): It is also possible to use the 

idea of column extrapolation for ORD-DEP compression such as 

page-local dictionary encoding, but we cannot simply sum up the 

reduction in this case. As shown in the figure, the order of values 

of A in IAB is same as IA while that in IBA is fragmented by the 

leading column B, reducing the number of repeating values of A 

in each page.  

To account for the fragmentation, we estimate the average number 

of distinct values in each page and penalize the size reduction 

attributed to following columns. 

Let DV(IX, Y) be the average number of distinct values of column 

Y and T(IX) be the number of tuples in a page of index IX. Then, 

the average fraction of Y replaced by the dictionary are defined as 

        XXXX ITYIDVITYIF /,,  . For example, T(IAB)=4, 

DV(IAB, A)=1, and F(IAB, A)=3/4 of the values of A were 

eliminated. 

Suppose we deduce the size of IBA from IA and IB, so we know 

R(IA) and R(IB). As the space saving of compression is linear to 

the number of values replaced by the dictionary, 

             AIFAIFIRBIFBIFIRIR ABAABBABAB ,/,,/,  . 

As B is the leading key of IBA, its value distribution in pages is 

equal to that of IB, thus F(IBA, B) = F(IB, B). As for A, its value 

distribution is fragmented by B thus F(IBA, A) < F(IA, A). To 

calculate F(IBA, A) and F(IA, A) (in other words DV(IBA, A) and 

DV(IA, A)), we consider the average run length of a value of A in 

IBA and IA. Let L(IX, Y) be the average run length of a value of Y 

in IX. For example, L(IBA, A)=2, L(IA, A)=L(IAB, A)=4 in the 

figure. We approximate the values with cardinality statistics as:

        ABAAILAILAsTotalTupleAIL ABAA /,,,/#,   

The approximated values are actually L(IA, A)=8/2=4 and L (IBA, 

A)=4*2/4=2. Note that, in order to calculate L(IBA, A), we do not 

simply divide L(IA, A) by |B| because A and B might be 

correlated, i.e., |A|/|AB| << |B|. 

Then, we approximate the number of distinct values as follows. 

If L(IX, Y)>1,       YILITYIDV XXX ,/,   (e.g., DV(IBA, 

A)=4/2=2). Otherwise, DV(IX,Y)=

 

  XITYpowYY ,/11  

which is the expected number of distinct sides when throwing a 

|Y|-sided dice T(IX) times. 

In principle, this estimation is also applicable to RLE compression 

although we have not empirically evaluated it for RLE. 

4.3 Accuracy of Estimation Methods 
Deduction effectively enables us to eliminate some SampleCF 

calls and thus reduces the cost of index size estimation. However 

both SampleCF and deduction can result in size estimation errors. 

 
Figure 2. Order Independent/Dependent Compression. 
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To analyze the errors of size estimation, we empirically evaluated 

SampleCF and deduction against hundreds of indexes on various 

datasets and skew-ness (details in Appendix C). In summary, we 

observed consistent behaviors across all datasets that we tried. For 

SampleCF, as expected, we observe that the average and variance 

of errors are higher with smaller sample size. Also, deductions 

introduce more errors when we extrapolate more indexes. This 

analysis of errors in compressed index size estimation provides a 

basis for the optimization framework described in next section. 

 Optimizing Index Size Estimation 5.
A physical database design tool may need to compute sizes of a 

large number of compressed indexes. Inefficient size estimation 

can make the runtime of the tool unacceptable. In fact, we 

empirically observed that index size estimation without exploiting 

the deduction methods (Section 4.2) causes a dominating runtime 

overhead on a database design tool (see Appendix D for 

experiments). Thus, given a large set of compressed indexes 

whose sizes need to be estimated, we need to find a good strategy. 

Such a strategy can consist of using SampleCF for some indexes 

(more expensive but more accurate) and using deduction methods 

(much faster but less accurate) for others. Since we want size 

estimation to have low error, we need to balance this trade-off 

between accuracy and performance. In this section, we formulate 

the problem as an optimization problem and devise a graph search 

algorithm to solve it. 

5.1 Problem Statement 
The problem of index size estimation is defined as follows. 

 
For example, when e=20% and q=95%, the estimated size of a 

compressed index whose true size is 100 MB must be between 

120MB and 83.3MB for at least 95% probability. Higher e and 

lower q will allow a smaller sample size and more deductions, 

therefore is faster at the cost of accuracy. In order to determine 

whether an estimate satisfies the accuracy requirement, we 

quantify its error as follows. 

Bias and Variance of Error: Every sample-based size estimation 

approach can have a potentially arbitrary error for a particular 

index. However, we can analytically infer or empirically compute 

the expected error (bias) and its variance. For example, prior work 

showed that SampleCF for NULL suppression encoding is 

unbiased and has at most 1/rf2 variance where f is sampling ratio 

and r is the number of sampled tuples [11]. We devised similar 

formulas for all compression types and deduction methods based 

on empirical analysis (for more details, see Appendix C).  

Composition of Errors: Let XA be the random variable to denote 

the result of size estimation for IA divided by its true size, thus 

XA=1 is the most accurate estimation. Suppose we deduce the size 

of IAB from IA and IB with ColExt. To account for amplified errors 

by deduction, we formulate the deduced result as XAB = XA XB 

XColExt where XColExt is the random variable to denote the result of 

the deduction for perfectly accurate inputs (sizes of IA and IB). 

The variance of such a product of random variables is calculated 

as         
i

i

i

ii XEXEXV
22  [9] while the expected 

value is simply the product of each expected value assuming 

independence among the random variables. We note that the 

above formula is only a heuristic if Xis are not truly independent 

(e.g. that can happen if we reuse the same sample for computing 

sizes of IC
A and IC

B). Then, we define the probability that the error 

of the estimation is within e as the integral of normal probability 

distribution between [1/(1+e),1+e] with the bias and variance. We 

assumed normal distributions based on our empirical analysis, but 

any parametric distributions can be used instead. 

Size Estimation Cost: We model the cost of index size estimation 

as the amount of data we need to index. The cost of SampleCF on 

an index is considered as the number of data pages in the index 

before compression. Hence, SampleCF on wider indexes with 

larger samples costs more. The cost of deduction is zero. 

Existing Indexes: The database might already have a compressed 

index before running the database design tool. Such an index 

provides a perfectly accurate size of itself simply from the 

database statistics. Hence, we consider that such an index has zero 

bias and variance as well as zero cost for size estimation. 

5.2 Graph Search Algorithm 
We solve the problem as a directed graph problem illustrated in 

Figure 3. The graph has two types of nodes; index nodes and 

deduction nodes. An index node (e.g., "AB") denotes the size 

estimation for an index and has one of three states; NONE, 

DEDUCED and SAMPLED. NONE is the initial state of all index 

nodes where we have not yet made a decision for that index. 

DEDUCED and SAMPLED mean we estimate the size by 

deduction and SampleCF respectively. Edges connect index nodes 

from/to deduction nodes. We call the node from which an edge is 

coming as a child node and the node at which the edge is directed 

as a parent node. 

 
Figure 3. Graph of Index and Deduction Nodes. 

 

A deduction node represents a possible deduction to estimate the 

size of its parent based on its children. For example, the deduction 

node "A+B" has a parent index node "AB" (the index whose size 

can be deduced) and child index nodes "A" and "B" (indexes 

using which deduction can be performed). A deduction node is 

enabled only when all its children are DEDUCED or SAMPLED, 

i.e. their sizes are known. 

The goal is to find an assignment of the states to each node such 

that all target indexes are marked as DEDUCED or SAMPLED 

and also satisfy the desired accuracy i.e., error constraints. 

Suppose IABC and IAB are the target indexes. The solution in the 

figure is to SampleCF on IAB and IC and then deduce the size of 

IABC from them. Compared to SampleCF on IAB and IABC, this 

solution gives less accuracy on the size estimation of IABC because 

it is deduced. However, because building a sample composite 

index on ABC costs more than on C, the solution is better unless 

the error constraint is too tight to allow the deduction. Another 

possible solution is to SampleCF on all singleton indexes and 

deduce the size of IAB and IABC. In that case, there are two options 

to deduce the size of IABC; A+B+C and AB+C.  

An exact algorithm to get the optimal solution takes time 

exponential in the number of indexes. Instead, we developed a 

A+B+C

AB+C

ABC

A

B C

ABA+B

Index Node A+B Deduction NodeA

None

None
Sampled

Sampled

Deduced

Inputs: A set of compressed indexes whose sizes need to be 

estimated (targets), a tolerable error ratio e and a confidence 

parameter q such that the estimated sizes of the targets have 

errors less than e for at least q probability. 

Output: Sampling ratio f (fraction of table to sample) and the 

size estimation method to use for each index (SampleCF or 

deduction) such that the total cost of size estimation is 

minimized without violating the accuracy constraint. 
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greedy heuristic algorithm shown below which achieves a high 

quality and yet is much faster. We start from narrow indexes and 

greedily determine the state of the index (Line 3), deducing the 

size from already determined narrower indexes if possible (Line 

6-7). Otherwise, we sample the index (Line 11) unless changing 

only a few of the narrower indexes from DEDUCED to 

SAMPLED satisfies the accuracy constraint (Line 8-9). For each 

target index, this algorithm only considers changing the state of 

the index and its direct children, thus it finishes very quickly even 

for a large number of indexes. 

Finally, for choosing a suitable sampling fraction f, we try several 

different values of f and pick the f for which the greedy algorithm 

produces a solution with the smallest total cost. Note that certain 

combinations of f, e and q can give an invalid result, e.g. even 

applying SampleCF on all targets does not satisfy the accuracy 

constraint. As demonstrated in the experimental section, this 

simple algorithm achieves sometimes orders of magnitude smaller 

total cost while maintaining a good accuracy of size estimation. 

 

 Handling Space-Time Tradeoff 6.
As discussed earlier, compressed indexes can greatly amplify the 

space-time tradeoff that automated physical design tools need to 

consider. Thus, the quality of physical design solutions produced 

by these tools can potentially improve by leveraging new 

techniques for handling this tradeoff. For instance, Microsoft SQL 

Server's design tool (DTA) first separately analyzes each query in 

the workload and from the space of all syntactically relevant 

indexes for the query, it selects a set of candidate configurations 

(the Candidate Selection step). The final configuration is then 

picked from the union of candidate configurations over all queries 

in the workload (the Enumeration step). This is illustrated in 

Figure 4. However, we found that such an approach can miss 

good physical database designs that fully exploit the benefits of 

compressed indexes (discussed below in Sections 6.1 and 6.2). 

Thus revisiting the pruning heuristics in these tools can become 

important for compressed indexes. Although our solutions in this 

section are described in the context of a specific physical design 

tool (DTA), the key ideas are also applicable to other design tools. 

 
Figure 4. Candidate Selection and Enumeration steps in DTA. 
 

6.1 Candidate Selection 
The number of syntactically relevant indexes for a query can be 

quite large even though few of them are actually useful. Hence, a 

design tool usually selects a few small candidate configurations 

by picking the top-k configurations (e.g. k=2) that with the lowest 

optimizer estimated cost for each query. This best-per-query 

approach works well with a large space budget, but in a tight 

space budget it could result in designs that speed up only a small 

number of queries. This is because the approach might not capture 

space efficient indexes that are not the best in terms of query cost, 

which might achieve lower overall cost for the workload since 

they allow more indexes to be selected for other queries. 

Compression makes this space-performance trade-off even more 

prominent. Compressed indexes are often not the best indexes for 

a query because of their decompression CPU costs. Thus the 

current approach can miss out many useful compressed indexes 

except indexes that compress sufficiently to overcome the 

decompression cost with the reduced I/O cost. 

 
Figure 5. Skyline Candidate Selection. 

 

We therefore developed the Skyline method for candidate 

selection. Rather than choosing only the top-k configurations for a 

query with lowest cost, we pick all configurations in the skyline of 

size and query cost. The idea is to capture a spectrum of  indexes 

ranging from fast-large to slow-small as illustrated in Figure 5. To 

construct the skyline for each query, we compute the cost of all 

candidate configurations considered by the tool. Then, for each of 

them, we test if there is another configuration that dominates it, 

i.e. has lower cost and is also smaller. If so, we remove the 

configuration from the skyline. The overhead to construct the 

skyline is O(n2) where n is the number of configurations for each 

query. We observed that the overhead is negligible compared to 

obtain the optimizer estimated cost for these n configurations. In 

the experimental section, we demonstrate that the skyline 

selection along with the backtracking described in next section 
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Configuration Size 

Slow-small 

Fast-large 

Greedy Algorithm 

1. Add existing indexes to the graph with SAMPLED state. 

2. Add target indexes to the graph with NONE state; 

3. foreach(target) { // from narrower to wider 

4.   Add all child deduction nodes of this node to the graph; 

5.   Add children of the deduction nodes, if not yet added; 

6.   if (any child deduction satisfies the constraint with the 

given f, e and q) { 

7.     Mark this node DEDUCED from the deduction node; 

 (if multiple deductions are eligible, pick the one with the 

highest probability) 

8.   } else if (any deduction can be enabled by doing 

SampleCF on its children such that the sum of their costs 

is lower than the cost of sampling this node) { 

9.     Mark this node DEDUCED from the deduction node 

and mark its children SAMPLED; (if multiple 

deductions are eligible, pick the one with the least cost) 

10.   } else { 

11.     Mark this node SAMPLED; 

12. }} 

13. foreach (enabled index) //from wider to narrower 

14.   if (not targeted nor used by parents)  Remove the node; 
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significantly improves quality of physical design especially for 

tight space budgets. 

Although the skyline selection improves the design quality, it 

produces more configurations which cause more computation in 

the enumeration phase (Section 6.2). As a compromise between 

design quality and design time, one possible extension for large 

complicated query workloads is to pick a small number, not all, of 

configurations among the skylines by clustering them into groups 

and selecting a representative configuration from each group. 

6.2 Enumeration 
Across all indexes from all candidate configurations, the goal of 

enumeration is to choose the best set of indexes that speed up the 

entire query workload and also fit the space budget. Since there 

are an exponential number of combinations of indexes, it is 

infeasible to search for the exact optimal set. Hence, most design 

tool employs a greedy approach (e.g. [7] [15]) which picks the 

next index that reduces the cost the most at each step, starting 

from an initial configuration. Although this pure greedy approach 

is fast and scalable, we found realistic cases involving compressed 

indexes where this approach can result in poor solutions. Consider 

the example in Figure 6. 

 
Figure 6. Greedy Algorithm with Compressed Indexes. 

 

The greedy algorithm adds the index that reduces the workload 

cost the most at each step. In Figure 6, at the first step adding IB 

turns out to be the best option. However, at the next step, we have 

only 15-10=5MB of remaining space budget. Adding IC will be 

oversized, but adding the compressed index IC
B is not useful 

because we already have the faster IB without compression. Thus, 

although the best design is actually IC
B and IC, the greedy 

algorithm never reaches the solution. The above situation can 

often occur with indexes that compress heavily such as clustered 

indexes because they may save a lot of space but may also 

perform slowly with queries. Since a table can have only one 

clustered index, the pure greedy approach cannot improve the 

design once an uncompressed clustered index is chosen. 

A similar problem is caused by competing indexes which speed up 

the same queries but only one of them can be used at the same 

time just like IB and IC
B in the above example. Some design tools 

e.g. [15] consider the density at each greedy step, i.e. choosing the 

index that has the highest ratio of “benefit” to size. Figure 7 

illustrates how it works. For simplicity, suppose there is only one 

query. Assume IB, IC
B and IC speed it up for 10, 8 and 5 seconds 

respectively. The density of them at the first greedy step is 

10/10=1, 8/5=1.6 and 5/10=0.5. Thus, IC
B is picked at this step. At 

the next step, the benefit of adding IC is still 5 seconds while that 

of adding IB is only 2 (=10-8) seconds because we already contain 

the slower but competing index IC
B. The density of IB and IC are 

2/10=0.2 and 0.5, thus IC is picked at this step, resulting in the 

optimal design.  

 
Figure 7. Density-Based Greedy with Compressed Indexes. 

 

However, the density based greedy results in the same design 

even for 20MB space budget where the optimal design is IB and 

IC. Also, we find that a density based approach tends to add many 

small but not so beneficial indexes which often cause a 

suboptimal design for larger budgets.  

 
Figure 8. Backtrack to Recover an Oversized Greedy Choice. 

 

In order to capture a good design in both tight and plenty space 

budgets, we add a backtracking phase to the pure greedy approach 

illustrated in Figure 8. It works just like the pure greedy until a 

greedy choice exceeds the space budget. Such an oversized 

configuration was not considered in the original greedy, but we 

try to recover it by replacing one or more indexes in the 

configuration with its compressed variant. We consider replacing 

each index and choose the replacement that performs fastest while 

making the configuration below the budget. Then, we compare the 

recovered configuration with other greedy choices as usual. 

Finally, we note that some physical design tools merge indexes to 

generate candidate objects that benefit more than one query [8] 

(see also Figure 1). Our design tool generates compressed variants 

of such merged objects too, but we have not yet carefully studied 

how compression could affect merging, e.g., adding or removing 

some columns from the merged object might improve the 

compression fraction. Revisiting the problem of index merging in 

the context of compression could have significant impact on 

quality of database design as well. 

 Experiments 7.
We now present empirical analyses on performance and quality of 

our compression aware design tool. Due to limited space, this 

section only provides a summary of the findings. We refer readers 

to Appendix D for the full details of our experiments. 

We have implemented our techniques on Microsoft SQL Server 

2008 R2, modifying its query cost models to account for 

compression and decompression CPU costs (for more details, see 

Appendix A). We also modified the SQL Server’s Database 

Tuning Advisor (DTA); we refer to our compression aware 

physical database design tool as (DTAc). We run DTAc and DTA 

and evaluate them for two workloads: TPC-H and a real world 
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customer database (Sales) which track sales of a particular 

company. In both workloads, we also vary the weights of the bulk 

load statements to represent SELECT intensive workloads and 

INSERT intensive workloads. Simply put, a database design with 

more indexes and heavier compression is suited for SELECT 

intensive workloads while a database design with less indexes and 

lighter compression is suited for INSERT intensive workloads 

because of the overheads to maintain indexes against INSERTs. 

7.1 Results 
Size Estimation for Compressed Indexes: We first evaluated the 

index size estimation framework (Section 5) alone against target 

indexes considered in TPC-H. With a tight accuracy requirement, 

the deduction strategy suggested by the estimation framework 

achieves 3 to 10 times smaller estimation cost than applying 

SampleCF on every index. With a looser accuracy requirement, 

the speed up becomes as large as 50 times because our framework 

can aggressively use deductions (Section 4.2). We observed that 

the strategy costs on average only 8% more than the optimal 

strategy obtained by an exact algorithm. Our greedy algorithm 

finishes within a second for more than 300 indexes while the 

exact algorithm does not finish in hours. 

Next, we compare the running time of DTAc with and without the 

deductions. We observe that deductions actually reduce the 

overhead of index size estimation from dominating to not 

significant compared to the runtime of the original DTA. The real 

speed up of the size estimation overhead is a factor of 3. 

We observe that the actual accuracy of index size estimation have 

less than 10% error in most cases. These results show that our size 

estimation module accurately and efficiently estimates the size of 

compressed indexes by automatically choosing the best sampling 

ratio and deduction strategy for the given user requirements. 

Candidate Selection and Enumeration: Second, we verify the 

effects of the new candidate selection and enumeration techniques 

for compressed indexes. We run DTAc turning on/off the Skyline 

selection and Backtracking in enumeration. We find that, although 

all versions of DTAc generate compressed variants of indexes as 

candidates, only DTAc with both Skyline and Backtracking 

achieves significantly better designs especially in tight space 

budgets (up to a factor of 2). This is because the current candidate 

selection which picks only a few best configurations per query 

cannot capture the potential of compressed indexes with smaller 

sizes; and the current enumeration algorithms cannot choose an 

index that is slower but saves space. 

Comparison with no compression: Then, we compare designs 

produced by the full implementation of DTAc with the DTA on 

TPC-H and the Sales database. In most cases, designs produced 

by DTAc are faster for a factor of 1.5 to 2 because DTAc utilizes 

compression to make indexes faster and also to allow more 

indexes within the space budget. The difference is smaller in 

larger space budgets (10%-50%) because more indexes can fit the 

space budget without compression. Also, in the INSERT intensive 

cases, DTAc appropriately avoided compressing too many 

indexes, being aware of the overheads of compressed indexes. 

This prevents the generated design from slowing down with larger 

budgets, which we actually observed with a naïve design tool that 

decouples compression from the choice of indexes. 

 Conclusion and Future Work 8.
Data compression in DBMS has a potential to reduce both space 

consumption and I/O costs at the expense of CPU overhead for 

compression and decompression. The trade-offs of compression 

make the job of physical database design even harder. In this 

paper, we identified technical challenges in considering 

compressed indexes in a database design tool and developed 

techniques to address these challenges. We implemented our 

techniques inside a commercial DBMS engine and its physical 

design tool. Our empirical results suggest that the modified design 

tool achieves significantly better design quality compared to the 

unmodified design tool without adding too much overhead. 

One open problem is physical design for Column-Store which 

utilizes compression more heavily and flexibly [1]. For example, 

RLE can make column data several orders of magnitude smaller 

and thus faster to read, but it is quite sensitive to the sort orders. 

Developing a design tool that fully exploits the potential of 

compression in Column-Store is interesting future work. 
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Appendix 

A. Compression-Aware Cost Model 
An index (or an MV) affects the performance of the database 

either positively or negatively. Typically, it speeds up reads 

(SELECT) while it slows down updates 

(INSERT/DELETE/UPDATE). The standard approach in 

automatic database design, called What-If analysis [7], is to 

analytically quantify the benefits of having each candidate index 

by calling the database’s query cost models and choose a set of 

indexes that achieve the largest benefits overall. 

Therefore, in order to let the database design tool consider the 

effects of compressing indexes, we need to modify the query 

cost models of the database for both reads and updates. 

In this appendix section, we describe the way Microsoft SQL 

Server compresses and decompresses data on indexes and 

explain how we model the CPU overheads of the operations. 

Although we did not have a chance to take a look at internals of 

other commercial databases, we believe the cost models are 

applicable to them too because their compression scheme and 

basic mechanisms to handle compressed data are similar to ours.  

A.1) Cost Model for Updates  
SQL Server compresses data when some update operation (e.g., 

INSERT) modifies a page. SQL Server has two packages of 

compressions; ROW (null-suppression) and PAGE (local 

dictionary and prefix encoding). ROW is an ORD-IND 

compression while PAGE is an ORD-DEP compression. As 

PAGE has higher overheads to compress, SQL Server delays 

applying PAGE compression even if the page belongs to a 

PAGE compressed index. Such a page is first compressed with 

ROW compression, and then again compressed with PAGE 

compression when the page is “done” with modifications 

(becomes full or ejected from the bufferpool). 

We adjust the cost model for update operations on compressed 

indexes in SQL Server as follows. 

CPUCostupdate = BaseCPUCost + α * #tupleswritten 

where BaseCost is the existing cost model for the update 

operation and α is a constant defined for each compression type 

which represents the CPU cost to compress the tuple (larger for 

PAGE compression). We determine the value of α based on the 

micro benchmark in [13]. 

A.2) Cost Model for Reads 
When reading data in compressed indexes, SQL Server retrieves 

the index pages from the disk and keeps them compressed in the 

bufferpool to save memory consumption, decompressing the 

buffered page each time the page is read. Therefore, a read 

operation on a compressed index causes the same CPU overhead 

for decompression no matter how many pages of the index 

reside in the bufferpool. 

However, SQL Server avoids decompressing unused columns in 

the index page. It decompresses only the columns that are 

projected, predicated or aggregated by the query. Let 

#columnsread be the number of such used columns in the query. 

The cost model for read operations on compressed indexes is 

defined as follows. 

CPUCostread = BaseCPUCost + β * #tuplesread * #columnsread 

Where β is a constant that represents a cost of decompressing 

one column data of one tuple (again, higher for PAGE 

compression) which is determined by benchmarking. 

We note that our model of I/O cost is unchanged, but the smaller 

(estimated) size of compressed indexes implicitly handles it. 

B. Samples for Partial Indexes and MVs  
In this appendix section, we describe extensions to our size 

estimation module for partial indexes and materialized views. 

B.1) Filtered Samples 
As described in Section 4.1, our size estimation framework 

maintains sample tables to apply SampleCF on. Although the 

base sample tables are sufficient for SampleCF on simple 

indexes, they do not work for more complex indexes that 

contain WHERE clauses (partial indexes), JOINs and/or 

GROUP-BYs (indexes on MVs). For this reason, our framework 

also maintains filtered samples and MV samples. 

A filtered sample is generated by applying the WHERE clause 

on the base sample table and used for partial indexes. For 

example, suppose a partial index “CREATE INDEX I1 ON 

LINEITEM (SuppKey) WHERE SuppKey<2000”. We run the 

following SQL to construct a filtered sample for it. 
  SELECT * INTO SI1 FROM SLINEITEM WHERE SuppKey<2000 
where SLINEITEM is the sample table of LINEITEM. This filtered 

sample gives an accurate estimation as far as SLINEITEM is 

uniformly random (not skewed with respect to the WHERE 

clause) and contains a reasonably large number of tuples. 

B.2) Join Synopses 
An MV sample, on the other hand, is more difficult to construct 

for two reasons. The first difficulty is JOIN. Suppose the 

following MV which joins LINEITEM with SUPPLIER. 
  CREATE VIEW MV1 AS SELECT SuppKey, Price, SuppCity 

FROM LINEITEM JOIN SUPPLIER ON (SuppKey) 

A naïve way to take a sample for this MV is to join two sample 

tables as follows. 
  SELECT SuppKey, Price, SuppCity INTO SMV1 FROM SLINEITEM 

JOIN SSUPPLIER ON (SuppKey) 
However, this usually results in very few tuples in the MV 

sample because each base sample is randomly taken and might 

not have tuples that match the foreign key values. To address 

this problem, we construct join synopses [2] of the database, 

which is applicable for Key-Foreign Key join views. 

When the framework is initialized, it takes a random sample of 

fact tables (e.g., LINEITEM). Next, it joins the sample fact table 

with the original dimension tables so that foreign key values 

have always matching tuples. The result is a very wide joined 

sample. We use such join synopses to create MV samples when 

the database design tool requests them. For instance, we take an 

MV sample for MV1 by running the same SQL above but on the 

joined synopses. Then, we construct compressed indexes on the 

sample to estimate the compressed size of indexes on the MV. 

B.3) MVs with Aggregation  
Another important case is materialized views with GROUP BY 

and aggregation. To estimate the size of a compressed index, we 

also need to know the number of entries (tuples) in the index. 

Although we can simply use the base table’s statistics for simple 

indexes, we need to estimate how many distinct groups the MV 

will have. Suppose the following MV and its MV sample. 
  CREATE VIEW MV2 AS SELECT ShipDate, SUM(Price) FROM 

LINEITEM GROUP BY ShipDate 

  SELECT ShipDate, SUM(Price) INTO SMV2 FROM SLINEITEM 

GROUP BY ShipDate 
Here, SMV2 has about 1,000 tuples. If the number of tuples 

simply scales up to the sampling ratio (SLINEITEM contains 1% of 

LINEITEM), the MV would have about 100K tuples. However, 

the actual number of tuples in the MV is only 2,000; the number 

of distinct SHIPDATE values. This example illustrates, unlike 

partial indexes, we need to consider the distribution of distinct 

values to estimate the number of tuples in MVs. 
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The obvious way to get the correct answer is to run a query 

“SELECT COUNT (DISTINCT ShipDate) FROM LINEITEM”, 

but running such a query for every candidate MV in the database 

design tool is prohibitively expensive. Another way is to ask the 

query optimizer to estimate the number of tuples returned by the 

query that defines the MV. Query optimizer answers the 

estimate based on statistics of each column. However, this 

estimate is often inaccurate because MVs usually aggregate on 

more than one column and the optimizer simply assumes 

independence between the columns unless we additionally scan 

the table and collect multi-column statistics. 

 
We devised a new algorithm shown above to address this issue 

without adding overheads to the design tool. Typically, DBMS 

requires an MV with aggregation to always contain a 

COUNT(*) column in its definition (or internally add as a 

hidden column) for incremental maintenance. DBMS increases 

or decreases the counter when a newly inserted or deleted tuple 

falls into the group and eliminates the group when the counter 

gets to zero. We utilize this information as frequency statistics 

for distinct value estimators. 

A distinct value estimator, for example Adaptive Estimator [6], 

gives an estimated number of distinct values based on frequency 

statistics f = {f1, f2, … fk} where fk is the number of distinct 

values that appear k times in the random sample. We get the 

statistics by querying on the MV sample and aggregating on the 

COUNT column. We additionally compute r and d, the number 

of tuples in the MV sample before and after the aggregation 

respectively as well as n, the number of tuples in the original 

table. The Adaptive Estimator, which is implemented in our 

database design tool, takes these as inputs and gives the 

estimated number of tuples in the MV. We keep these estimates 

for each MV sample we took. 

Table 1. Average Errors of #Tuples in Aggregated MVs. 

Optimizer Multiply AE 

96% 379% 6% 

Table 1 compares the average errors of the three methods to 

estimate the number of tuples of all MVs with aggregation 

considered by DTA for TPC-H. 

Optimizer is to ask the query optimizer to estimate the 

cardinality of the MV based on single-column statistics. 

Multiply is to simply multiply the number of distinct values in 

random samples with sampling ratio. As expected, both of the 

two methods have large errors. The optimizer estimate is better, 

but still the error is 96% (error of a factor of 2) on average. 

Unlike the others, our algorithm using Adaptive Estimator (AE) 

achieves as low as 6% errors on average. This result 

demonstrates that the algorithm gives orders of magnitude more 

accurate estimates for the size of MV indexes. We also observe 

that its overhead is negligible. 

B.4) Indexes on Join Synopses 
Additionally, we build indexes on the join synopses to speed up 

querying on them for creating MV samples. Although the 

sample tables are only the part of the original tables (e.g., 1%), 

the design tool has to apply joins and filters on them for each 

MV candidate. We found that indexes on primary keys and 

foreign keys significantly speed up this process. 

C. Analysis on Estimation Error 
In this appendix section, we provide a detailed analysis on the 

accuracy of the index size estimation methods and their 

stochastic formulation used in our size estimation framework. 

To quantify the errors of SampleCF, we applied SampleCF on 

hundreds of indexes considered for TPC-H. Figure 9 plots the 

average bias and standard deviation of local dictionary (LD) and 

NULL-suppression (NS) for a few f. Both bias and standard 

deviation drop very quickly as f increases, except bias of NS 

which is always very low as expected in [11]. We formulated the 

errors of SampleCF  by applying the least square error 

estimation on this data with an assumption that bias and standard 

deviation becomes zero when f=1 (full index creation). We 

repeated the same analysis on the skewed version of TPC-H and 

the TPC-DS benchmark to see the stability of our formulation. 

Table 2 shows that the parameters of the error formula are quite 

stable between different table scheme and data skews. We also 

analyzed the shape of error distributions in each dataset and 

observed that they are close to normal distributions. 

 
Figure 9. Error Bias and Variance of  SampleCF. 

 

Table 2. Least Square Error Analysis on Various Data Sets. 

SampleCF LD-Bias NS-Stddev LD-Stddev 

TPC-H Z=0 -0.015 ln(f) -0.0062 ln(f) -0.018 ln(f) 

TPC-H Z=1 -0.018 ln(f) -0.0060 ln(f) -0.017 ln(f) 

TPC-H Z=3 -0.013 ln(f) -0.0056 ln(f) -0.014 ln(f) 

TPC-DS -0.015 ln(f) -0.0064 ln(f) -0.017 ln(f) 

 
Figure 10. Error Bias and Variance of Deduction. 

Similarly, Figure 10 shows the average bias and standard 

deviation of estimation errors we observed with column 

extrapolation deduction, plotted against the number of indexes 

from which to extrapolate (a); for example if size of IC
AB  is 

extrapolated from IC
A and IC

B, then the number of indexes from 

which to extrapolate is 2. Bias and standard deviation linearly 

grow with a. By fitting a line from the origin (no error with zero 

index to add), we formulated the error as shown in Table 3. 

Column set deduction always has a very low error. So, we 

assume it is unbiased and stable. 

Note that our index size estimation framework (Section 5) can 

work for other compression and estimation methods if their 
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Algorithm CreateMVSample () 

1. SELECT <MV-Project>, COUNT(*) AS cnt INTO SMV 

FROM <join-synopses> WHERE <MV-WHERE> 

GROUP BY <MV-GROUP BY>. 

2. r = SELECT SUM(cnt) FROM SMV 

3. d = SELECT COUNT(*) FROM SMV 

4. FilterFactor = r / <join-synopses>.#tuple 

5. n = RootTable.#tuple * FilterFactor 

6. f = SELECT cnt AS frequency, COUNT(*) AS value 

FROM SMV GROUP BY cnt 

7. MV.#tuple = AdaptiveEstimator(f, d, r, n); 
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errors can be characterized by parametric distributions with a 

given bias and variance. 

Table 3. Error Formula for Deduction. 

 Bias Stddev 

ColSet(NS) 0 0.0003 

ColExt(NS) 0.01 a 0.002 a 

ColExt(LD) - 0.03 a 0.01 a 

D. Full Experimental Results 

D.1) Experimental Environment 
We have implemented every technique we presented in this 

paper on Microsoft SQL Server 2008 R2. We have modified the 

query cost models in SQL Server to account for compression 

and decompression CPU costs as described in Section A and 

developed the modified physical database design tool (DTAc)  

based on the SQL Server’s Database Tuning Advisor (DTA). 

We run DTAc and DTA to compare their total query runtimes 

estimated by the SQL Server’s cost models. All the experiments 

are done on a server running Windows 7 with Dual-core CPU, 

4GB RAM and 10K RPM HDD. 

D.2) Datasets and Query workloads 
We use two datasets and query workloads. The first is TPC-H 

Scale 1 which has 22 analytic queries and two bulk load 

INSERTs. Another is a real sales database (Sales) which has 50 

analytic queries and two bulk load statements on fact tables. We 

vary the space budget from 10% to 100% of the database sizes 

without any indexes. It is interesting to note that DTAc might 

produce indexes even with 0% space budget by compressing 

existing tables (heaps/clustered indexes) and spending the saved 

space to secondary indexes. 

In both workloads, we also vary the weights of the bulk load 

statements to represent SELECT intensive and INSERT 

intensive workloads. Simply put, a database design with more 

indexes and heavier compression is suited for SELECT intensive 

workloads while a database design with less indexes and lighter 

compression is suited for INSERT intensive workloads because 

of the overheads to maintain indexes against INSERTs. 

D.3) Results 
Size Estimation for Compressed Indexes: We first verify the 

quality and runtime of the size estimation algorithm described in 

Section 4. Table 4 compares the quality (total sampling cost of 

suggested deduction strategy) of our greedy algorithm to 2 other 

methods with e=50%, q=90%. All simply applies SampleCF for 

all nodes. Optimal is an exact algorithm with recursion given 

below. As Optimal takes too long time for many indexes, we 

only used indexes in LINEITEM table in TPC-H. Also, we 

limited the number of columns per index to 7.  As the result 

shows, Greedy achieves 2x to 6x smaller sampling cost 

compared to All by utilizing deductions. With a larger error 

tolerance such as e=100%, the difference becomes as large as 50 

times. The quality of Greedy closely follows Optimal, costing 

on average only 8% and at most 30% more. Finally, Greedy 

never violates the accuracy constraint unless even All does. To 

contrast with this, we tested yet another simple algorithm which 

samples only singleton indexes and deduces all target indexes 

from them. Such an algorithm achieves the minimal sampling 

cost, but yields high errors (e.g., >4x mis-estimation for >50% 

probability, >2x mis-estimation for >90% probability). 

As for runtime, Optimal did not finish in hours for all 300 

indexes considered by DTAc while Greedy finished in a second. 

 
 

Table 4. Quality (Cost) of Graph Algorithms. e=0.5, q=0.9. 

 f=1% f=2.5% f=5% f=7.5% f=10% 

All 222 555 1111 1666 2221 

Greedy 114 284 393 589 352 

Optimal 114 284 296 444 299 
 

We then verify the real overheads of the size estimation in 

DTAc. Figure 11 compares the total runtime of DTAc on TPC-

H with all features (clustered/secondary indexes, partial and MV 

indexes) with and without deduction. Note that even “w/o 

deduction” uses the Sample Manager described in Section 4 

without which DTAc takes too long time to finish. 

 
Figure 11 Real Runtime of Index Size Estimation. 

 

All costs other than size estimation (e.g., optimizer calls, 

candidate generation and enumeration), denoted as “Other”, are 

the inherent costs and largely same as the runtime of the original 

DTA which does not consider compressed indexes. The time to 

estimate the sizes of compressed indexes, denoted as “X-

Estimate” (plain Table indexes, Partial indexes and MV 

indexes), significantly drops by utilizing deductions. 

Overall, deductions reduce the overhead of index size estimation 

from dominating (700 seconds) to modest (200 seconds) 

compared to the rest of the tuning costs (500 seconds). For 

larger datasets (e.g., TPC-H Scale 10), the overhead of size 

estimation becomes even more dominant. We observed a similar 

result on Sales.  

Regarding the actual accuracy of index size estimation, we 

observe that most cases have less than 10% errors. These results 

show that our size estimation module strikes a reasonable 

balance between accuracy and efficiency in size estimation of 

compressed indexes. 
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Optimal Graph Search Algo. (exact, but exponential) 

1. Construct subgraphs (clusters) of indexes which are 

considered together (e.g., AB and ABC and ABD); 

2. foreach (subgraph) { 

3.   best = NULL; 

4.   Add all possible descendants and deductions; 

5.   [Recursion] while subgraph is not empty { 

6.     when it becomes empty, update best if it constitutes 

a satisfying assignment with least sampling cost so far; 

7.     branch = widest remaining index in subgraph; 

8.     Mark branch as SAMPLED, eliminate descendants 

that are no longer needed, then recurse; 

9.     foreach (deduction to deduce the size of branch) { 

10.       Mark branch as DEDUCED from the deduction, 

eliminate descendants no longer needed, then recurse; 

11.   }} 

12.   Apply the assignments of best to the original graph.} 
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Figure 12. TPC-H SELECT Intensive: Turning On/Off 

Candidate Selection/Enumeration Techniques. 

 
Figure 13. TPC-H INSERT Intensive: Turning On/Off 

Candidate Selection/Enumeration Techniques. 

 

Candidate Selection and Enumeration: Second, we verify the 

effects of techniques we presented in Section 6. Figure 12 and 

Figure 13 compare the improvements of database designs 

produced by DTAc and DTA with various space budgets. 

Improvement is an estimated runtime improvement from the 

initial database, e.g., improvement of 75% means a 4x speed up 

while 85% means a 6x speed up. The dataset is TPC-H and we 

enable only simple indexes (clustered and secondary indexes on 

tables) this time. The full implementation, denoted as “DTAc 

(Both)”, considers compressed indexes and applies both the 

Skyline selection and backtracking in the greedy enumeration 

phase. “Skyline” and “Backtrack”, as the name suggests, apply 

each of them. “DTAc (None)” applies none of them, just 

generating compressed versions of candidate indexes. “DTA” is 

the original DTA that does not consider compressed indexes. 

As the result shows, only the full implementation achieves 

significantly better designs especially in tight space budgets. 

This is because the current candidate selection which picks only 

the fastest configuration per query cannot capture the potential 

of compressed indexes with smaller sizes and the current 

enumeration algorithms cannot choose an index that is slower 

but saves space. This experiment shows that both the Skyline 

selection and the greedy backtracking are essential to capture 

good database designs with compressed indexes. 

Designs for Sales: Next experiment is on the Sales database. 

We use the same setting as the previous experiment, but this 

time we run only the full implementation of DTAc. Figure 14 

and Figure 15 compare the database designs produced by DTAc 

and DTA. As the result shows, DTAc achieves significantly 

better designs because it utilizes compression to make indexes 

faster and also to allow more indexes within the space budget. 

Also, DTAc is aware of the overheads of compressed indexes 

and avoids compressing too many indexes in the INSERT 

intensive case (all designs for 100MB budget and larger is the 

same). This prevents the generated design from slowing down 

with larger budgets, which happens with a naïve design tool that 

decouples compression from the choice of indexes. 

Designs for TPC-H: Finally, we show the results with all 

features (partial indexes and MV indexes too) enabled. Figures 

16 and 17 compare DTAc and DTA on TPC-H for SELECT 

intensive and INSERT intensive workloads. Again, we observe 

substantially better improvements with DTAc because it utilizes 

index compression to make the best of limited space. In the 

SELECT intensive case, the difference is a factor of 2 (e.g., 70% 

improvement vs. 40% improvement) in tight space budgets. The 

difference is smaller in larger space budgets (10% to 50%) 

because more indexes can fit the space budget without 

compression. In the INSERT intensive case, the designs by 

DTAc for larger space budgets are similar to DTA since the 

update overhead of compressed indexes is significant and DTAc 

chooses not select compressed indexes. 
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Figure 14. Sales SELECT Intensive, Simple Indexes. 

 
Figure 15. Sales INSERT Intensive, Simple Indexes. 

 
Figure 16. TPC-H SELECT Intensive, All Features. 

 
Figure 17. TPC-H INSERT Intensive, All Features. 
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