

Compression Aware Physical Database Design

Hideaki Kimura*
Brown University

Providence, RI, USA

hkimura@cs.brown.edu

Vivek Narasayya
Microsoft Research
Redmond, WA, USA

viveknar@microsoft.com

Manoj Syamala
Microsoft Research
Redmond, WA, USA

manojsy@microsoft.com

ABSTRACT

Modern RDBMSs support the ability to compress data using

methods such as null suppression and dictionary encoding. Data

compression offers the promise of significantly reducing storage

requirements and improving I/O performance for decision support

queries. However, compression can also slow down update and

query performance due to the CPU costs of compression and

decompression. In this paper, we study how data compression

affects choice of appropriate physical database design, such as

indexes, for a given workload. We observe that approaches that

decouple the decision of whether or not to choose an index from

whether or not to compress the index can result in poor solutions.

Thus, we focus on the novel problem of integrating compression

into physical database design in a scalable manner. We have

implemented our techniques by modifying Microsoft SQL Server

and the Database Engine Tuning Advisor (DTA) physical design

tool. Our techniques are general and are potentially applicable to

DBMSs that support other compression methods. Our

experimental results on real world as well as TPC-H benchmark

workloads demonstrate the effectiveness of our techniques.

 Introduction 1.
Relational database systems (RDBMSs) today support lossless

data compression methods such as null suppression and dictionary

encoding [5] [14] [13] on physical design structures such as

heaps, clustered and non-clustered indexes. Depending on the

compression method and the distribution of values in the columns

of the index, a compressed index sometimes can require only a

small fraction of the storage space of an uncompressed index. For

decision support queries which often scan large indexes,

compression can result in significantly reduced I/O costs [12].

While compression can improve performance, it also has the

potential to slow down performance significantly. In most

RDBMSs today, processing a query requires decompressing the

data, which incurs significant CPU costs. This can slow down

queries that are already CPU bound. Likewise, updates

(INSERT/UPDATE statements) also require additional CPU costs

since the updated data must be compressed. Thus, compression

introduces a potentially significant new dimension to the physical

database design problem.

The problem of determining a good physical database design for a

complex query workload is an important and challenging problem

for database administrators (DBAs). There has been work in the

research community as well as industry to automate the process of

physical database design (e.g. [7] [4] [15]). In fact, most RDBMSs

today support automated physical design tools that assist DBAs in

making judicious physical design choices. Such tools typically

take as input a workload of SQL query and update statements and

a storage bound, and produce a configuration (i.e. set of indexes)

that optimizes workload performance, while not exceeding the

given storage bound. The performance metric that these tools try

to optimize is the query optimizer’s total estimated costs of

statements in workload. To the best of our knowledge however,

none of the prior work on physical database design takes into

account the impact of data compression.

In this paper, we study the problem of how to effectively

incorporate compression into automated physical database design.

We focus primarily on indexes and briefly discuss how our

techniques extend to other physical design structures such as

partial indexes and materialized views (which can also be

compressed in today’s RDBMSs). An important observation that

motivates this work is that decoupling the decision of whether or

not to choose an index from whether or not to compress the index

can result in poor solutions. Intuitively this is because different

indexes achieve different compression fractions (i.e. ratio of

compressed size to uncompressed size), and therefore the I/O

reduction as well as the update cost of an index for a query/update

relative to another index can change significantly once

compression is considered. For example, consider a simple

strategy of staging index selection and compression; i.e. select

indexes without considering compression, compress the selected

indexes, and repeat the process if the space consumed is below the

storage bound. The following example illustrates why the staged

approach can result in poor solutions.

Example 1. Consider a table Sales (OrderID, Shipdate, State,

Price, Discount,…) and a query Q1 = SELECT SUM(Price *

Discount) FROM Sales WHERE Shipdate BETWEEN ’01-01-2009’

and ’12-31-2009’ AND State = ‘CA’. Let index I1 = (Shipdate, State)

and I2 = (Shipdate, State, Price, Discount) be two indexes on

Sales. Suppose the given storage bound is 100 GB and the sizes of

indexes I1, I2 respectively are 95 GB, 170 GB. Let IC
1 and IC

2 be

the compressed versions of I1 and I2 respectively and let the sizes

of IC
1 and IC

2 respectively be 50 GB and 90 GB. Observe that if

we select indexes without considering compression, then we

would pick I1, since I2 does not fit within the given space budget.

Once I1 is picked, there will not be enough storage to add IC
2 later.

On the other hand if we consider compression during the index

selection process, we would have picked IC
2 whose size is below

the given storage bound. IC
2 is a covering index for Q1 (i.e. it

contains all columns required to answer Q1) and thus can improve

the query’s I/O performance significantly.

Similarly, choosing an index without considering how its CPU

overhead will increase if the index is subsequently compressed

can also result in poor solutions illustrated in the example below.

* This work was done when the author was visiting Microsoft Research.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Articles from this volume were invited to present

their results at The 37th International Conference on Very Large Data Bases,

August 29th - September 3rd 2011, Seattle, Washington.

Proceedings of the VLDB Endowment, Vol. 4, No. 10

Copyright 2011 VLDB Endowment 2150-8097/11/07... $ 10.00.

657

Example 2. Consider a covering index I3=(Shipdate, State, Price,

Discount) on Sales for Q1. I3 significantly speeds Q1 up and is

likely to chosen if there is enough storage. However, compressing

I3 results in high CPU overheads to compress (during updates) and

decompress (during Q1) its data pages. Due to the CPU overheads,

an anecdotal outcome of blindly compressing every suggested

index is a lower database throughput with a larger storage bound

especially when the workload is update-intensive.

We note that the above observation on the importance of

integrating compression into physical database design is borne out

in our empirical evaluations as well.

The need to integrate compression into physical database design

leads to several novel technical challenges, which we study in this

paper. First, a large number of new (compressed) indexes must be

considered. In principle, for each index, compressed variants of

that index must also be considered, one per compression method

available in the RDBMS. For example, in Microsoft SQL Server

both null suppression and dictionary encoding methods are

available for compressing an index. For each compressed index,

we need to accurately and efficiently estimate the size (i.e. number

of pages) of each index, since this information is crucial for the

query optimizer in determining the cost of the execution plan that

uses the index. Observe that, for an uncompressed index, it is

relatively straightforward to estimate the size once the number of

rows and average row length is known. However, for a

compressed index, the size can depend crucially on the

compression method and the value distribution of columns in the

index. An index that is dictionary compressed can have a very

different size than if compressed using null suppression. Sampling

has been proposed as a mechanism for speeding up size estimation

of compressed indexes, i.e. a sample is obtained and the index is

created on the sample. The compression fraction thus obtained is

used to infer the size of the full compressed index. For example,

[11] studies the accuracy of using sampling for estimating size of

indexes compressed using null suppression and dictionary

encoding. Although sampling results in sufficiently accurate size

estimates in practice, the key challenge is performance since most

of the time is spent in creating the index on the sample. Indeed, as

we show in this paper, without additional optimizations, the

performance of physical design tools would be unacceptable.

Thus, we develop a new index size estimation framework that can

significantly reduce the overhead to create indexes on the sample

while still maintaining the desired level of accuracy.

Second, compression greatly amplifies the space vs. time trade-off

that physical design tools must deal with. For example, for

scalability reasons, today’s physical design tools are architected to

perform early pruning by eliminating indexes that are not part of

the “best” configuration(s) for at least one query in the workload.

Such pruning is typically done based purely on query costs. Thus

a compressed index that reduces storage space significantly while

only increasing query costs a little will likely be pruned. However,

retaining such indexes can improve the overall quality of solutions

noticeably since the reduced storage allows other indexes to be

added (potentially benefiting many other queries). We propose

principled adaptations to algorithms used in today’s physical

design tools to better handle the amplification of space vs. time

tradeoff due to compression.

Third, physical design tools today rely on extensions to the query

optimizer API to support “what-if” analysis: given a configuration

and a query, this API returns the optimizer's estimated cost of the

query under the (hypothetical) configuration. To integrate

compression into physical design also required extending the

query optimizer’s cost model to reflect the cost of using a

compressed index. We have extended the cost model of Microsoft

SQL Server 2008 R2 to make it “compression-aware”. Our cost

model captures CPU costs of compression and decompression as

well as I/O cost reduction due to compression.

We have implemented the techniques described above in

Microsoft SQL Server’s automated physical database design tool:

Database Engine Tuning Advisor (DTA) [3] so that it can

recommend a combination of compressed and uncompressed

indexes. Experimental results on the TPC-H benchmark workload

as well as on a real-world customer workload demonstrate the

effectiveness of our techniques. In the following sections, we first

briefly review compression in database systems and then describe

the details of our techniques.

 Background 2.

2.1 Compression Methods in Databases
The database community has studied several compression

techniques in the context of query processing. Among the various

compression methods, virtually all modern DBMSs provide

dictionary encoding and NULL/prefix suppression [5] [14] [13]

because they are relatively easy to implement and well suited for

query processing.

Dictionary encoding compresses a given data page by finding

frequently occurring values and replacing them with small

pointers to a dictionary, which contains the distinct set of replaced

values. For example, a data page which contains the values {AA,

BB, BB, AA} will be compressed to a dictionary {AA=1, BB=2}

and a compressed data page {1, 2, 2, 1}. Some databases (e.g.

IBM DB2) maintain one dictionary across all data pages in a table

partition (global dictionary) while other databases (e.g., Oracle)

maintain one dictionary per disk block (local dictionary). In

general, global dictionary achieves better compression while local

dictionary provides greater flexibility and better update

performance.

NULL suppression eliminates leading NULLs or blank spaces.

Typically, databases replace them with a special character and a

length of the sequence of NULLs or spaces. For example, a fixed

length CHAR value with many leading NULLs “00000abc” will

be replaced to “@5abc” where “@” is the special character to

represent compressed NULLs. Prefix suppression is similar to

NULL suppression, but it compresses arbitrary prefix instead of

NULLs. For example, the values {aaabc, aaacd, aaade} share the

leading prefix “aaa”. Prefix compression replaces them with

{@bc, @cd, @de} where “@” represents the leading “aaa”.

Microsoft SQL Server supports NULL suppression, prefix

suppression and local dictionary compression. More details of

these compression schemes can be found in [13] [10].

2.2 Estimating Compression Fraction
Most benefits of data compression are due to the reduced data

size. Thus, accurately estimating the size of a compressed index,

or equivalently the compression fraction (CF) is important. CF is

defined as the ratio of the size of the compressed index to the size

of the uncompressed index. Note that the compression fraction

depends on the compression method used. The option of scanning

the entire data and running the compression method on it will

yield an accurate estimate of the compression fraction of the index

but is prohibitively expensive on large databases. Another

approach is to estimate the compression fraction based only on

statistics of columns in the index (e.g. histograms or the number

658

of distinct values). Such statistics are typically maintained by the

query optimizer for purposes of cardinality estimation. For

example, in [5] the authors develop an analytical Compression

Estimator to estimate the fraction for delta RID compression and

prefix suppression using those statistics. However, such a static

approach has to assume uniform distribution (or worst-case

distribution as assumed in the paper) and also requires index-

specific statistics (e.g., cluster ratio). Collecting such statistics for

each index is expensive unless the index to be compressed already

exists in the database.

Another approach is using random sampling. In [11] the authors

analyze the accuracy of a sampling based estimation method for

the compression fraction (called SampleCF). SampleCF(I) for an

index I works as follows. It first takes a random sample of the data

using a given sampling fraction f (e.g. a 1% sample) and creates

the index I on the sample (say the index size is S). It then

compresses the index using the given compression method to

obtain the compressed index Ic (say the index size is Sc).

SampleCF then returns the compression fraction as Sc/S. The

advantage of SampleCF method is that it works for every

compression method and is agnostic to its implementation. The

results in [11] show that SampleCF can be quite accurate for

NULL suppression, prefix suppression and global dictionary

compression. However, the main drawback of SampleCF is that,

although it is much more efficient than building an index on the

full data, it is still expensive to: (a) Take a uniform random

sample from the original table for each invocation of SampleCF.

(b) Create an index on a sample (due to the cost of sorting and

compression).

 Solution Overview 3.
We have incorporated the techniques presented in this paper for

compression aware physical database design into Microsoft SQL

Server’s tool Database Engine Tuning Advisor (DTA). The

architecture of this tool along with highlights of extensions we

made to handle compression is shown in Figure 1. We take as

input a workload of SQL statements and a storage bound and

produce as output a physical design recommendation consisting of

compressed and uncompressed physical design structures (indexes

and materialized views).

Today’s physical design tools such as DTA rely on the ability to

perform what-if analysis, i.e. request the query optimizer to return

a plan for a given query and a given hypothetical physical design

configuration. In order to deal with compressed indexes and

materialized views, we had to extend the optimizer’s cost model

to make it compression aware, i.e. handle compressed indexes in

the configuration. Our new compression-aware cost model

(described in Appendix A) considers the CPU costs to compress

and decompress data in compressed indexes.

As described in the introduction, a key new challenge that arises is

accurately and efficiently estimating the size of compressed

indexes considered by the tool. As confirmed in our empirical

evaluation (Section 7.1), the scalability of physical design tools

crucially depends on addressing this challenge. We use the

sampling based method described in Section 2.2 (SampleCF), but

also develop faster alternative methods based on deducing the size

without need for sorting and compressing samples (Section 4). In

Section 5 we show how given a set of indexes whose compressed

sizes need to be estimated, we can do that efficiently (using a

combination of SampleCF and deducing compressed sizes of

others) while still maintaining a desired level of accuracy.

Physical design tools must work with a given storage bound, i.e. a

space budget. Thus, they need to deal with the space vs.

performance trade-off. However, with compression, this trade-off

is greatly amplified. A compressed index although sub-optimal for

a particular query compared to the uncompressed index, may save

a lot of space thereby allowing other indexes to benefit the same

or other queries. We propose and evaluate principled techniques

for addressing this space-time tradeoff that can be applied to

today’s physical design tools. In the context of DTA, this affects

the Candidate Selection module (where candidate indexes, MVs

are selected based on a per query analysis), as well as the

Enumeration module (where the search for the final configuration

is performed over all candidates). These extensions are detailed

in Section 6.

Microsoft SQL Server

Query Optimizer

(Compression Aware
Cost Model)

Samples

Temp DB

Workload

Candidate Selection

Merging

Enumeration

Physical design
recommendation

Size
Estimation

What-if
analysis

SampleCF
Database

Engine
Tuning
Advisor
(DTA)

Storage
bound

Figure 1 Overview of Compression Aware Database Designer.

In Section 7 we empirically evaluate our techniques on the TPC-H

benchmark workload as well as a real world workload. We

conclude and discuss future work in Section 8.

 Index Size Estimation Methods 4.
As described earlier, efficient estimation of the size of a

compressed index is crucial to physical database design. This

section explores efficient methods to estimate the compressed

index size. We first extend the existing SampleCF method [11]

(described in Section 2.2) to reduce the cost of sampling. Next, we

propose new deduction methods (Section 4.2) that can infer the

compressed index size based on sizes of other indexes whose sizes

are already known. Finally (in Section 4.3), for SampleCF as well

as the new deduction methods, we empirically quantify the

distribution of errors in size estimation that we observe over a

large variety of datasets and indexes.

4.1 Extending SampleCF
SampleCF performs size estimation based on random sampling.

However, taking a uniform random sample from a large table is

expensive. Since a physical design tool can consider a large

number of indexes for a workload (e.g. thousands of indexes for

complex workloads is common), taking a random sample for

estimating the size of each index is infeasible. Therefore, we

propose to amortize the sampling cost across all indexes on a

given table by taking a random sample only once per table, and

reusing it for all indexes on that table. For partial indexes and a

certain class of materialized views (MVs) with foreign-key joins

and grouping, we maintain special samples based on filtering and

join-synopses [2], a sample of pre-joined tables. For more details

about this, we refer readers to Appendix B.

659

We empirically observed that amortizing the sampling cost

reduces the cost of sampling by a few orders of magnitudes.

Consequently, now the cost of creating an index on the sample

becomes a significant cost. We therefore develop index size

estimation methods that can avoid invoking SampleCF altogether.

4.2 Deducing Index Size
In this section we present techniques for deducing the size of a

compressed index based on other indexes whose sizes are known.

The deduction technique incurs virtually no cost to estimate the

size of an index. We describe three deduction techniques for

different types of compression scheme.

Types of Compression: The way we deduce the index size

depends on the type of compression scheme. We categorize the

various compression schemes introduced in the background into

two groups; Order-Independent (ORD-IND) and Order-

Dependent (ORD-DEP). ORD-IND compressions such as NULL-

suppression and global dictionary encoding have the same

compressed size regardless of the order of tuples in the index page

while ORD-DEP compressions such as local dictionary encoding

and run length encoding (RLE) are sensitive to the order of tuples,

or the value distribution in each page.

For example, suppose two columns A, B and compressed indexes

on them IC
AB, IC

BA. As illustrated in Figure 2, the order of tuples

in the two composite indexes is quite different. However, NULL-

suppression suppresses the same total number of NULLs in both

cases. Likewise, global dictionary encoding constructs the exactly

same dictionary for the two indexes and replaces the same number

of entries with pointers to the dictionary (assuming the DBMS

constructs a dictionary per column).

Column Set Deduction (ORD-IND): Thus, the first deduction

method, as we call Column Set Deduction (ColSet), deduces the

size of IC
AB from that of IC

BA as Size(IC
AB)=Size(IC

BA) because the

order of data does not affect the compressed size. More generally,

every two indexes compressed using a method in ORD-IND have

the same size if they contain the same set of columns. ColSet

deduction is particularly useful for clustered indexes. All clustered

indexes on the table have the same compressed size because all of

them contain the same set of columns. Hence, we can avoid

SampleCF for all but one compressed clustered index per table.

Column Extrapolation (ORD-IND): Column Extrapolation

(ColExt) estimates the size of a composite index from subsets of

the index. Suppose we want to estimate Size(IC
AB) and we know

Size(IC
A) and Size(IC

B). Let R(IAB) be the size reduction achieved

by compressing IAB, i.e., R(IAB) = Size(IAB) - Size(IC
AB). If the

compression is ORD-IND, we can estimate R(IAB) from R(IA) and

R(IB) as R(IAB)=R(IA) + R(IB) because ORD-IND achieves the

same size reduction for each column. Hence, Size(IC
AB)=Size(IAB)

- R(IA) - R(IB).

Column Extrapolation (ORD-DEP): It is also possible to use the

idea of column extrapolation for ORD-DEP compression such as

page-local dictionary encoding, but we cannot simply sum up the

reduction in this case. As shown in the figure, the order of values

of A in IAB is same as IA while that in IBA is fragmented by the

leading column B, reducing the number of repeating values of A

in each page.

To account for the fragmentation, we estimate the average number

of distinct values in each page and penalize the size reduction

attributed to following columns.

Let DV(IX, Y) be the average number of distinct values of column

Y and T(IX) be the number of tuples in a page of index IX. Then,

the average fraction of Y replaced by the dictionary are defined as

 XXXX ITYIDVITYIF /,, . For example, T(IAB)=4,

DV(IAB, A)=1, and F(IAB, A)=3/4 of the values of A were

eliminated.

Suppose we deduce the size of IBA from IA and IB, so we know

R(IA) and R(IB). As the space saving of compression is linear to

the number of values replaced by the dictionary,

 AIFAIFIRBIFBIFIRIR ABAABBABAB ,/,,/, .

As B is the leading key of IBA, its value distribution in pages is

equal to that of IB, thus F(IBA, B) = F(IB, B). As for A, its value

distribution is fragmented by B thus F(IBA, A) < F(IA, A). To

calculate F(IBA, A) and F(IA, A) (in other words DV(IBA, A) and

DV(IA, A)), we consider the average run length of a value of A in

IBA and IA. Let L(IX, Y) be the average run length of a value of Y

in IX. For example, L(IBA, A)=2, L(IA, A)=L(IAB, A)=4 in the

figure. We approximate the values with cardinality statistics as:

 ABAAILAILAsTotalTupleAIL ABAA /,,,/#,

The approximated values are actually L(IA, A)=8/2=4 and L (IBA,

A)=4*2/4=2. Note that, in order to calculate L(IBA, A), we do not

simply divide L(IA, A) by |B| because A and B might be

correlated, i.e., |A|/|AB| << |B|.

Then, we approximate the number of distinct values as follows.

If L(IX, Y)>1, YILITYIDV XXX ,/, (e.g., DV(IBA,

A)=4/2=2). Otherwise, DV(IX,Y)=

 XITYpowYY ,/11

which is the expected number of distinct sides when throwing a

|Y|-sided dice T(IX) times.

In principle, this estimation is also applicable to RLE compression

although we have not empirically evaluated it for RLE.

4.3 Accuracy of Estimation Methods
Deduction effectively enables us to eliminate some SampleCF

calls and thus reduces the cost of index size estimation. However

both SampleCF and deduction can result in size estimation errors.

Figure 2. Order Independent/Dependent Compression.

660

To analyze the errors of size estimation, we empirically evaluated

SampleCF and deduction against hundreds of indexes on various

datasets and skew-ness (details in Appendix C). In summary, we

observed consistent behaviors across all datasets that we tried. For

SampleCF, as expected, we observe that the average and variance

of errors are higher with smaller sample size. Also, deductions

introduce more errors when we extrapolate more indexes. This

analysis of errors in compressed index size estimation provides a

basis for the optimization framework described in next section.

 Optimizing Index Size Estimation 5.
A physical database design tool may need to compute sizes of a

large number of compressed indexes. Inefficient size estimation

can make the runtime of the tool unacceptable. In fact, we

empirically observed that index size estimation without exploiting

the deduction methods (Section 4.2) causes a dominating runtime

overhead on a database design tool (see Appendix D for

experiments). Thus, given a large set of compressed indexes

whose sizes need to be estimated, we need to find a good strategy.

Such a strategy can consist of using SampleCF for some indexes

(more expensive but more accurate) and using deduction methods

(much faster but less accurate) for others. Since we want size

estimation to have low error, we need to balance this trade-off

between accuracy and performance. In this section, we formulate

the problem as an optimization problem and devise a graph search

algorithm to solve it.

5.1 Problem Statement
The problem of index size estimation is defined as follows.

For example, when e=20% and q=95%, the estimated size of a

compressed index whose true size is 100 MB must be between

120MB and 83.3MB for at least 95% probability. Higher e and

lower q will allow a smaller sample size and more deductions,

therefore is faster at the cost of accuracy. In order to determine

whether an estimate satisfies the accuracy requirement, we

quantify its error as follows.

Bias and Variance of Error: Every sample-based size estimation

approach can have a potentially arbitrary error for a particular

index. However, we can analytically infer or empirically compute

the expected error (bias) and its variance. For example, prior work

showed that SampleCF for NULL suppression encoding is

unbiased and has at most 1/rf2 variance where f is sampling ratio

and r is the number of sampled tuples [11]. We devised similar

formulas for all compression types and deduction methods based

on empirical analysis (for more details, see Appendix C).

Composition of Errors: Let XA be the random variable to denote

the result of size estimation for IA divided by its true size, thus

XA=1 is the most accurate estimation. Suppose we deduce the size

of IAB from IA and IB with ColExt. To account for amplified errors

by deduction, we formulate the deduced result as XAB = XA XB

XColExt where XColExt is the random variable to denote the result of

the deduction for perfectly accurate inputs (sizes of IA and IB).

The variance of such a product of random variables is calculated

as
i

i

i

ii XEXEXV
22 [9] while the expected

value is simply the product of each expected value assuming

independence among the random variables. We note that the

above formula is only a heuristic if Xis are not truly independent

(e.g. that can happen if we reuse the same sample for computing

sizes of IC
A and IC

B). Then, we define the probability that the error

of the estimation is within e as the integral of normal probability

distribution between [1/(1+e),1+e] with the bias and variance. We

assumed normal distributions based on our empirical analysis, but

any parametric distributions can be used instead.

Size Estimation Cost: We model the cost of index size estimation

as the amount of data we need to index. The cost of SampleCF on

an index is considered as the number of data pages in the index

before compression. Hence, SampleCF on wider indexes with

larger samples costs more. The cost of deduction is zero.

Existing Indexes: The database might already have a compressed

index before running the database design tool. Such an index

provides a perfectly accurate size of itself simply from the

database statistics. Hence, we consider that such an index has zero

bias and variance as well as zero cost for size estimation.

5.2 Graph Search Algorithm
We solve the problem as a directed graph problem illustrated in

Figure 3. The graph has two types of nodes; index nodes and

deduction nodes. An index node (e.g., "AB") denotes the size

estimation for an index and has one of three states; NONE,

DEDUCED and SAMPLED. NONE is the initial state of all index

nodes where we have not yet made a decision for that index.

DEDUCED and SAMPLED mean we estimate the size by

deduction and SampleCF respectively. Edges connect index nodes

from/to deduction nodes. We call the node from which an edge is

coming as a child node and the node at which the edge is directed

as a parent node.

Figure 3. Graph of Index and Deduction Nodes.

A deduction node represents a possible deduction to estimate the

size of its parent based on its children. For example, the deduction

node "A+B" has a parent index node "AB" (the index whose size

can be deduced) and child index nodes "A" and "B" (indexes

using which deduction can be performed). A deduction node is

enabled only when all its children are DEDUCED or SAMPLED,

i.e. their sizes are known.

The goal is to find an assignment of the states to each node such

that all target indexes are marked as DEDUCED or SAMPLED

and also satisfy the desired accuracy i.e., error constraints.

Suppose IABC and IAB are the target indexes. The solution in the

figure is to SampleCF on IAB and IC and then deduce the size of

IABC from them. Compared to SampleCF on IAB and IABC, this

solution gives less accuracy on the size estimation of IABC because

it is deduced. However, because building a sample composite

index on ABC costs more than on C, the solution is better unless

the error constraint is too tight to allow the deduction. Another

possible solution is to SampleCF on all singleton indexes and

deduce the size of IAB and IABC. In that case, there are two options

to deduce the size of IABC; A+B+C and AB+C.

An exact algorithm to get the optimal solution takes time

exponential in the number of indexes. Instead, we developed a

A+B+C

AB+C

ABC

A

B C

ABA+B

Index Node A+B Deduction NodeA

None

None
Sampled

Sampled

Deduced

Inputs: A set of compressed indexes whose sizes need to be

estimated (targets), a tolerable error ratio e and a confidence

parameter q such that the estimated sizes of the targets have

errors less than e for at least q probability.

Output: Sampling ratio f (fraction of table to sample) and the

size estimation method to use for each index (SampleCF or

deduction) such that the total cost of size estimation is

minimized without violating the accuracy constraint.

661

greedy heuristic algorithm shown below which achieves a high

quality and yet is much faster. We start from narrow indexes and

greedily determine the state of the index (Line 3), deducing the

size from already determined narrower indexes if possible (Line

6-7). Otherwise, we sample the index (Line 11) unless changing

only a few of the narrower indexes from DEDUCED to

SAMPLED satisfies the accuracy constraint (Line 8-9). For each

target index, this algorithm only considers changing the state of

the index and its direct children, thus it finishes very quickly even

for a large number of indexes.

Finally, for choosing a suitable sampling fraction f, we try several

different values of f and pick the f for which the greedy algorithm

produces a solution with the smallest total cost. Note that certain

combinations of f, e and q can give an invalid result, e.g. even

applying SampleCF on all targets does not satisfy the accuracy

constraint. As demonstrated in the experimental section, this

simple algorithm achieves sometimes orders of magnitude smaller

total cost while maintaining a good accuracy of size estimation.

 Handling Space-Time Tradeoff 6.
As discussed earlier, compressed indexes can greatly amplify the

space-time tradeoff that automated physical design tools need to

consider. Thus, the quality of physical design solutions produced

by these tools can potentially improve by leveraging new

techniques for handling this tradeoff. For instance, Microsoft SQL

Server's design tool (DTA) first separately analyzes each query in

the workload and from the space of all syntactically relevant

indexes for the query, it selects a set of candidate configurations

(the Candidate Selection step). The final configuration is then

picked from the union of candidate configurations over all queries

in the workload (the Enumeration step). This is illustrated in

Figure 4. However, we found that such an approach can miss

good physical database designs that fully exploit the benefits of

compressed indexes (discussed below in Sections 6.1 and 6.2).

Thus revisiting the pruning heuristics in these tools can become

important for compressed indexes. Although our solutions in this

section are described in the context of a specific physical design

tool (DTA), the key ideas are also applicable to other design tools.

Figure 4. Candidate Selection and Enumeration steps in DTA.

6.1 Candidate Selection
The number of syntactically relevant indexes for a query can be

quite large even though few of them are actually useful. Hence, a

design tool usually selects a few small candidate configurations

by picking the top-k configurations (e.g. k=2) that with the lowest

optimizer estimated cost for each query. This best-per-query

approach works well with a large space budget, but in a tight

space budget it could result in designs that speed up only a small

number of queries. This is because the approach might not capture

space efficient indexes that are not the best in terms of query cost,

which might achieve lower overall cost for the workload since

they allow more indexes to be selected for other queries.

Compression makes this space-performance trade-off even more

prominent. Compressed indexes are often not the best indexes for

a query because of their decompression CPU costs. Thus the

current approach can miss out many useful compressed indexes

except indexes that compress sufficiently to overcome the

decompression cost with the reduced I/O cost.

Figure 5. Skyline Candidate Selection.

We therefore developed the Skyline method for candidate

selection. Rather than choosing only the top-k configurations for a

query with lowest cost, we pick all configurations in the skyline of

size and query cost. The idea is to capture a spectrum of indexes

ranging from fast-large to slow-small as illustrated in Figure 5. To

construct the skyline for each query, we compute the cost of all

candidate configurations considered by the tool. Then, for each of

them, we test if there is another configuration that dominates it,

i.e. has lower cost and is also smaller. If so, we remove the

configuration from the skyline. The overhead to construct the

skyline is O(n2) where n is the number of configurations for each

query. We observed that the overhead is negligible compared to

obtain the optimizer estimated cost for these n configurations. In

the experimental section, we demonstrate that the skyline

selection along with the backtracking described in next section

Q
u

e
ry

 C
o

st

Configuration Size

Slow-small

Fast-large

Greedy Algorithm

1. Add existing indexes to the graph with SAMPLED state.

2. Add target indexes to the graph with NONE state;

3. foreach(target) { // from narrower to wider

4. Add all child deduction nodes of this node to the graph;

5. Add children of the deduction nodes, if not yet added;

6. if (any child deduction satisfies the constraint with the

given f, e and q) {

7. Mark this node DEDUCED from the deduction node;

 (if multiple deductions are eligible, pick the one with the

highest probability)

8. } else if (any deduction can be enabled by doing

SampleCF on its children such that the sum of their costs

is lower than the cost of sampling this node) {

9. Mark this node DEDUCED from the deduction node

and mark its children SAMPLED; (if multiple

deductions are eligible, pick the one with the least cost)

10. } else {

11. Mark this node SAMPLED;

12. }}

13. foreach (enabled index) //from wider to narrower

14. if (not targeted nor used by parents) Remove the node;

662

significantly improves quality of physical design especially for

tight space budgets.

Although the skyline selection improves the design quality, it

produces more configurations which cause more computation in

the enumeration phase (Section 6.2). As a compromise between

design quality and design time, one possible extension for large

complicated query workloads is to pick a small number, not all, of

configurations among the skylines by clustering them into groups

and selecting a representative configuration from each group.

6.2 Enumeration
Across all indexes from all candidate configurations, the goal of

enumeration is to choose the best set of indexes that speed up the

entire query workload and also fit the space budget. Since there

are an exponential number of combinations of indexes, it is

infeasible to search for the exact optimal set. Hence, most design

tool employs a greedy approach (e.g. [7] [15]) which picks the

next index that reduces the cost the most at each step, starting

from an initial configuration. Although this pure greedy approach

is fast and scalable, we found realistic cases involving compressed

indexes where this approach can result in poor solutions. Consider

the example in Figure 6.

Figure 6. Greedy Algorithm with Compressed Indexes.

The greedy algorithm adds the index that reduces the workload

cost the most at each step. In Figure 6, at the first step adding IB

turns out to be the best option. However, at the next step, we have

only 15-10=5MB of remaining space budget. Adding IC will be

oversized, but adding the compressed index IC
B is not useful

because we already have the faster IB without compression. Thus,

although the best design is actually IC
B and IC, the greedy

algorithm never reaches the solution. The above situation can

often occur with indexes that compress heavily such as clustered

indexes because they may save a lot of space but may also

perform slowly with queries. Since a table can have only one

clustered index, the pure greedy approach cannot improve the

design once an uncompressed clustered index is chosen.

A similar problem is caused by competing indexes which speed up

the same queries but only one of them can be used at the same

time just like IB and IC
B in the above example. Some design tools

e.g. [15] consider the density at each greedy step, i.e. choosing the

index that has the highest ratio of “benefit” to size. Figure 7

illustrates how it works. For simplicity, suppose there is only one

query. Assume IB, IC
B and IC speed it up for 10, 8 and 5 seconds

respectively. The density of them at the first greedy step is

10/10=1, 8/5=1.6 and 5/10=0.5. Thus, IC
B is picked at this step. At

the next step, the benefit of adding IC is still 5 seconds while that

of adding IB is only 2 (=10-8) seconds because we already contain

the slower but competing index IC
B. The density of IB and IC are

2/10=0.2 and 0.5, thus IC is picked at this step, resulting in the

optimal design.

Figure 7. Density-Based Greedy with Compressed Indexes.

However, the density based greedy results in the same design

even for 20MB space budget where the optimal design is IB and

IC. Also, we find that a density based approach tends to add many

small but not so beneficial indexes which often cause a

suboptimal design for larger budgets.

Figure 8. Backtrack to Recover an Oversized Greedy Choice.

In order to capture a good design in both tight and plenty space

budgets, we add a backtracking phase to the pure greedy approach

illustrated in Figure 8. It works just like the pure greedy until a

greedy choice exceeds the space budget. Such an oversized

configuration was not considered in the original greedy, but we

try to recover it by replacing one or more indexes in the

configuration with its compressed variant. We consider replacing

each index and choose the replacement that performs fastest while

making the configuration below the budget. Then, we compare the

recovered configuration with other greedy choices as usual.

Finally, we note that some physical design tools merge indexes to

generate candidate objects that benefit more than one query [8]

(see also Figure 1). Our design tool generates compressed variants

of such merged objects too, but we have not yet carefully studied

how compression could affect merging, e.g., adding or removing

some columns from the merged object might improve the

compression fraction. Revisiting the problem of index merging in

the context of compression could have significant impact on

quality of database design as well.

 Experiments 7.
We now present empirical analyses on performance and quality of

our compression aware design tool. Due to limited space, this

section only provides a summary of the findings. We refer readers

to Appendix D for the full details of our experiments.

We have implemented our techniques on Microsoft SQL Server

2008 R2, modifying its query cost models to account for

compression and decompression CPU costs (for more details, see

Appendix A). We also modified the SQL Server’s Database

Tuning Advisor (DTA); we refer to our compression aware

physical database design tool as (DTAc). We run DTAc and DTA

and evaluate them for two workloads: TPC-H and a real world

663

customer database (Sales) which track sales of a particular

company. In both workloads, we also vary the weights of the bulk

load statements to represent SELECT intensive workloads and

INSERT intensive workloads. Simply put, a database design with

more indexes and heavier compression is suited for SELECT

intensive workloads while a database design with less indexes and

lighter compression is suited for INSERT intensive workloads

because of the overheads to maintain indexes against INSERTs.

7.1 Results
Size Estimation for Compressed Indexes: We first evaluated the

index size estimation framework (Section 5) alone against target

indexes considered in TPC-H. With a tight accuracy requirement,

the deduction strategy suggested by the estimation framework

achieves 3 to 10 times smaller estimation cost than applying

SampleCF on every index. With a looser accuracy requirement,

the speed up becomes as large as 50 times because our framework

can aggressively use deductions (Section 4.2). We observed that

the strategy costs on average only 8% more than the optimal

strategy obtained by an exact algorithm. Our greedy algorithm

finishes within a second for more than 300 indexes while the

exact algorithm does not finish in hours.

Next, we compare the running time of DTAc with and without the

deductions. We observe that deductions actually reduce the

overhead of index size estimation from dominating to not

significant compared to the runtime of the original DTA. The real

speed up of the size estimation overhead is a factor of 3.

We observe that the actual accuracy of index size estimation have

less than 10% error in most cases. These results show that our size

estimation module accurately and efficiently estimates the size of

compressed indexes by automatically choosing the best sampling

ratio and deduction strategy for the given user requirements.

Candidate Selection and Enumeration: Second, we verify the

effects of the new candidate selection and enumeration techniques

for compressed indexes. We run DTAc turning on/off the Skyline

selection and Backtracking in enumeration. We find that, although

all versions of DTAc generate compressed variants of indexes as

candidates, only DTAc with both Skyline and Backtracking

achieves significantly better designs especially in tight space

budgets (up to a factor of 2). This is because the current candidate

selection which picks only a few best configurations per query

cannot capture the potential of compressed indexes with smaller

sizes; and the current enumeration algorithms cannot choose an

index that is slower but saves space.

Comparison with no compression: Then, we compare designs

produced by the full implementation of DTAc with the DTA on

TPC-H and the Sales database. In most cases, designs produced

by DTAc are faster for a factor of 1.5 to 2 because DTAc utilizes

compression to make indexes faster and also to allow more

indexes within the space budget. The difference is smaller in

larger space budgets (10%-50%) because more indexes can fit the

space budget without compression. Also, in the INSERT intensive

cases, DTAc appropriately avoided compressing too many

indexes, being aware of the overheads of compressed indexes.

This prevents the generated design from slowing down with larger

budgets, which we actually observed with a naïve design tool that

decouples compression from the choice of indexes.

 Conclusion and Future Work 8.
Data compression in DBMS has a potential to reduce both space

consumption and I/O costs at the expense of CPU overhead for

compression and decompression. The trade-offs of compression

make the job of physical database design even harder. In this

paper, we identified technical challenges in considering

compressed indexes in a database design tool and developed

techniques to address these challenges. We implemented our

techniques inside a commercial DBMS engine and its physical

design tool. Our empirical results suggest that the modified design

tool achieves significantly better design quality compared to the

unmodified design tool without adding too much overhead.

One open problem is physical design for Column-Store which

utilizes compression more heavily and flexibly [1]. For example,

RLE can make column data several orders of magnitude smaller

and thus faster to read, but it is quite sensitive to the sort orders.

Developing a design tool that fully exploits the potential of

compression in Column-Store is interesting future work.

 Bibliography 9.
1 Abadi, D., Madden, S., and Ferreira, M. Integrating compression and

execution in column-oriented database systems. SIGMOD, 671-682,

2006.

2 Acharya, S., Gibbons, P.B., Poosala, V., and Ramaswamy, S. Join

synopses for approximate query answering. SIGMOD, 275-286, 1999.

3 Agrawal, S., Chaudhuri, S., Kollar, L., Marathe, A., Narasayya, V., and

Syamala, M. Database tuning advisor for microsoft SQL server 2005.

VLDB, 1110-1121, 2004.

4 Agrawal, S., Chaudhuri, S., and Narasayya, V. Automated selection of

materialized views and indexes in SQL databases. VLDB, 496-505, 2000.

5 Bhattacharjee, B., Lim, L., Malkemus, T. et al. Efficient index

compression in DB2 LUW. VLDB, 1462-1473, 2009.

6 Charikar, M., Chaudhuri, S., Motwani, R., and Narasayya, V. Towards

estimation error guarantees for distinct values. PODS, 268-279, 2000.

7 Chaudhuri, S. and Narasayya, V. An Efficient Cost-Driven Index

Selection Tool for Microsoft SQL Server. VLDB, 146-155, 1997.

8 Chaudhuri, S. and Narasayya, V. Index merging. ICDE, 296-303, 1999.

9 Goodman, L.A. The variance of the product of K random variables.

Journal of the American Statistical Association, 297, 54-60, 1962.

10 http://msdn.microsoft.com/en-us/library/cc280449.aspx. SQL Server

2008 R2 Books Online.

11 Idreos, S., Kaushik, R., Narasayya, V., and Ramamurthy, R. Estimating

the compression fraction of an index using sampling. ICDE, 441-444,

2010.

12 Iyer, B. and Wilhite, D. Data Compression support in databases. VLDB,

695-704, 1994.

13 Mishra, S. Data Compression: Strategy, Capacity Planning and Best

Practices. Microsoft, 2009. Whitepaper.

14 Pöss, M. and Potapov, D. Data compression in Oracle, VLDB, 937-947,

2003.

15 Zilio, D., Rao, J., Lightstone, S., Lohman, G., Storm, A., Arellano, C.,

and Fadden, S. DB2 design advisor: integrated automatic physical

database design. VLDB, 1087-1097, 2004.

664

Appendix

A. Compression-Aware Cost Model
An index (or an MV) affects the performance of the database

either positively or negatively. Typically, it speeds up reads

(SELECT) while it slows down updates

(INSERT/DELETE/UPDATE). The standard approach in

automatic database design, called What-If analysis [7], is to

analytically quantify the benefits of having each candidate index

by calling the database’s query cost models and choose a set of

indexes that achieve the largest benefits overall.

Therefore, in order to let the database design tool consider the

effects of compressing indexes, we need to modify the query

cost models of the database for both reads and updates.

In this appendix section, we describe the way Microsoft SQL

Server compresses and decompresses data on indexes and

explain how we model the CPU overheads of the operations.

Although we did not have a chance to take a look at internals of

other commercial databases, we believe the cost models are

applicable to them too because their compression scheme and

basic mechanisms to handle compressed data are similar to ours.

A.1) Cost Model for Updates
SQL Server compresses data when some update operation (e.g.,

INSERT) modifies a page. SQL Server has two packages of

compressions; ROW (null-suppression) and PAGE (local

dictionary and prefix encoding). ROW is an ORD-IND

compression while PAGE is an ORD-DEP compression. As

PAGE has higher overheads to compress, SQL Server delays

applying PAGE compression even if the page belongs to a

PAGE compressed index. Such a page is first compressed with

ROW compression, and then again compressed with PAGE

compression when the page is “done” with modifications

(becomes full or ejected from the bufferpool).

We adjust the cost model for update operations on compressed

indexes in SQL Server as follows.

CPUCostupdate = BaseCPUCost + α * #tupleswritten

where BaseCost is the existing cost model for the update

operation and α is a constant defined for each compression type

which represents the CPU cost to compress the tuple (larger for

PAGE compression). We determine the value of α based on the

micro benchmark in [13].

A.2) Cost Model for Reads
When reading data in compressed indexes, SQL Server retrieves

the index pages from the disk and keeps them compressed in the

bufferpool to save memory consumption, decompressing the

buffered page each time the page is read. Therefore, a read

operation on a compressed index causes the same CPU overhead

for decompression no matter how many pages of the index

reside in the bufferpool.

However, SQL Server avoids decompressing unused columns in

the index page. It decompresses only the columns that are

projected, predicated or aggregated by the query. Let

#columnsread be the number of such used columns in the query.

The cost model for read operations on compressed indexes is

defined as follows.

CPUCostread = BaseCPUCost + β * #tuplesread * #columnsread

Where β is a constant that represents a cost of decompressing

one column data of one tuple (again, higher for PAGE

compression) which is determined by benchmarking.

We note that our model of I/O cost is unchanged, but the smaller

(estimated) size of compressed indexes implicitly handles it.

B. Samples for Partial Indexes and MVs
In this appendix section, we describe extensions to our size

estimation module for partial indexes and materialized views.

B.1) Filtered Samples
As described in Section 4.1, our size estimation framework

maintains sample tables to apply SampleCF on. Although the

base sample tables are sufficient for SampleCF on simple

indexes, they do not work for more complex indexes that

contain WHERE clauses (partial indexes), JOINs and/or

GROUP-BYs (indexes on MVs). For this reason, our framework

also maintains filtered samples and MV samples.

A filtered sample is generated by applying the WHERE clause

on the base sample table and used for partial indexes. For

example, suppose a partial index “CREATE INDEX I1 ON

LINEITEM (SuppKey) WHERE SuppKey<2000”. We run the

following SQL to construct a filtered sample for it.
 SELECT * INTO SI1 FROM SLINEITEM WHERE SuppKey<2000
where SLINEITEM is the sample table of LINEITEM. This filtered

sample gives an accurate estimation as far as SLINEITEM is

uniformly random (not skewed with respect to the WHERE

clause) and contains a reasonably large number of tuples.

B.2) Join Synopses
An MV sample, on the other hand, is more difficult to construct

for two reasons. The first difficulty is JOIN. Suppose the

following MV which joins LINEITEM with SUPPLIER.
 CREATE VIEW MV1 AS SELECT SuppKey, Price, SuppCity

FROM LINEITEM JOIN SUPPLIER ON (SuppKey)

A naïve way to take a sample for this MV is to join two sample

tables as follows.
 SELECT SuppKey, Price, SuppCity INTO SMV1 FROM SLINEITEM

JOIN SSUPPLIER ON (SuppKey)
However, this usually results in very few tuples in the MV

sample because each base sample is randomly taken and might

not have tuples that match the foreign key values. To address

this problem, we construct join synopses [2] of the database,

which is applicable for Key-Foreign Key join views.

When the framework is initialized, it takes a random sample of

fact tables (e.g., LINEITEM). Next, it joins the sample fact table

with the original dimension tables so that foreign key values

have always matching tuples. The result is a very wide joined

sample. We use such join synopses to create MV samples when

the database design tool requests them. For instance, we take an

MV sample for MV1 by running the same SQL above but on the

joined synopses. Then, we construct compressed indexes on the

sample to estimate the compressed size of indexes on the MV.

B.3) MVs with Aggregation
Another important case is materialized views with GROUP BY

and aggregation. To estimate the size of a compressed index, we

also need to know the number of entries (tuples) in the index.

Although we can simply use the base table’s statistics for simple

indexes, we need to estimate how many distinct groups the MV

will have. Suppose the following MV and its MV sample.
 CREATE VIEW MV2 AS SELECT ShipDate, SUM(Price) FROM

LINEITEM GROUP BY ShipDate

 SELECT ShipDate, SUM(Price) INTO SMV2 FROM SLINEITEM

GROUP BY ShipDate
Here, SMV2 has about 1,000 tuples. If the number of tuples

simply scales up to the sampling ratio (SLINEITEM contains 1% of

LINEITEM), the MV would have about 100K tuples. However,

the actual number of tuples in the MV is only 2,000; the number

of distinct SHIPDATE values. This example illustrates, unlike

partial indexes, we need to consider the distribution of distinct

values to estimate the number of tuples in MVs.

665

The obvious way to get the correct answer is to run a query

“SELECT COUNT (DISTINCT ShipDate) FROM LINEITEM”,

but running such a query for every candidate MV in the database

design tool is prohibitively expensive. Another way is to ask the

query optimizer to estimate the number of tuples returned by the

query that defines the MV. Query optimizer answers the

estimate based on statistics of each column. However, this

estimate is often inaccurate because MVs usually aggregate on

more than one column and the optimizer simply assumes

independence between the columns unless we additionally scan

the table and collect multi-column statistics.

We devised a new algorithm shown above to address this issue

without adding overheads to the design tool. Typically, DBMS

requires an MV with aggregation to always contain a

COUNT(*) column in its definition (or internally add as a

hidden column) for incremental maintenance. DBMS increases

or decreases the counter when a newly inserted or deleted tuple

falls into the group and eliminates the group when the counter

gets to zero. We utilize this information as frequency statistics

for distinct value estimators.

A distinct value estimator, for example Adaptive Estimator [6],

gives an estimated number of distinct values based on frequency

statistics f = {f1, f2, … fk} where fk is the number of distinct

values that appear k times in the random sample. We get the

statistics by querying on the MV sample and aggregating on the

COUNT column. We additionally compute r and d, the number

of tuples in the MV sample before and after the aggregation

respectively as well as n, the number of tuples in the original

table. The Adaptive Estimator, which is implemented in our

database design tool, takes these as inputs and gives the

estimated number of tuples in the MV. We keep these estimates

for each MV sample we took.

Table 1. Average Errors of #Tuples in Aggregated MVs.

Optimizer Multiply AE

96% 379% 6%

Table 1 compares the average errors of the three methods to

estimate the number of tuples of all MVs with aggregation

considered by DTA for TPC-H.

Optimizer is to ask the query optimizer to estimate the

cardinality of the MV based on single-column statistics.

Multiply is to simply multiply the number of distinct values in

random samples with sampling ratio. As expected, both of the

two methods have large errors. The optimizer estimate is better,

but still the error is 96% (error of a factor of 2) on average.

Unlike the others, our algorithm using Adaptive Estimator (AE)

achieves as low as 6% errors on average. This result

demonstrates that the algorithm gives orders of magnitude more

accurate estimates for the size of MV indexes. We also observe

that its overhead is negligible.

B.4) Indexes on Join Synopses
Additionally, we build indexes on the join synopses to speed up

querying on them for creating MV samples. Although the

sample tables are only the part of the original tables (e.g., 1%),

the design tool has to apply joins and filters on them for each

MV candidate. We found that indexes on primary keys and

foreign keys significantly speed up this process.

C. Analysis on Estimation Error
In this appendix section, we provide a detailed analysis on the

accuracy of the index size estimation methods and their

stochastic formulation used in our size estimation framework.

To quantify the errors of SampleCF, we applied SampleCF on

hundreds of indexes considered for TPC-H. Figure 9 plots the

average bias and standard deviation of local dictionary (LD) and

NULL-suppression (NS) for a few f. Both bias and standard

deviation drop very quickly as f increases, except bias of NS

which is always very low as expected in [11]. We formulated the

errors of SampleCF by applying the least square error

estimation on this data with an assumption that bias and standard

deviation becomes zero when f=1 (full index creation). We

repeated the same analysis on the skewed version of TPC-H and

the TPC-DS benchmark to see the stability of our formulation.

Table 2 shows that the parameters of the error formula are quite

stable between different table scheme and data skews. We also

analyzed the shape of error distributions in each dataset and

observed that they are close to normal distributions.

Figure 9. Error Bias and Variance of SampleCF.

Table 2. Least Square Error Analysis on Various Data Sets.

SampleCF LD-Bias NS-Stddev LD-Stddev

TPC-H Z=0 -0.015 ln(f) -0.0062 ln(f) -0.018 ln(f)

TPC-H Z=1 -0.018 ln(f) -0.0060 ln(f) -0.017 ln(f)

TPC-H Z=3 -0.013 ln(f) -0.0056 ln(f) -0.014 ln(f)

TPC-DS -0.015 ln(f) -0.0064 ln(f) -0.017 ln(f)

Figure 10. Error Bias and Variance of Deduction.

Similarly, Figure 10 shows the average bias and standard

deviation of estimation errors we observed with column

extrapolation deduction, plotted against the number of indexes

from which to extrapolate (a); for example if size of IC
AB is

extrapolated from IC
A and IC

B, then the number of indexes from

which to extrapolate is 2. Bias and standard deviation linearly

grow with a. By fitting a line from the origin (no error with zero

index to add), we formulated the error as shown in Table 3.

Column set deduction always has a very low error. So, we

assume it is unbiased and stable.

Note that our index size estimation framework (Section 5) can

work for other compression and estimation methods if their

10%

20%

30%

0% 2% 4% 6% 8% 10%

Sa
m

p
le

C
F

Er
ro

rs

Sample Ratio f

LD-Bias NS-Stddev

LD-Stddev

-20%

-10%

0%

10%

0 1 2 3 4

D
e

d
u

ct
io

n
 E

rr
o

rs

a (#Indexes)

NS-Bias NS-Stddev LD-Bias LD-Stddev

Algorithm CreateMVSample ()

1. SELECT <MV-Project>, COUNT(*) AS cnt INTO SMV

FROM <join-synopses> WHERE <MV-WHERE>

GROUP BY <MV-GROUP BY>.

2. r = SELECT SUM(cnt) FROM SMV

3. d = SELECT COUNT(*) FROM SMV

4. FilterFactor = r / <join-synopses>.#tuple

5. n = RootTable.#tuple * FilterFactor

6. f = SELECT cnt AS frequency, COUNT(*) AS value

FROM SMV GROUP BY cnt

7. MV.#tuple = AdaptiveEstimator(f, d, r, n);

666

errors can be characterized by parametric distributions with a

given bias and variance.

Table 3. Error Formula for Deduction.

 Bias Stddev

ColSet(NS) 0 0.0003

ColExt(NS) 0.01 a 0.002 a

ColExt(LD) - 0.03 a 0.01 a

D. Full Experimental Results

D.1) Experimental Environment
We have implemented every technique we presented in this

paper on Microsoft SQL Server 2008 R2. We have modified the

query cost models in SQL Server to account for compression

and decompression CPU costs as described in Section A and

developed the modified physical database design tool (DTAc)

based on the SQL Server’s Database Tuning Advisor (DTA).

We run DTAc and DTA to compare their total query runtimes

estimated by the SQL Server’s cost models. All the experiments

are done on a server running Windows 7 with Dual-core CPU,

4GB RAM and 10K RPM HDD.

D.2) Datasets and Query workloads
We use two datasets and query workloads. The first is TPC-H

Scale 1 which has 22 analytic queries and two bulk load

INSERTs. Another is a real sales database (Sales) which has 50

analytic queries and two bulk load statements on fact tables. We

vary the space budget from 10% to 100% of the database sizes

without any indexes. It is interesting to note that DTAc might

produce indexes even with 0% space budget by compressing

existing tables (heaps/clustered indexes) and spending the saved

space to secondary indexes.

In both workloads, we also vary the weights of the bulk load

statements to represent SELECT intensive and INSERT

intensive workloads. Simply put, a database design with more

indexes and heavier compression is suited for SELECT intensive

workloads while a database design with less indexes and lighter

compression is suited for INSERT intensive workloads because

of the overheads to maintain indexes against INSERTs.

D.3) Results
Size Estimation for Compressed Indexes: We first verify the

quality and runtime of the size estimation algorithm described in

Section 4. Table 4 compares the quality (total sampling cost of

suggested deduction strategy) of our greedy algorithm to 2 other

methods with e=50%, q=90%. All simply applies SampleCF for

all nodes. Optimal is an exact algorithm with recursion given

below. As Optimal takes too long time for many indexes, we

only used indexes in LINEITEM table in TPC-H. Also, we

limited the number of columns per index to 7. As the result

shows, Greedy achieves 2x to 6x smaller sampling cost

compared to All by utilizing deductions. With a larger error

tolerance such as e=100%, the difference becomes as large as 50

times. The quality of Greedy closely follows Optimal, costing

on average only 8% and at most 30% more. Finally, Greedy

never violates the accuracy constraint unless even All does. To

contrast with this, we tested yet another simple algorithm which

samples only singleton indexes and deduces all target indexes

from them. Such an algorithm achieves the minimal sampling

cost, but yields high errors (e.g., >4x mis-estimation for >50%

probability, >2x mis-estimation for >90% probability).

As for runtime, Optimal did not finish in hours for all 300

indexes considered by DTAc while Greedy finished in a second.

Table 4. Quality (Cost) of Graph Algorithms. e=0.5, q=0.9.

 f=1% f=2.5% f=5% f=7.5% f=10%

All 222 555 1111 1666 2221

Greedy 114 284 393 589 352

Optimal 114 284 296 444 299

We then verify the real overheads of the size estimation in

DTAc. Figure 11 compares the total runtime of DTAc on TPC-

H with all features (clustered/secondary indexes, partial and MV

indexes) with and without deduction. Note that even “w/o

deduction” uses the Sample Manager described in Section 4

without which DTAc takes too long time to finish.

Figure 11 Real Runtime of Index Size Estimation.

All costs other than size estimation (e.g., optimizer calls,

candidate generation and enumeration), denoted as “Other”, are

the inherent costs and largely same as the runtime of the original

DTA which does not consider compressed indexes. The time to

estimate the sizes of compressed indexes, denoted as “X-

Estimate” (plain Table indexes, Partial indexes and MV

indexes), significantly drops by utilizing deductions.

Overall, deductions reduce the overhead of index size estimation

from dominating (700 seconds) to modest (200 seconds)

compared to the rest of the tuning costs (500 seconds). For

larger datasets (e.g., TPC-H Scale 10), the overhead of size

estimation becomes even more dominant. We observed a similar

result on Sales.

Regarding the actual accuracy of index size estimation, we

observe that most cases have less than 10% errors. These results

show that our size estimation module strikes a reasonable

balance between accuracy and efficiency in size estimation of

compressed indexes.

0

5

10

15

20

DTAc w/o
Deduction

DTAc

D
e

si
gn

 T
o

o
l

R
u

n
ti

m
e

 [
m

in
] MV-Estimate

MV-Sample

Partial-Estimate

Partial-Sample

Table-Estimate

Table-Sample

Other

Optimal Graph Search Algo. (exact, but exponential)

1. Construct subgraphs (clusters) of indexes which are

considered together (e.g., AB and ABC and ABD);

2. foreach (subgraph) {

3. best = NULL;

4. Add all possible descendants and deductions;

5. [Recursion] while subgraph is not empty {

6. when it becomes empty, update best if it constitutes

a satisfying assignment with least sampling cost so far;

7. branch = widest remaining index in subgraph;

8. Mark branch as SAMPLED, eliminate descendants

that are no longer needed, then recurse;

9. foreach (deduction to deduce the size of branch) {

10. Mark branch as DEDUCED from the deduction,

eliminate descendants no longer needed, then recurse;

11. }}

12. Apply the assignments of best to the original graph.}

667

Figure 12. TPC-H SELECT Intensive: Turning On/Off

Candidate Selection/Enumeration Techniques.

Figure 13. TPC-H INSERT Intensive: Turning On/Off

Candidate Selection/Enumeration Techniques.

Candidate Selection and Enumeration: Second, we verify the

effects of techniques we presented in Section 6. Figure 12 and

Figure 13 compare the improvements of database designs

produced by DTAc and DTA with various space budgets.

Improvement is an estimated runtime improvement from the

initial database, e.g., improvement of 75% means a 4x speed up

while 85% means a 6x speed up. The dataset is TPC-H and we

enable only simple indexes (clustered and secondary indexes on

tables) this time. The full implementation, denoted as “DTAc

(Both)”, considers compressed indexes and applies both the

Skyline selection and backtracking in the greedy enumeration

phase. “Skyline” and “Backtrack”, as the name suggests, apply

each of them. “DTAc (None)” applies none of them, just

generating compressed versions of candidate indexes. “DTA” is

the original DTA that does not consider compressed indexes.

As the result shows, only the full implementation achieves

significantly better designs especially in tight space budgets.

This is because the current candidate selection which picks only

the fastest configuration per query cannot capture the potential

of compressed indexes with smaller sizes and the current

enumeration algorithms cannot choose an index that is slower

but saves space. This experiment shows that both the Skyline

selection and the greedy backtracking are essential to capture

good database designs with compressed indexes.

Designs for Sales: Next experiment is on the Sales database.

We use the same setting as the previous experiment, but this

time we run only the full implementation of DTAc. Figure 14

and Figure 15 compare the database designs produced by DTAc

and DTA. As the result shows, DTAc achieves significantly

better designs because it utilizes compression to make indexes

faster and also to allow more indexes within the space budget.

Also, DTAc is aware of the overheads of compressed indexes

and avoids compressing too many indexes in the INSERT

intensive case (all designs for 100MB budget and larger is the

same). This prevents the generated design from slowing down

with larger budgets, which happens with a naïve design tool that

decouples compression from the choice of indexes.

Designs for TPC-H: Finally, we show the results with all

features (partial indexes and MV indexes too) enabled. Figures

16 and 17 compare DTAc and DTA on TPC-H for SELECT

intensive and INSERT intensive workloads. Again, we observe

substantially better improvements with DTAc because it utilizes

index compression to make the best of limited space. In the

SELECT intensive case, the difference is a factor of 2 (e.g., 70%

improvement vs. 40% improvement) in tight space budgets. The

difference is smaller in larger space budgets (10% to 50%)

because more indexes can fit the space budget without

compression. In the INSERT intensive case, the designs by

DTAc for larger space budgets are similar to DTA since the

update overhead of compressed indexes is significant and DTAc

chooses not select compressed indexes.

0

20

40

60

80

50 300 700 1500

Im
p

ro
ve

m
e

n
t

[%
]

Budget [MB]

DTAc (Both)

Skyline

Backtrack

DTAc (None)

DTA

0

20

40

60

80

50 300 700 1500Im
p

ro
ve

m
e

n
t

[%
]

Budget [MB]

DTAc (Both)

Skyline

Backtrack

DTAc (None)

DTA

Figure 14. Sales SELECT Intensive, Simple Indexes.

Figure 15. Sales INSERT Intensive, Simple Indexes.

Figure 16. TPC-H SELECT Intensive, All Features.

Figure 17. TPC-H INSERT Intensive, All Features.

0

20

40

60

0 50 100 150 200

Im
p

ro
ve

m
e

n
t

[%
]

Budget [MB]

DTAc
DTA

0

10

20

30

0 50 100 150 200

Im
p

ro
ve

m
e

n
t

[%
]

Budget [MB]

DTAc

DTA

0

20

40

60

80

0 200 400 600 800 1000

Im
p

ro
ve

m
e

n
t

[%
]

Budget [MB]

DTAc

DTA

0

20

40

60

0 200 400 600 800 1000

Im
p

ro
ve

m
e

n
ts

[
%

]

Budget [MB]

DTAc

DTA

668

