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ABSTRACT

In a cloud computing environment, it is beneficial for the
cloud service provider to offer differentiated services among
different customers, who often have different cost profiles.
Therefore, cost-aware scheduling of queries is important. A
practical cost-aware scheduling algorithm must be able to
handle the highly demanding query volumes in the schedul-
ing queues to make online scheduling decisions very quickly.
We develop such a highly efficient cost-aware query schedul-
ing algorithm, called iCBS. iCBS takes the query costs de-
rived from the service level agreements (SLAs) between the
service provider and its customers into account to make cost-
aware scheduling decisions. iCBS is an incremental variation
of an existing scheduling algorithm, CBS. Although CBS ex-
hibits an exceptionally good cost performance, it has a pro-
hibitive time complexity. Our main contributions are (1)
to observe how CBS behaves under piecewise linear SLAs,
which are very common in cloud computing systems, and (2)
to efficiently leverage these observations and to reduce the
online time complexity from O(N) for the original version
CBS to O(log? N) for iCBS.

1. INTRODUCTION

In a cloud computing environment, service providers offer
vast IT resources to large sets of customers with diverse
service requirements. By doing so, the service providers
leverage the customer volume to achieve economies of scale.
A service provider usually has contracts with its customers
in the form of service level agreements (SLAs), where the
SLAs can be about many aspects of a cloud computing ser-
vice such as availability, security, response time, etc. An
SLA indicates the level of service agreed upon as well as
the associated cost if the service provider fails to deliver the
level of service. In this work, we focus on this cost defined
by the SLAs. Obviously, optimizing the cost while serving
a large number of customers is vital for the cloud service
providers. Such an optimization has to take many aspects
of a cloud computing system into consideration, such as ca-
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pacity planning, dispatching, and scheduling. Therefore, a
single all-inclusive solution is very difficult to obtain (see
Appendix A for more discussions). Instead, in this paper
we focus on a local optimization problem, namely to sched-
ule queries from diverse customers in a cost-aware way in
order to minimize the SLA cost to the service provider.
The problem of cost-aware scheduling has been studied in
the past in the areas of computer networks [12] and real-
time databases [7]. However, it is somewhat discouraging
to note that the developed algorithms have not been widely
deployed in real applications, mainly due to their high com-
plexity. Such a situation seems to be changing with the
advance of the cloud computing. This is evident from the
recent new interests in cost-aware scheduling algorithms in
the database area [1, 4, 5]. We believe that the cloud com-
puting environment offers two reasons for such a change.

Change in resource usage for scheduling: In order to
make scheduling decisions, we have to use system re-
sources (e.g., CPU cycles and memory). In computer
networks, for example, the ratio between the resources
used by scheduling and those used by processing a
network packet has to be very low, because of the
limited resource capacity at a network router. This
is a main reason why simple policies such as first-
come-first-serve (FCFS), shortest-job-first (SJF), and
earliest-deadline-first (EDF) were preferred. In com-
parison, this ratio of resource usages is very different
in the cloud computing environment. In the cloud
computing environment, a higher resource usage for
scheduling is acceptable, as long as doing so is justi-
fied by the reduction in the query execution cost.

Availability of cost functions: In traditional computer
networks and real-time databases, there is a lack of
consensus on what the most reasonable cost function
should be. In the cloud computing environment, such
cost functions are usually available from the contracts
between the service providers and their customers, in
the form of service level agreements (SLAs). In ad-
dition, the SLAs used by cloud service providers are
usually piecewise linear functions because they can be
defined by the clauses in business contracts. Such
piecewise linear SLAs, as we will show, make many
cost-aware scheduling computations more tractable.

Based on the above motivations, we investigate a cost-
aware scheduling algorithm, CBS, that has been proposed by
Peha and Tobagi [10, 12]. The main reason for us to choose



CBS is its exceptionally good cost performance, which often
approaches the lower bound of theoretically optimal total
cost [10]. Our own experiments, as will be shown later,
verified this claim, showing that CBS outperforms several
recently proposed cost-aware scheduling algorithms in the
database systems [4] and supercomputing [8] communities.
However, CBS suffers from one weak point—its time com-
plexity for making each scheduling decision is O(N), where
N is the number of queries to be scheduled. Such a linear
time complexity is prohibitive in a cloud computing system,
where there can be a very large number of queries to be
scheduled and where the online decisions have to be made
extremely quickly. We will discuss CBS in detail in the
next section. Here we only point out that in CBS, the pri-
orities of the queries are dynamically changing over time.
On one hand, such dynamically changing priorities capture
the change of urgency of queries over time (e.g., as a query
approaching its deadline) thereby making CBS superior to
algorithms that simply assign static priority scores to the
queries. On the other hand, because the query priorities
have to be re-computed each time a scheduling decision is
made, it seems that the linear time complexity O(N) is a
necessary price that we have to pay.

However, in this paper, we demonstrate that the linear
time complexity of CBS can be avoided, under piecewise
linear cost functions (SLAs). The main contributions of
this paper are two-fold. First, we observe that in CBS, al-
though the priority scores of the queries change continuously
over time, the relative order among the priority scores only
changes as discrete events. In other words, the relative or-
der changes over time as a series of discrete snapshots. Our
second contribution is to develop an efficient scheduling algo-
rithm, iCBS, to exploit the above observation. In iCBS, the
above snapshots are incrementally maintained, where from
these snapshots, the query with the top priority can be ob-
tained very quickly. Our iCBS algorithm makes ezactly the
same scheduling decisions as CBS. But compared with the
O(N) time complexity of CBS, iCBS achieves a time com-
plexity of O(log N) for many piecewise linear SLAs, and
O(log? N) for all piecewise linear SLAs, by using techniques
borrowed from the field of computational geometry. iCBS is
also used as the scheduler in our comprehensive data man-
agement platform in the cloud, CloudDB [6].

2. BACKGROUND AND RELATED WORK

In this section, we provide background information. We
first discuss SLAs, especially various piecewise linear SLAs.
Then we survey recent work on SLA-based scheduling algo-
rithms. Finally, we introduce the CBS algorithm in detail.

2.1 Service Level Agreements (SLAs)

A service level agreement (SLA) is a contract between a
service provider and its customers. An SLA indicates the
level of service agreed upon as well as the associated cost if
the service provider fails to deliver the level of service. SLAs
can be about many aspects of a cloud computing service such
as availability, security, response time, etc. In this paper, we
focus on SLAs about query response time. That is, an SLA
is a function f(t), where ¢ is the response time of a query
and f(t) is the corresponding cost if the response time is ¢.

Fig. 1 shows several examples of SLAs used in previous
work (e.g., [1, 4, 8]). Fig. 1(a) shows a step-shaped cost
function, where the cost to the service provider is ¢; if the
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Figure 1: Examples of SLAs used in previous work.
query response time is later than its deadline ¢;. Fig. 1(b)
shows a cost function that increases proportionally to the
tardiness, after a deadline ¢; is missed. In Fig. 1(c), the
cost has a bound c2, which indicates the maximum cost a
query can introduce.

It is worth noting that although the SLAs shown in Fig. 1
represent a mapping between system-level metrics (e.g., query
response time) and costs, the system-level performance can
be dramatically different from the cost performance. For
example, assume a service provider offers services to two
customers, a gold customer and a silver customer, by us-
ing a shared database server. Because the customers have
different SLAs, simply from the distribution of query re-
sponse time for all the queries, we are not able to tell how
good the performance is in terms of cost. This is because
the latter depends on other factors such as the shape of the
SLAs from the gold and silver customers, the workload ra-
tios between the two customers, how the scheduling priority
is determined, and so on.

Instead of cost functions, SLAs in some previous work are
in the form of profit functions. We show in Appendix B.1
that these two are equivalent. In addition, in this paper
we use per-query SLAs instead of per-customer or quan-
tile SLAs, because we believe the former have more flexibil-
ity. For example, under per-query SLAs, queries from the
same customer may have different SLAs, depending on the
expected execution time and resource consumption of the
query, or depending on the budget quota that the customer
has used so far. In addition, there exists techniques (e.g.,
[3]) that directly map per-query SLAs to quantile SLAs.

2.2 Piecewise Linear SLAs

We focus on piecewise linear SLAs, as they exhibit very
good model for capturing service contracts. By piecewise
linear SLA, we mean that the cost function f(¢) can be
divided into finite segments along the time line and in each
segment, f(t) is a function linear in ¢. We next provide
several representative piecewise linear SLAs and show that
these SLAs are able to capture various rich semantics.

Fig. 2 shows several examples of piecewise linear SLAs.
In the figure, the z-axis represents query response time (for
easy illustration, we assume the query arrives to the system
at time 0); the y-axis represents the cost corresponding to
different response time t. We discuss these cases in detail.

Fig. 2(a) describes an SLA with a linearly increasing cost
versus the response time. That is, the cost is proportional
to the response time. Such an SLA reflects a target of
weighted mean response time. A moment of thought will re-
veal that under such SLAs, minimizing the total cost among
all queries is equivalent to minimizing the weighted response
time of all queries, where the weight for each query is pro-
portional to the slope of its linearly increasing SLA.

Fig. 2(b) describes an SLA in the form of a step function,
where the cost is co if the response time is less than ¢; and
c1 otherwise. As a special case, when ¢y = 0 and ¢; = 1 for
all queries, the average cost under such an SLA is the same
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Figure 2: Representative piecewise linear SLAs.

as the fraction of queries that miss their (sole) deadlines.
It is worth noting that in this case, and in all other cases
in the figure, the parameters such as co, c1, and ¢; can be
different for each individual query. That is, each query can
name its own deadline and corresponding cost for missing
that deadline.

Fig. 2(c) describes a staircase-shaped SLA. The cost is co
if the response time is less than ¢, ¢; if the response time
is between t1 and t2, and so on. Finally, the cost becomes a
fixed value (c2 in this example) after the last deadline (¢2 in
this example). Such an SLA can be used to capture multi-
ple semantics simultaneously. For example, when checking
out a shopping cart at an online e-commerce Web site, a
response time less than ¢; may result in good user expe-
rience whereas a response time longer than t2 may reflect
certain unacceptable performance (e.g., t2 can be the time-
out threshold of the user’s browser, after which the query
result becomes invalid).

Fig. 2(d) describes the mixture of a step function and a
linear function. That is, the cost remains constant up to a
response time ¢; and then grows linearly afterward. This
SLA allows a grace period, up to ti, after which the cost
grows linearly over time. This example also illustrates that
in general, SLAs may contain cost “jumps” (at time ¢1 in
this example) in the cost functions.

Fig. 2(e) describes another way of mixing the step and
linear functions. The cost initially grows linearly, but after
time ¢, it becomes a constant. This SLA captures, for ex-
ample, the concept of a proportional cost with a time-out.
That is, after t1, the damage has been done and so the cost
has reached its maximal penalty value.

Fig. 2(f) describes a piecewise linear SLA in the most
general form. That is, the slope at each time segment can
be different and there can be cost jumps between consecutive
segments in the SLA.

Other than capturing various rich semantics, piecewise
linear SLAs also make many computations in cost-aware
scheduling more tractable, which is a key to our work.

2.3 Related Work

Scheduling is a mature problem and has long been exten-
sively studied in various areas such as computer networks,
database systems, and Web services. There exist many
different scheduling policies and there is a vast amount of
theoretical results and practical analysis on various policies
(e.g., see [9]). However, in most existing work on scheduling,
the performance metrics are low-level metrics (e.g., average
query response time or stretch [5]). Instead, in this subsec-
tion, we mainly survey some of the recently proposed cost-
aware scheduling strategies. As will be seen, this previous

work assumes some specific SLA shapes and designs schedul-
ing policies accordingly, and very often, the SLA shapes are
piecewise linear.

Guirguis et al. [4] aim to minimize tardiness as shown in
Fig. 2(d), which is i) zero if a query is finished before its
deadline, or ii) the query’s finish time minus its deadline, if
the query misses it deadline. They analyze that EDF is a
better choice at minimizing tardiness when the system load
is low, and SRPT (Shortest Remaining Processing Time) is a
better choice when the load is high. They propose ASETS*,
a novel scheduling method that combines EDF and SRPT
using a heuristic, and show that ASETS* outperforms both
EDF and SRPT over a wide range of loads.

Irwin et al. [8] consider SLA cost functions in the form
of a gradually increasing penalty with a bound, as shown
in Fig. 2(e) and Fig. 1(c). In order to maximize service
provider’s profit, they employ two economic concepts, namely
present value and opportunity cost, and propose a scheduling
policy called FirstReward that combines the two concepts.
Irwin et al. focus on the case of preemptive execution, where
a query can be stopped in the middle of execution and re-
sumed later, which is often the case in the supercomputing
context. Note that we assume non-preemptive execution in
this paper, which is often the case in data-intensive com-
puting, such as database query execution. Lastly, note that
FirstReward’s scheduling decision takes O(N?) time, where
N is the number of queries in the queue, and this may cause
a significant performance overhead.

Peha [11] proposes a scheduling and admission control
method by using a priority token bank. It is assumed that
jobs can be grouped into N classes and jobs in each class are
treated equally (by using FIFO). Because different classes
have different profiles (e.g., guaranteed or best-effort, differ-
ent costs for missing deadlines, etc.), a prioritization scheme
is designed to choose the next class to serve. This method
assumes job classes (videos, emails, etc.) and does not differ-
entiate jobs within the same class. Therefore it is much more
restricted than the CBS framework, in which each query can
have its own cost profile.

In [1], we study staircase-shaped SLAs as shown in Fig. 2(c).
We build a data structure, called SLA-tree, to capture the
SLAs of the queries in the queue and propose a greedy al-
gorithm to improve a given scheduling algorithm. However,
the SLA-tree based scheduling algorithm in [1] can only be
used to improve an existing scheduling algorithm and it can
only handle staircase-shaped SLAs.

While this previous work focuses on specific types of SLA
cost function, CBS (which we will introduce in detail mo-
mentarily) supports all types of SLA cost functions. Also,
our iCBS supports all piecewise linear SLA cost functions,
which is much more expressive than the cost functions in
most of the previous work. We will compare the cost perfor-
mance of iCBS with that of some previous work mentioned
above in the experiment section.

2.4 Cost-based Scheduling (CBS) in Detail

CBS is a cost-based scheduling algorithm proposed by
Peha and Tobagi [10, 12]. The goal of CBS is to sched-
ule queries in the queue, where each query has its own cost
SLA in terms of response time, in a way that minimizes the
total expected cost. However, achieving such a minimal cost,
even for the offline case where future arrivals of queries are
known beforehand, is an NP-complete problem. The heuris-



tic used by CBS is to compute a priority score for each query
g in the queue based only on (1) ¢’s SLA and (2) how long
q has been waiting in the queue. Because the priority score
of q is computed independently from other queries in the
queue, and because the query with the highest value for the
computed priority is chosen for execution, CBS has a time
complexity of O(N) for making a scheduling decision when
there are N queries in the queue.

More specifically, for each query ¢ in the queue, CBS com-
putes an expected cost reduction of executing g immediately,
rather than delaying it further. The expected cost reduc-
tion at a given time ¢t (where ¢ is the time when the system
schedules the next query to execute) is computed by

r(t) = / ae” “Tf(t —to+T)dT — f(t —to) (1)
0
where ¢ is the time at which the query arrives to the system
and a is a free parameter (the only parameter) to be set by
CBS. For convenience, in the rest of the paper, we refer to
“the expected cost reduction r(¢) computed by CBS at time
t” as the CBS score at time t.

To intuitively describe how CBS works, in Fig. 3 we il-
lustrate how the CBS score is computed at time t’ and t”
for a query ¢ with a SLA of Fig. 2(b), and we assume the
query arrives to the system at time ¢o. Fig. 3(a) shows how
the CBS score at time ¢’ is obtained. At t', if q is served
immediately, the cost will be f(t' —to) = co. If, on the other
hand, we decide to postpone ¢, then it is assumed that g
will stay in the queue for an amount of waiting time 7 that
follows an exponential distribution with mean 1/a. So the
expected cost for postponing ¢ is [ ae™ 7 f(t' —to + T)dT.
The CBS score is the net gain of choosing to serve ¢ now
instead of postponing it further?.
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Figure 3: The intuition of CBS: how CBS scores are
computed (a) at time ¢’ and (b) at time ¢".

So as can be seen from Fig. 3, there are two factors that
affect the CBS score of q. The first factor is the SLA of ¢,
i.e., the values of co, c1, and t1; the second factor is how
long g has been waiting in the system. This second factor
can be illustrated by comparing Fig. 3(a) with Fig. 3(b).
Compared with the situation at time t’, at time ¢, ¢ has
been waiting in the system longer, and its deadline for the
next cost jump in the SLA (the jump at time ¢o+¢1) is more
urgent. As a result, its CBS score, which is reflected by the
shaded areas in the figures, has grown higher.

n the original CBS formula [12], the query execution time
gs of a query ¢ is used to derive the real urgency of ¢ (i.e., the
time when the execution of g has to be started). In addition,
the CBS score of g is r(t) /gs instead of r(t). For convenience,
without loss of generality, we describe CBS as if ¢ were 0,
and use r(t) instead of r(t)/gs. In Appendix B.2, we show
that we can compensate these differences by shifting and
scaling the SLA of q.
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Some additional discussions about CBS are given in Ap-
pendix B, in which (1) we offer more details on CBS, (2) we
prove that for CBS, without loss of generality we can always
set co = 0 in piecewise linear SLAs, and (3) we discuss two
factors, the multi-programming-level (MPL) and the errors
in the estimation of query execution time, that may affect
the effectiveness of CBS.

From Equation (1) we can see that CBS is inefficient in
that at each time of scheduling, a CBS score has to be com-
puted for each query in the queue and each computation
involves an integration. Assuming there are N queries wait-
ing in the queue and assuming no new query arrives, the
total number of CBS scores to be computed in order to fin-
ish the N queries one by one is N2/2. As a consequence,
the average time for online scheduling of each query is O(N).
To alleviate such expensive computation of CBS, in the next
two sections, we propose an efficient incremental version of
CBS, namely iCBS, that has O(log? N) time complexity un-
der piecewise linear SLAs.

3. ICBS WITH 0O(log N) COMPLEXITY

We develop our incremental variation of CBS, iCBS, in
this section and the next. For certain special forms of piece-
wise linear SLAs, namely those described in Figs. 2(a)-2(d),
iCBS is able to achieve an O(log N) time complexity (com-
pared with O(N) for original CBS). We postpone iCBS for
the general piecewise linear SLAs, namely those described
in Figs. 2(e) and 2(f), to the next section.

3.1 CBS Score without Integration

We start by showing a method to compute the CBS scores
under piecewise linear SLAs without conducting any integra-
tion. The method is based on a canonical decomposition of
piecewise linear SLAs and on rules of calculus. We provide
the derivation details in Appendix C and give the final for-
mula, for the SLA described in Fig. 2(f), as the following

1 .81 —S80. _ _ .
S0+ (i + T

§2 — 81\ —a(to—t
)e a(tz—t)

(2)
where so, s1, and sz are the slopes of the SLA segments; ji
and jo are the heights of the jumps at time ¢; and t2. Note
that Equation (2) is valid only for ¢ < ¢;.

Therefore, when SLAs are piecewise linear, we can effi-
ciently compute CBS scores at any time ¢ by evaluating
the exponential values at the places where SLA segments
change, without conducting any integration.

3.2 iCBS for the SLA in Figure 2(a)

It can be easily shown that in CBS, if the SLA is a simple
linear function, like that in Fig. 2(a), then the CBS score
r(t) is a constant over ¢. The reason is that by reshuffling
Equation (1), we have

r(t)

r(t) = /Ooo ae” “T[f(t —to+T)— f(t —to)]dT

/ ae” “"brdr =b/a
0

where b is the slope of the linear SLA. So as can be seen, in
such a case, each query has a time-invariant CBS score and
so incremental CBS can be trivially implemented by using
a priority queue, with an O(log N) time complexity.



3.3 iCBS for the SLA in Figure 2(b)

To handle the SLA in Fig. 2(b), we first derive that for a
step-function SLA with height ¢1, the CBS score is

— ﬂ@at

where 8 = ¢ - e” "1, and t is the time when the CBS score
is computed. Note that the above formula is valid only for
t < t1 and after t1, r(t) becomes 0. We can see that in this
case r(t) is time-varying. However, a key observation is that
CBS does not care the absolute value for each individual
r(t), but instead cares about the relative order among the
r(t)’s for all the queries. This is because that CBS only
has to pick the top query with the highest CBS score to be
executed next. Therefore as long as the CBS scores among
all queries share the same factor e®f, their relative order is
time-invariant and only depends on to, when a query arrives,
t1, when the deadline is, and ci, the cost of missing the
query’s deadline (recall that without loss of generality, we
assume co = 0). Therefore, this case of step-function SLA
can be handled by using a priority queue ordered by the
values of the queries (where § values are time-invariant),
again with an O(log N) time complexity.

3.4 iCBS for the SLA in Figure 2(c)

Before handling SLAs in Figs. 2(c) and 2(d), we first study
a more general case as described in Fig. 4(a). Note that in
this more general case, the SLA cost is 0 before to 4+ ¢t1 and
an arbitrary function (which we denote by a blob) afterward.
Now we study how the CBS score changes over time. It turns
out that between time to and to +t1, the CBS score changes
in a particular pattern. To see this, we compute the CBS
scores at two time instances, ¢’ and t”, where to < t' < t” <
to + t1. At time ¢, we have

r(t) =c1-e 7Y

r(t) = / ae” T f(t' —to+ T)dT — f(t' —to)
0
and at time ¢ we have (derivation given in Appendix B.5)

") = (3)

As a consequence we can see that the CBS score for the SLA
in Fig. 4(a) grows exponentially with parameter a until time
to + t1, as shown in Fig. 4(b).

ea(tllft/) . r(t’)

CBS

score
ﬁ |

t0+t1 t0+t1
t t

(a) (b)
Figure 4: (a) An SLA with zero cost until ¢, +t; and

(b) how the CBS score changes over time exponen-
tially between to and to + ¢1.

cost

t0

Now we come back to the piecewise linear SLA described
in Fig. 2(c). It can be shown that its CBS score changes
over time as described in Fig. 5(a). The basic idea is that at
each segment of the SLA, we can shift down the staircases to
get an SLA similar to that in Fig. 4(a), where the blob is re-
placed by the remaining staircases. As time elapses, as long
as we are still in the same segment, the CBS score grows in
an exponential fashion, as we have just shown. In addition,
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(a) (b)
Figure 5: Left: how the CBS score changes over
time for the SLA in Fig. 2(c). Right: how the CBS
score changes over time for the SLA in Fig. 2(d).

the exponential rate is the same for all the segments and for
all the queries, because the rate only depends on a.

Based on all these properties, we develop an incremental
CBS by using two priority queues. Both priority queues
keep all the queries, but with different priority scores. In
the first priority queue, the score for each query ¢ is the
CBS score for ¢ if we consider the remaining staircases of
q as a blob. Following the same idea as shown in the case
of SLA in Fig. 2(b), the relative order among the queries
in the first priority queue remains fixed. So the problem is
boiled down to detecting when each query changes its SLA
segments (and so changes the shape of the blob).

For this, we use the second priority queue. In the sec-
ond priority queue, the score for each query ¢ is the time
when the next cost jump will happen in ¢’s SLA, or in other
words, the time when ¢’s current SLA segment will expire.
At each time t when we need to select the next query to
execute, we first take out all those queries whose SLA seg-
ments expired before ¢t. For these queries, the old blobs are
not valid anymore and so for each such query ¢, we locate
q’s current SLA segment that overlaps ¢, get ¢’s new time-
of-expiration of current SLA segment, and reinsert ¢ into
the second priority queue. At the same time, we update ¢’s
CBS score in the first priority queue to reflect its new score.
This second priority queue actually makes sure that all the
queries are in their first segment of (probably revised, if the
old first segments have expired) piecewise linear SLAs. That
is, for all queries, ¢ < t1 is always true in r(t), and therefore
Equation (2) is always valid. As can be easily shown, the
numbers of de-queue and en-queue operations for a query ¢
in the first and second priority queues are both bounded by
the number of segments in ¢’s SLA, which we assume to be
bounded by a constant. So the amortized time complexity
is still O(log N) for scheduling each query.

3.5 iCBS for the SLA in Figure 2(d)

For SLAs in Fig. 2(d), it can be shown that its CBS score
changes over time as described in Fig. 5(b), where initially
it grows exponentially with rate a and after ¢;, it becomes
a constant. So we can use the similar idea as before, except
that we need three priority queues. The first and the second
ones are the same as before, except when a query is popped
out from the second queue, it is never inserted back; instead,
it is removed from both the first and the second priority
queues and is inserted into the third priority queue. This
is because at the time of being popped out of the second
priority queue, ¢ has no further SLA segment changes and
so its CBS score becomes time-invariant. When scheduling
the next query to execute, after updating queries in the first
and second priority queues, we compare the query with the
highest CBS score in the first priority queue and that in
the third queue, and pick the one with the higher score to
execute. The time complexity clearly is still O(log N).



4. ICBS WITH 0O(log? N) COMPLEXITY

In this section, we investigate the incremental version
of CBS for general piecewise linear SLAs, as described in
Figs. 2(e) and 2(f). We will analyze why these cases are
more difficult than the previous cases. Then we describe an
efficient method by using a dynamic convex hull algorithm
in computational geometry.

4.1 Why the Difficult Cases Are Difficult

Starting from Equation (2), with certain derivation we
can show that the CBS score at time ¢t for a query ¢, who
has a general piecewise linear SLA, can be written as

f(t) = a+ Be™, (4)

where a and 3 are constant values totally determined by ¢’s
arrival time and its SLA.

It is obvious from Equation (4) why an incremental ver-
sion of CBS is hard to get. Fig. 6(a) illustrates for three
sample queries with different o’s and (Bs’, how their CBS
scores change over time. As can be seen from Fig. 6(a), the
relative order of the CBS scores of the three queries changes
over time. In other words, in general, the order among the
CBS scores of the queries is different depending on the time
t when we ask about that order. Such a property poses dif-
ficulties to an incremental version of CBS in the time space.
To address such difficulties, in the following we investigate a
different view of the problem: we study the problem in the
dual space of linear functions.

CBS
score

q3
q2
q1 ti
0 ime 0By PPy B
(a) (b)

Figure 6: (a) How the SLA scores of three fictitious
queries change over time. (b) The three queries in
the dual space, with the affine-lines for scheduling.

4.2 A Dual-Space View of CBS

Now we provide a new perspective of viewing the CBS
score f(t) = a+Be. First, we define a new variable £ = e**
(where € can be considered as a warped timeline) to get

f(&) = a+ B¢, Q)

where ¢ is time-varying but a and [ are constants. Note
that there is a one-to-one mapping between £ and ¢. Then,
we put each of these score functions into the dual space of
linear functions. That is, each function f(§) = a + B¢ is
mapped to a point in the dual space with coordinate («, 8),
as shown in Fig. 6(Db).

Next, we examine at a given time t’, how to determine the
order among the CBS scores. With & = %', at time ¢, we
can treat £ as fixed and look for the query that maximizes
f(&) = a+ B¢. If we consider a and 8 as variables, then
in the dual space, those points («, 3) that satisfy f(¢') =
o + B¢ = ¢ are on an affine line a = ¢ — ¢’B3, as shown in
Fig. 6(b). So at a given time t', here is a way we can get
the point in the dual space that corresponds to the query
with the highest CBS score at time ¢'. We first get ¢ = e**
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and construct an affine line with slope —¢’. Then starting
from the upper-right corner of the dual space, we move the
affine line toward the lower-left corner of the dual space
while keeping the slope fixed at —¢’. The first point hit by
the moving affine line will be the query that has the highest
CBS score at time t'. Figs. 7(a) and 7(b) show the same
set of three queries, whose CBS scores are compared at two
different time, ¢’ (with & = e*') and t” (with &’ = e*"),
where t' < t”. As can be seen, at early time ¢’, the (absolute)
slope of the affine line is smaller and so the point (as, 53)
has the highest score; as time going, at time t”, (a1, 81) has
the highest score because it has a higher 3 value.

B2 B
(@)

Figure 7: Selecting the query with the top CBS
score (a) at time ' and (b) at time t”.

In summary, the advantage of this dual-space approach
is that in the dual space, we fix the (a, 8) location of each
query as time-invariant; and over the time we change the
slope of the scheduling affine line to select the query with
the highest CBS score at any given moment. This dual-
space perspective, as we show in Appendix D.1, also offers
insights about why the cases in Section 3, i.e., those SLAs
in Figs. 2(a)-2(d), can be handled with time O(log N).

4.3 A Convex Hull based Algorithm

In this subsection, we develop iCBS under general piece-
wise linear SLAs that takes advantages of this dual-space
view. The first question is whether we can efficiently main-
tain the position of a query ¢ in the dual space over time.
The answer is affirmative, as the position of ¢ in the dual
space can only change finite number of times (which turns
out to be bounded by the number of segments in ¢’s SLA).
We formally prove this in Appendix D.2.

Second, it can be seen from Fig. 8(a) that a necessary
condition for a point ¢ to be hit first by the moving affine
line is that ¢ is on the (upper) convex hull of all points in the
dual space. Furthermore, it can be shown that if the convex
hull is maintained properly, at any time ¢, finding the point
hit first by the affine line of slope -¢ (i.e., with & = e**) can
be done in O(log M) time, where M is the number of points
on the convex hull (obviously, M < N). More specifically,
if the points of the convex hull are sorted by their 3 values,
as shown in Fig. 8(b), then the angles of the edges on the
convex hull are in an monotonically decreasing order. At
time t, we have a fixed slope -, and the condition for ¢ on
the convex hull to be the point hit first by the affine line of
slope -€ is that “the slope -£ is between the angles of the
two edges that incident to ¢”. This can easily be done by
conducting a binary search on the convex hull.

Therefore, it follows that we can develop iCBS as long as
we can (1) efficiently detect when a query changes its seg-
ment in its SLA and (2) incrementally maintain a convex
hull that supports adding and deleting points dynamically.
For item (1), as discussed before, we can maintain a priority



(b)

Figure 8: (a) The queries with the highest score can
only be on the upper convex hull in the dual space.
(b) The angles of the edges on the convex hull follow
a monotonic decreasing order.

queue of queries ordered by the time of the expiration of the
current SLA segment. At any time ¢, we can quickly locate
those queries whose current SLA segments have expired be-
fore t, and update their new current SLA segments together
with new expiration time of the current SLA segments. For
item (2), we adopt, from the field of computational geom-
etry, a dynamic convex hull algorithm for points in a 2-D
plane that has O(log? N) time complexity [13]. The detailed
implementation of the iCBS algorithm, as well as the time
and space complexity analysis, are given in Appendix D.3.

An intuitive interpretation of iCBS is that it incremen-
tally maintains (1) the snapshot of the CBS scores of all
the queries in the dual space and (2) the convex hull of the
snapshot. At each time ¢ of making a scheduling decision,
iCBS quickly brings up-to-date both the snapshot and the
convex hull, from which the query with the top CBS score
at time t can be located very efficiently.

S. EXPERIMENTAL STUDIES

The experiments are composed of two sets. First, we ver-
ify the good performance of CBS (iCBS?), in terms of cost
optimization, by comparing it with several other state-of-
the-art cost-aware scheduling algorithms. Second, we com-
pare the running time of iCBS with that of the original CBS
under various workloads. Some additional results are given
in Appendix E.

5.1 CBS Scheduling Effectiveness Verification

In this subsection, we verify the performance of CBS (iCBS)
using two different types of SLA cost functions. We com-
pare iCBS with two pieces of previous work, ASETS* [4]
and FirstReward [8], as described at the beginning of this
paper. For the query execution time we use an exponential
distribution with mean p =30ms; for the arrival rate we use
a Poisson arrival with rate 1/, which is determined by u
and the required load. The data set contains 20K queries,
where the first 10K are used for system warm-up.

The first SLA cost function is shown in Fig. 1(b), which
is also known as weighted tardiness [4]. We set the deadline
t1 for each query as 10 times its execution time. Following
the experiment design by [8], we choose the slope value from
one of two classes, high and low, where half of queries get
high slope values and half get low slope values. Within
each class, we choose the specific slope value from a normal

2In terms of the parameter a used in CBS, Peha [10] showed
that the CBS performance is not sensitive to the exact value
of a as long as a is in a reasonable range. So following Peha’s
suggestion, we simply used a = 10y where p is the mean
execution time of a query.
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distribution with a mean and stddev=0.2*mean. The ratio
between high mean and low mean is controlled by decay skew
factor, which we vary in the experiment. Note that ASETS*
[4] is explicitly designed for this first SLA cost function.

The second SLA cost function is shown in Fig. 1(c). Each
query incurs a cost after the minimum response time t1,
and there is a bound at 10 times the execution time (t2),
which differentiates it from the weighted tardiness above.
The bound value is chosen from two normal distributions as
described above, and the ratio of high mean and low mean
is called value skew factor. Note that FirstReward [8] is
explicitly designed for this second SLA cost function.

Table 1(left) shows the result on the first SLA cost func-
tion under different decay skew factors as described above.
When the system load is 0.8, the three cost-aware schedul-
ing algorithms already significantly outperform the cost-
unaware counterparts, namely FCFS and SJF. The improve-
ment become more striking when the system load is in-
creased to 0.95. Among the three cost-aware scheduling al-
gorithms, iCBS clearly outperforms the other two, especially
when the system load and the decay skew factor are high (ex-
actly when differentiated services are needed the most). For
example, under system load of 0.95 and decay skew factor of
128, iCBS outperforms the second best algorithm by 45%.

Table 1(right) shows the result on the second SLA cost
function under different valued skew factors as described
above. (We do not compare the performance with ASETS*,
because ASETS* cannot handle this SLA.) As can be seen,
although the margin is smaller, iCBS still consistently out-
performs FirstReward, which was designed specifically for
this second SLA, by about 10%.

5.2 Scheduling Efficiency Study

In this subsection, we investigate the performance of iCBS
in terms of running time>. As for the baseline, for fair com-
parison, we implement CBS so that it computes CBS scores
under piecewise linear SLAs without conducting integration,
as described in Section 3.1. All the running times are re-
ported on a Xeon PC with 3GHz CPU and 4GB memory,
running Fedora 11 Linux.

When the system has light load, the number of queries
to be scheduled is very small in most of the time with ex-
ponentially distributed execution times. Therefore, in this
experiment we focus on the case when the system load is
0.95, to study the situation when the system is borderline
overloaded. Fig. 9 shows the running time vs. the number
of queries to be scheduled for CBS and iCBS. As can be
seen, while CBS exhibits a clear O(N) behavior, the online
scheduling time of iCBS is almost unaffected by N. It is
worth noting that FirstReward on average needs a couple
of seconds to make each scheduling decision, which makes it
impractical for many applications.

Finally, we study a case that emulates the scenario with
a mixture workload with OLAP and OLTP queries. Query
execution time in such a case can be captured by a Pareto
(e.g., long-tail) distribution. Following [5], we set the min-
imum value of the Pareto to be 1ms and the Pareto index
to be 1. We use a load of 0.8 because even with such light
load, the number of queries to be scheduled can grow very

3We implemented a naive version of incremental convex hull
instead of using the sophisticated version in [13], and in our
experiments it is never a bottleneck. Details are skipped
due to the space limit.



Table 1: Average cost per query, for different algorithms under different skew and load factors.

SLA Type SLA-1 SLA-2
‘Workload 0.80 0.95 0.80 0.95
Skew Factor 2 | 8 32 | 128 || 2 [ 8 [ 32 [ 128 2 | 8 32 | 128 || 2 [ 8 [ 32 [ 128
FCFS 0.062 | 0.186 | 0.821 | 2.859 || 0.569 | 1.769 | 6.943 | 19.70 || 0.013 | 0.038 | 0.139 | 0.543 || 0.028 | 0.087 | 0.316 | 1.284
SJF 0.008 | 0.024 | 0.118 | 0.364 || 0.103 | 0.324 | 1.289 | 3.662 || 0.008 | 0.025 | 0.092 | 0.358 || 0.014 | 0.043 | 0.156 | 0.628
ASETS* 0.005 | 0.012 | 0.051 | 0.175 || 0.066 | 0.109 | 0.237 | 0.619 - - - - - - - -
F-REWARD || 0.005 | 0.013 | 0.049 | 0.176 || 0.069 | 0.102 | 0.201 | 0.490 || 0.007 | 0.018 | 0.059 | 0.223 || 0.010 | 0.023 | 0.077 | 0.296
iCBS 0.005 | 0.012 | 0.045 | 0.158 || 0.066 | 0.092 | 0.146 | 0.273 || 0.007 | 0.016 | 0.053 | 0.200 [[ 0.010 | 0.022 | 0.068 | 0.260
x 10*SLA—1 (Exp) x 10*SLA—2 (Exp) which are very common in cloud computing contracts, with
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Figure 9: Average scheduling time per query for the
Exponential case with Load=0.95.

large (because of OLAP queries may occupy the database
server for rather long time). Note that for this experiment,
FirstReward was not able to finish within reasonable time
(hours). Fig. 10 shows the performance comparison and
we can draw similar conclusions as before in terms of the
running time of iCBS. One observation is that in this case,
while the time to make a scheduling decision for iCBS is
extremely fast (less than 0.01ms), that for the original CBS
can become tens of milliseconds, an overhead unacceptable
in many database applications.
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Figure 10: Average scheduling time per query for
the Pareto case with Load=0.8.

6. CONCLUSION

We investigated a cost-based scheduling algorithm, CBS,
which has superior performance in terms of SLA cost and
therefore has great potentials in cloud computing. The main
focus of this paper was to implement CBS in a more efficient
way, where the cost is determined on query response time
by using piecewise linear SLAs. To achieve this goal, we de-
veloped an incremental variation of CBS, called iCBS, that
greatly reduces the computation time during online schedul-
ing. iCBS can handle any type of piecewise linear SLAs,

a very competitive time complexity.
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APPENDIX
A. CLOUD COMPUTING ARCHITECTURE

Fig. 11 shows several components that we believe are cru-
cial in a cloud computing system. A capacity planning com-
ponent plans (offline) and manages (online) the replication
and system resources; a dispatching component dispatches
queries to appropriate servers in a cost-aware way; locally at
each server, a cost-aware scheduling algorithm makes best-
effort scheduling to minimize the SLA cost among queries
dispatched to the server.

capacity planning

—replication

—migration
—re—provisioning

ueries
lﬁ—{ dispatching

scheduling
dve” Complete
5 o [ [ )0

Buffer

Figure 11:

database
i
omponents in a cloud system.

Ideally, we prefer a comprehensive optimization by con-
sidering all the above components in a global way. However,
we have concerns about such a global optimization in terms
of its adaptability to quick changes and scalability to large
numbers of clients in the cloud. Therefore, we choose to
use a modular approach where local optimization is made
in each component, and in this paper we only focus on the
cost-aware scheduling component.

B. MORE DETAILS ABOUT CBS

In this appendix, we discuss more details about CBS, in-
cluding the equivalence between cost SLAs and profit SLAs,
more details of CBS, setting c¢o = 0 in piecewise linear SLAs
for CBS, some factors that may affect the cost performance
of CBS, and the detailed derivation of Equation (3).

B.1 Cost SLAs vs. Profit SLAs

In our paper, to be consistent with the terminology used
in the original CBS algorithm, instead of using query profit,
we use query cost. These two are equivalent due to the
following reason. As shown in Fig. 12, we can decompose a
profit SLA into the difference between a constant profit SLA
and a cost SLA. That is, we can assume for each query the
service provider obtains a profit of g1 up front, and pays back
certain cost depending on the query response time, where
the maximal payback is g1 + p1. So the total profit among
all queries is the difference between the total profit up front
and the total cost. From the point of view of a scheduling
algorithm, the total upfront profit can be considered as a
constant, depending on the shape of SLAs and the workload,
which is beyond the control of the scheduling algorithm; the
total cost is the part that a scheduling algorithm can control,
by changing the priority among queries, where minimizing
the total cost is the final objective.

profit

response response
time time

Figure 12: Equivalence of profit and cost SLAs.
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B.2 More Details about CBS Score ()

There are several things we want to point out about Equa-
tion (1). First, the CBS score r(¢) is time-varying. This
makes sense because the urgency of a query depends on how
long the query has been waiting in the queue so far and as
a result, it depends on the time ¢ when the CBS score is
computed. Second, the f(t — to) term in 7(¢) is the cost for
executing query ¢ right now (i.e., at time ¢). Third, inside
the integration, the dummy variable 7 indicates the further
delay for query g and f(t—to+7) is the corresponding cost.

In the original CBS, the CBS score for query gq is r(¢) di-
vided by ¢s, the execution time of q. However, equivalently
we can scale the SLA of ¢ by 1/¢gs and therefore use r(¢)
computed from the scaled SLA as the CBS score. In addi-
tion, for simplicity of discussion, in this paper we illustrate
the examples as if the execution time gs were 0. A non-zero
execution time gs can be handled by shifting ¢’s SLA to the
left by an amount of ¢s. These adjustments are actually
implemented in all our algorithms mentioned in this paper.

B.3 Why We Can Set ¢, = 0 under CBS

One observation that can be obtained from Equation (1)
is that without loss of generality, to compute CBS score, we
can assume f(to) = 0. This is because (as shown in Fig. 13)

rg(t) / ae” “Tg(t —to + T)dT — g(t — to)
0

/Ooo ae™T[f(t — to +7) + coldr — [f(t — to) + co] = (1)

where the last step relies on the fact that ae™®" is a prob-

ability density function and therefore fooo ae”TeodT = cp.
This result reflects a key feature of CBS, where the damage
done so far can be ignored. Because of this property, in this
paper, without loss of generality, we assume f(to) = 0, and
therefore all the c¢o’s in Figs. 2(a)—(f) can be set to 0.

(t) 2(O=f()+c0

c0

t0

4
t

-

(a) (b)

Figure 13: The illustration of why without loss of
generality, we can assume f({o) =0 in all the SLAs.

B.4 Factors That Affect CBS

There are many factors that potentially affect the effec-
tiveness of CBS. One of the factors is the multi-programming-
level (MPL) of the database. However, CBS should not be
very sensitive to MPL, because the CBS score of a query ¢
only depends on ¢’s SLA cost function and ¢’s urgency. The
former is not related to MPL and the latter is approximated
in CBS by using an exponential distribution, which is not
sensitive to the exact MPL of the database. Our experimen-
tal studies, skipped due to the space limits, have verified this
conjecture.

Another factor that affects the effectiveness of CBS is how
accurate we can estimate the query execution time. We ar-
gue that a fully cost-aware scheduling algorithm has to take
query execution time into consideration (in this sense EDF
is not fully cost-aware, because it only considers query dead-
lines but not query execution time). Otherwise, the urgency



of a query is not accurately captured. To estimate query ex-
ecution time, recently work (e.g., [2]) has started using ma-
chine learning techniques and obtained encouraging results.
In addition, our own investigation (partly reported in [1])
demonstrate that CBS can tolerate errors in the estimation
of query execution time to certain levels. Specifically, when
the standard deviations of the errors are 0.2 and 1.0, the
performance degraded by 10% and 30%, respectively.

B.S Derivation of Equation (3)

Here we provide the derivation of Equation (3) and discuss
some technical subtleties.
We have

r(t) = /00 ae YT [f(t' —to+T) — f(t' —to)]dT
0
and
r(t") = /00 ae” T [f(t" —to+T)— fF(t" —to)ldT
0
= / ae” [f(t —to+ T+t —t) = f(t" —to)]dr
0

" R _a
= ottt / ae™ F(t — to+n) — F(t" — to)]dn
t//ft/
— 6a(t”7t,) . T(tl)

where in the derivation we defined a new dummy variable
n =7+t" —t and in the last step, we used the fact that
fE# —to+mn)—ft" —to)=0for 0 <np <t —t'.

This feature of CBS is actually due to the memory-less
property of the exponential distribution ae™®", namely at
any given time, the conditional distribution of the remaining
waiting time 7’ for a query in the queue is the same as the
original distribution of the total waiting time.

In addition, technically, the blob in Fig. 4 is not really
arbitrary: the cost function has to make the integration in
the CBS score finite. However, such a condition is satisfied
by any piecewise linear function with finite segments.

C. FAST COMPUTATION OF CBS SCORE
UNDER PIECEWISE LINEAR SLAS

In this appendix, we derive an efficient approach for com-
puting CBS scores of queries with piecewise linear SLAs.
This approach, by applying a canonical decomposition of
piecewise linear SLAs and by using rules of calculus, avoids
the expensive integration in the computation of CBS scores.
Such an efficient approach, other than making it fast to com-
pute CBS scores, reveals important insights about CBS un-
der piecewise linear SLAs. These insights turn out to be a
key to iCBS, our incremental implementation of CBS.

C.1 Decomposition of Piecewise Linear SLAs

We start with a canonical decomposition of a general
piecewise linear SLA. We illustrate the decomposition by
using the SLA described in Fig. 2(f), which is reproduced
on the left in Fig. 14 as fi. As shown in Fig. 14, the SLA
can be partitioned into three segments: that before t;, that
between t1 and t2, and that after ¢2. Starting from fi1, we
decompose the SLA into the sum of fa, which is a continu-
ous function, and f3 and fi, which are step functions that
capture the jumps in the costs of the SLA. Next, we take the
derivative of f2 to get f5, which in turn can be decomposed

into the sum of fs, which is a constant function correspond-
ing to the initial slope of the SLA, and fs and f7, which are
step functions that capture the jumps in the slopes of the
SLA. (Note that f5(t) is not defined at ¢; and t2, which is
fine because f2(t) is continuous and finite.) It can be shown
that in Equation (4), the a value of a CBS score for a piece-
wise linear SLA is determined by fs in Fig. 14, and the
value is determined by f3, fa, f6 and f7 in Fig. 14.
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Figure 14: The decomposition of a general piecewise
linear SLA f; into the sum of f>, f3, and fi, whereas
f5, the derivative of f, is further decomposed into
the sum of fs5, fs, and fr.

C.2 Fast Computation of the CBS Score

It turns out that with the help of the above canonical
decomposition, we are able to compute the CBS scores under
piecewise linear SLAs without any integration. We derive
this result by using the decomposition shown in Fig. 14.
The CBS score r(t) for t < t; is computed as

r(t) = /Ooo ae” “Tf1(t —to + 7)dT — f1(t —to) (6)

where without loss of generality we set fi(to) to be 0.
For the step function f3(7), it can be easily shown that

/ ae” "7 f3(t — to + T)dT = j1 - eia(tl*t%
0

where t; is the time when f3 jumps from 0 to a value of j;.
We can obtain similar result for f4. Because integration is
a linear operation, we have

r(t) = /O°° ae” “Tf1(t —to + T)dT — f1(t —to)

= / aeia‘rfg(t —to+ T)dT — f1 (t — to)

0
+j1 . 67a(t17t) +]2 3 67a(t27t)

= / aeia‘r[fz(t—to +T) —fz(t—to)]d’r
0
+j1 . efa(tlft) +]2 . efa(tgft) (7)

where we used the fact that f1(t —to) = f2(t —to) for t < ¢1.
The main technique we use next is the well-known rule of
integration by parts in calculus:

| dswar = soeo|” = [T ansmar @



Comparing Equation (8) with the integration part of the
CBS score in Equation (7), and by setting g(7) = —e™ 7
which implies that ¢'(7) = a-e™*", we have
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Now from f5, we have
1

/ ae” “Tfs(t —to + T)dT = lsm
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and it can be easily shown that from fs and f7,
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which give the final result
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D. MORE DETAILS ABOUT ICBS

In this appendix, we provide more details about iCBS,
including insights obtained from the dual-space view, the
correctness of an incremental maintenance in the dual space,
the detailed iCBS algorithm, and its complexity analysis.

D.1 Why the Easy Cases Are Easy

With the dual-space interpretation, now we can revisit the
easy cases in Section 3 and see why they are easy to handle.

The queries with SLA of Fig. 2(a) are located in the dual
space on the a-axis, as shown in Fig. 15(a). So no matter
when the CBS scores are checked (i.e., no matter with what
slope we hit the points using an affine line), the best one
is always the one with the highest o value. Similarly, the
SLAs of Figs. 2(b),(c), and (d) are shown in Fig. 15(b),
where they are all on the -axis in the dual space. In this
case, no matter using what slope, the affine line always hits
the one with the highest 8 value. All these clearly illustrate
that for cases of SLAs in Figs. 2(a)—(d), the CBS scores are
order-preserving over time (except when an SLA segment
expires), and so they are easy to handle.

o o
o3
(05
o
B B
0 0B85 B2ps
(a) (b)

Figure 15: The queries (a) in a-stage and (b) in -
stage in the dual space.

For ease of discussion, in the remainder of paper (appen-
dices), we refer to the queries in Fig. 15(a) as queries in
a-stage and those in Fig. 15(b) as queries in 3-stage. Along
the same line, for those queries that are neither in a-stage
nor in B-stage (i.e., those with « # 0 and 8 # 0), we refer
to them as in af-stage.
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D.2 Incremental Maintenance Is Practical

We prove that it is practical to incrementally maintain
the convex hull in the dual space for queries with piecewise
linear SLAs. The key is the following property of CBS scores
under piecewise linear SLAs.

PROPERTY 1. Under piecewise linear SLAs, in the dual
space, a query q is either in a-stage, or (3-stage, or af-
stage. Moreover, the stage of q does not change within the
same segment of the piecewise linear SLA of q.

ProOOF. Here we give a sketch of the proof based on the
decomposition of piecewise linear SLAs. Fig. 16 shows that
a general piecewise linear SLA for a query ¢ can be decom-
posed into a linear part and a blob part, where the linear
part determines the o value and the blob part determines
B value of q. Therefore, we either have o = 0 (and so ¢ is
in B-stage), S = 0 (and so ¢ is in a-stage), or a # 0 and
B # 0 (and so ¢ is in a3-stage). In addition, from the figure
we can easily see that such a decomposition remains fixed
within the same segment of the SLA of ¢. O

cost

SLA cost = linear part +

blob part

Figure 16: Decomposition of a general piecewise lin-
ear SLA into a linear part, which determines o, and
a blob part, which determines S.

With such a property we can see that a query ¢ can only
change its stage and hence its position in the dual space
(¢ can, e.g., change from af-stage back to af-stage.) for
finite number of times. And this number is bounded by the
number of segments in ¢’s piecewise linear SLA.

D.3 iCBS Algorithm in Detail and Its Com-
plexity Analysis

Fig. 17 and Fig. 18 give the pseudo code for the iCBS
algorithm. At each time t of scheduling the next query
to execute, algorithm scheduleNext () is called with ¢, the
current time stamp, and new(@, those queries that have ar-
rived before t but after the last time when scheduleNext ()
was called. In the first step of scheduleNext (), algorithm
update() is called in order to incrementally update the in-
ternal data structures.

The internal data structures maintained by iCBS (see
Fig. 18) include (1) a-Q: a priority query containing queries
either in f-stage or in af-stage, where for each query ¢ in
a-Q, its priority is the g.¢, the time when the current SLA
segment of ¢ will expire, (2) a-Q, 5-Q, and aB-Q: priority
queues for those queries in a-stage, 5-stage, and af(-stage,
respectively, and (3) CH: the convex hull in the dual space
for all the queries in aS-stage.

When update() is called, it first detects those queries
whose current SLA segments have expired before ¢ (line 1).
For these queries, their o and 3 values (as well as stages)
may have changed since last time update() was called. So
these queries are removed from the corresponding internal
data structures and these queries are appended to the end
of new@ so that their a and B values will be recomputed
(lines 2-7). Then for all the queries in new@ (both those
newly arrived and those that need updates), their @ and 8



Algorithm scheduleNext (t,newQ)
input: time ¢, newly arrived queries new@
output: g, the next query to execute
call update(t,new@);
£ e
o+ a-Q.top();

g + B-Q.top();
qap  CH.get(-£);
if ¢, has the highest CBS score
q < a-Q.pop();
else if g has the highest CBS score
q < B-Q.pop();
remove gg from a-Q;
else
q < qap;
remove gqp from af-Q, CH, and a-Q;
return g;
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Figure 17: Implementation of scheduleNext().

values are computed, their stages are determined, their new
current SLA segments and expiration time are updated, and
they are inserted into the corresponding data structures.

After the internal data structures have been updated,
scheduleNext () checks qa, ¢g, and ¢.p, the three queries
that have the highest CBS scores in the a-Q, £-Q, and af-
Q. To get ¢ and g¢g, it is suffice to peek at the tops of a-Q
and (3-Q; to get gagp, it is suffice to do a binary search on
the convex hull CH by using the slope —¢ = —e®. Then
the best one among q., g3, and ¢ns is selected and removed
from the corresponding data structures (assuming this query
is actually executed next).

The time and space complexities of the overall iCBS are
given as the following.

PROPERTY 2. OuriCBS implementation has an O(log® N)
time complexity for scheduling each query, and it has an
O(N) space complexity.

Algorithm update (t,newQ)
input: time ¢, newly arrived queries new@
a-Q: priority queue on expiration time (e)
a-Q: priority queue for queries in a-stage
B-Q: priority queue for queries in -stage
af-Q: priority queue for queries in a/3-stage
C'H: convex hull for queries in af-stage
First, handle queries that change SLA sections
foreach ¢ in a-Q such that g.e <t do
remove ¢ from a-Q;
append ¢ to the end of new@;
if ¢ was in 8-Q
remove ¢q from (-Q;
else if ¢ was in a8-Q
remove ¢q from af-Q and C'H;
Second, (re)insert updated queries
foreach ¢ in new(@ do
compute ¢’s a, B, € values;
if ¢ is in a-stage
insert q to a-Q;
else if ¢ is in S-stage
insert ¢ to 5-Q and a-Q);
else /* ¢ is in af-stage */
insert q to af-Q, CH, and a-Q;
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Figure 18: Implementation of the update().
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PROOF. In scheduleNext (), lines 3,4,7,9, and 10 all have
time complexity O(log N), by using an addressable priority
queue or a balanced binary search tree. Line 5 has time
complexity O(log N) by using a binary search. Line 13 may
involve the update of the convex hull and so has a time
complexity of O(log? N).

For update(), each query ¢ can enter the loops of lines 1-7
and lines 8-15 at most K times where K is a constant that
represents the number of segments in ¢’s SLA. Each step in
the two loops has an O(log N) time complexity other than
lines 7 and 15, in which it takes O(log® N) time to add or
remove ¢ from the convex hull dynamically.

In the above analysis, we assumed K to be a constant.
If this is not the case, then the time complexity becomes
O(K log? N) for iCBS and O(K N) for CBS.

In terms of space complexity, we notice that each query
q occurs at most once in a-Q and once in either a-Q, 5-Q,
and af-Q, and in addition, the size of the convex hull CH
is bounded by the size of a3-Q. So we can see that the space
complexity for iCBS is O(N). O

E. ADDITIONAL EXPERIMENTS

In this appendix, we show the running time of CBS vs.
iCBS under general piecewise linear SLAs. The SLAs are in
the shape that is described in Fig. 2(f), namely with three
segments where sg, s1 and s2 are non-zero. Fig. 19 shows the
performance comparison between CBS and iCBS, in terms
of running time under different queue sizes, for query exe-
cution time following exponential distribution (Fig. 19-left)
and Pareto distribution (Fig. 19-right).

Several observations can be obtained from the results.
First, the running time for CBS obviously scales linearly
with respect to the queue size and for iCBS, the running
time is relatively insensitive to the queue size. Second, be-
cause there are more queries in af-stage, the running time
for iCBS is higher than that in Fig. 9 and has higher varia-
tions. This is more distinct in Fig. 19-left, where the running
time for CBS is low due to smaller queue sizes. However,
even for Pareto distribution, the number of queries in their
afB-stage is not very high (in tens). This is because when a
large OLAP query blocks the server, most queries will be in
their last SLA segment, i.e., in a-stage. In other words, the
sophisticated incremental convex hull approach is not war-
ranted in this case and the main benefit comes from queries
in o and ( stages. However, even this is the case, the dual-
space view is still crucial for obtaining the benefit of iCBS.
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Figure 19: Average scheduling time per query for
the Exponential (left) and Pareto (right) cases under
general piecewise linear SLAs, with Load=0.95.



