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ABSTRACT
As main memory grows, query performance is more and more
determined by the raw CPU costs of query processing itself.
The classical iterator style query processing technique is very
simple and flexible, but shows poor performance on modern
CPUs due to lack of locality and frequent instruction mis-
predictions. Several techniques like batch oriented processing
or vectorized tuple processing have been proposed in the
past to improve this situation, but even these techniques are
frequently out-performed by hand-written execution plans.

In this work we present a novel compilation strategy that
translates a query into compact and efficient machine code
using the LLVM compiler framework. By aiming at good
code and data locality and predictable branch layout the
resulting code frequently rivals the performance of hand-
written C++ code. We integrated these techniques into the
HyPer main memory database system and show that this
results in excellent query performance while requiring only
modest compilation time.

1. INTRODUCTION
Most database systems translate a given query into an

expression in a (physical) algebra, and then start evaluating
this algebraic expression to produce the query result. The
traditional way to execute these algebraic plans is the iterator
model [8], sometimes also called Volcano-style processing [4]:
Every physical algebraic operator conceptually produces a
tuple stream from its input, and allows for iterating over this
tuple stream by repeatedly calling the next function of the
operator.

This is a very nice and simple interface, and allows for
easy combination of arbitrary operators, but it clearly comes
from a time when query processing was dominated by I/O
and CPU consumption was less important: First, the next
function will be called for every single tuple produced as
intermediate or final result, i.e., millions of times. Second,
the call to next is usually a virtual call or a call via a function
pointer. Consequently, the call is even more expensive than
a regular call and degrades the branch prediction of modern
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Figure 1: Hand-written code vs. execution engines
for TPC-H Query 1 (Figure 3 of [16])

CPUs. Third, this model often results in poor code locality
and complex book-keeping. This can be seen by considering
a simple table scan over a compressed relation. As the tuples
must be produced one at a time, the table scan operator has
to remember where in the compressed stream the current
tuple is and jump to the corresponding decompression code
when asked for the next tuple.

These observations have led some modern systems to a
departure from this pure iterator model, either internally
(e.g., by internally decompressing a number of tuples at
once and then only iterating over the decompressed data), or
externally by producing more than one tuple during each next
call [11] or even producing all tuples at once [1]. This block-
oriented processing amortizes the costs of calling another
operator over the large number of produced tuples, such
that the invocation costs become negligible. However, it also
eliminates a major strength of the iterator model, namely the
ability to pipeline data. Pipelining means that an operator
can pass data to its parent operator without copying or
otherwise materializing the data. Selections, for example,
are pipelining operators, as they only pass tuples around
without modifying them. But also more complex operators
like joins can be pipelined, at least on one of their input
sides. When producing more than one tuple during a call
this pure pipelining usually cannot be used any more, as the
tuples have to be materialized somewhere to be accessible.
This materialization has other advantages like allowing for
vectorized operations [2], but in general the lack of pipelining
is very unfortunate as it consumes more memory bandwidth.

An interesting observation in this context is that a hand-
written program clearly outperforms even very fast vectorized
systems, as shown in Figure 1 (originally from [16]). In a
way that is to be expected, of course, as a human might use
tricks that database management systems would never come
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up with. On the other hand the query in this figure is a
simple aggregation query, and one would expect that there
is only one reasonable way to evaluate this query. Therefore
the existing query evaluation schemes seem to be clearly
suboptimal.

The algebraic operator model is very useful for reasoning
over the query, but it is not necessarily a good idea to exhibit
the operator structure during query processing itself. In this
paper we therefore propose a query compilation strategy that
differs from existing approaches in several important ways:

1. Processing is data centric and not operator centric.
Data is processed such that we can keep it in CPU
registers as long as possible. Operator boundaries are
blurred to achieve this goal.

2. Data is not pulled by operators but pushed towards
the operators. This results in much better code and
data locality.

3. Queries are compiled into native machine code using
the optimizing LLVM compiler framework [7].

The overall framework produces code that is very friendly to
modern CPU architectures and, as a result, rivals the speed
of hand-coded query execution plans. In some cases we can
even outperform hand-written code, as using the LLVM as-
sembly language allows for some tricks that are hard to do in
a high-level programming language like C++. Furthermore,
by using an established compiler framework, we benefit from
future compiler, code optimization, and hardware improve-
ments, whereas other approaches that integrate processing
optimizations into the query engine itself will have to update
their systems manually. We demonstrate the impact of these
techniques by integrating them into the HyPer main-memory
database management system [5] and performing various
comparisons with other systems.

The rest of this paper is structured as follows: We first
discuss related work in Section 2. We then explain the overall
architecture of our compilation framework in Section 3. The
actual code generation for algebraic operators is discussed in
more details in Section 4. We explain how different advanced
processing techniques can be integrated into the framework
in Section 5. We then show an extensive evaluation of our
techniques in Section 6 and draw conclusions in Section 7.

2. RELATED WORK
The classical iterator model for query evaluation was pro-

posed quite early [8], and was made popular by the Volcano
system [4]. Today, it is the most commonly used execution
strategy, as it is flexible and quite simple. As long as query
processing was dominated by disk I/O the iterator model
worked fine. However, as the CPU consumption became an
issue, some systems tried to reduce the high calling costs
of the iterator model by passing blocks of tuples between
operators [11]. This greatly reduces the number of function
invocations, but causes additional materialization costs.

Modern main-memory database systems look at the prob-
lem again, as for them CPU costs is a critical issue. The
MonetDB system [1, 9] goes to the other extreme, and mate-
rializes all intermediate results, which eliminates the need
to call an input operator repeatedly. Besides simplifying
operator interaction, materialization has other advantages,
too, but it also causes significant costs. The MonetDB/X100
system [1] (which evolved into VectorWise) selected a mid-
dle ground by passing large vectors of data and evaluating
queries in a vectorized manner on each chunk. This offers

excellent performance, but, as shown in Figure 1, still does
not reach the speed of hand-written code.

Another way to improve query processing is to compile
the query into some kind of executable format, instead of
using interpreter structures. In [13] the authors proposed
compiling the query logic into Java Bytecode, which allows
for using the Java JVM. However this is relatively heavy
weight, and they still use the iterator model, which limits
the benefits. Recent work on the HIQUE system proposed
compiling the query into C code using code templates for
each operator [6]. HIQUE eliminates the iterator model by
inlining result materialization inside the operator execution.
However, contrary to our proposal, the operator boundaries
are still clearly visible. Furthermore, the costs of compiling
the generated C code are quite high [6].

Besides these more general approaches, many individual
techniques have been proposed to speed up query processing.
One important line of work is reducing the impact of branch-
ing, where [14] showed how to combine conjunctive predicates
such that the trade-off between number of branches and num-
ber of evaluated predicates is optimal. Other work has looked
at processing individual expressions more efficiently by using
SIMD instructions [12, 15].

3. THE QUERY COMPILER
3.1 Query Processing Architecture

We propose a very different architecture for query process-
ing (and, accordingly, for query compilation). In order to
maximize the query processing performance we have to make
sure that we maximize data and code locality. To illustrate
this point, we first give a definition of pipeline-breaker that
is more restrictive than in standard database systems: An
algebraic operator is a pipeline breaker for a given input side
if it takes an incoming tuple out of the CPU registers. It is
a full pipeline breaker if it materializes all incoming tuples
from this side before continuing processing.

This definition is slightly hand-waving, as a single tuple
might already be too large to fit into the available CPU
registers, but for now we pretend that we have a sufficient
number of registers for all input attributes. We will look
at this in more detail in Section 4. The main point is that
we consider spilling data to memory as a pipeline-breaking
operation. During query processing, all data should be kept
in CPU registers as long as possible.

Now the question is, how can we organize query processing
such that the data can be kept in CPU registers as long as
possible? The classical iterator model is clearly ill-suited
for this, as tuples are passed via function calls to arbitrary
functions – which always results in evicting the register
contents. The block-oriented execution models have fewer
passes across function boundaries, but they clearly also break
the pipeline as they produce batches of tuples beyond register
capacity. In fact any iterator-style processing paradigm that
pulls data up from the input operators risks breaking the
pipeline, as, by offering an iterator-base view, it has to offer
a linearized access interface to the output of an arbitrarily
complex relational operator. Sometimes operators could
produce a certain small number of output tuples together
cheaply, without need for copying.

We therefore reverse the direction of data flow control.
Instead of pulling tuples up, we push them towards the con-
sumer operators. While pushing tuples, we continue pushing
until we reach the next pipeline-breaker. As a consequence,
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select *
from R1,R3,

(select R2.z,count(*)
from R2
where R2.y=3
group by R2.z) R2

where R1.x=7 and R1.a=R3.b and R2.z=R3.c

Figure 2: Example Query

R1

R2 R3

x=7

y=3

z;count(*)

a=b

z=c

R1

R2 R3

x=7

y=3

z;count(*)

a=b

z=c

original with pipeline boundaries

Figure 3: Example Execution Plan for Figure 2

data is always pushed from one pipeline-breaker into another
pipeline-breaker. Operators in-between leave the tuples in
CPU registers and are therefore very cheap to compute. Fur-
thermore, in a push-based architecture the complex control
flow logic tends to be outside tight loops, which reduces
register pressure. As the typical pipeline-breakers would
have to materialize the tuples anyway, we produce execution
plans that minimize the number of memory accesses.

As an illustrational example consider the execution plan in
Figure 3 (Γ denotes a group by operator). The corresponding
SQL query is shown in Figure 2. It selects some tuples
from R2, groups them by z, joins the result with R3, and
joins that result with some tuples from R1. In the classical
operator model, the top-most join would produce tuples by
first asking its left input for tuples repeatedly, placing each of
them in a hash table, and then asking its right input for tuples
and probing the hash table for each table. The input sides
themselves would operate in a similar manner recursively.
When looking at the data flow in this example more carefully,
we see that in principle the tuples are always passed from one
materialization point to another. The join a = b materializes
the tuples from its left input in a hash table, and receives
them from a materialized state (namely from the scan of R1).
The selection in between pipelines the tuples and performs no
materialization. These materialization points (i.e., pipeline
boundaries) are shown on the right hand side of Figure 3.

As we have to materialize the tuples anyway at some point,
we therefore propose to compile the queries in a way that
all pipelining operations are performed purely in CPU (i.e.,
without materialization), and the execution itself goes from
one materialization point to another. The corresponding
compilation for our running example is shown in Figure 4.
(Note that we assume fully in-memory computation for now to
keep the example readable.) Besides initialization, the code
consists of four fragments that correspond to the pipeline
fragments in the algebraic plan: The first fragment filters
tuples from R1 and places them into the hashtable of Ba,b,
the second does the same for R2 and Γz, and the third
transfers the results from Γz into the hashtable of Bz=c. The
fourth and final fragment passes the tuples of R3 along the
join hash tables and produces the result. All four fragments
in themselves are strongly pipelining, as they can keep their

initialize memory of Ba=b, Bc=z, and Γz

for each tuple t in R1

if t.x = 7
materialize t in hash table of Ba=b

for each tuple t in R2

if t.y = 3
aggregate t in hash table of Γz

for each tuple t in Γz

materialize t in hash table of Bz=c

for each tuple t3 in R3

for each match t2 in Bz=c[t3.c]
for each match t1 in Ba=b[t3.b]

output t1 ◦ t2 ◦ t3

Figure 4: Compiled query for Figure 3

tuples in CPU registers and only access memory to retrieve
new tuples or to materialize their results. Furthermore, we
have very good code locality as small code fragments are
working on large amounts of data in tight loops. As such,
we can expect to get very good performance from such an
evaluation scheme. And indeed, as we will see in Section 6,
such a query evaluation method greatly outperforms iterator-
based evaluation. The main challenge now is to translate a
given algebraic execution plan into such code fragments. We
will first discuss the high-level translation in the next section,
and then explain the actual code generation in Section 4.

3.2 Compiling Algebraic Expressions
When looking at the query code in Figure 4, we notice

that the boundaries between operators are blurred. The
first fragment for example combines the scan of R1, the
selection σx=7, and the build part of Bc=z into one code
fragment. The query execution code is no longer operator
centric but data centric: Each code fragment performs all
actions that can be done within one part of the execution
pipeline, before materializing the result into the next pipeline
breaker. The individual operator logic can, and most likely
will, be spread out over multiple code fragments, which makes
query compilation more difficult than usual. In addition,
these code fragments have a very irregular structure. For
example, for binary pipeline breakers materializing an input
tuple from the left will be very different from materializing an
input tuple from the right. In the iterator model everything
is a simple next call, but here the complex operator logic
directly affects the code generation. It is important to note
that this is an advantage, not a limitation of the approach!
The iterator model has a nice, simple interface, but it pays
for this by using virtual function calls and frequent memory
accesses. By exposing the operator structure, we can generate
near optimal assembly code, as we generate exactly the
instructions that are relevant for the given situation, and we
can keep all relevant values in CPU registers. As we will
see below, the abstractions that are needed to keep the code
maintainable and understandable exist, i.e., all operators
offer a uniform interface, but they exist only in the query
compiler itself. The generated code exposes all the details (for
efficiency reasons), but that is fine, as the code is generated
anyway.

From the point of view of the query compiler the operators
offer an interface that is nearly as simple as in the iterator
model. Conceptually each operator offers two functions:

• produce()
• consume(attributes,source)
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B.produce B.left.produce; B.right.produce;
B.consume(a,s) if (s==B.left)

print “materialize tuple in hash table”;
else
print “for each match in hashtable[”

+a.joinattr+“]”;
B.parent.consume(a+new attributes)

σ.produce σ.input.produce
σ.consume(a,s) print “if ”+σ.condition;

σ.parent.consume(attr,σ)
scan.produce print “for each tuple in relation”

scan.parent.consume(attributes,scan)

Figure 5: A simple translation scheme to illustrate
the produce/consume interaction

Conceptually, the produce function asks the operator to
produce its result tuples, which are then pushed towards the
consuming operator by calling their consume functions. For
our running example, the query would be executed by calling
Ba=b.produce. This produce function would then in itself call
σx=7.produce to fill its hash table, and the σ operator would
call R1.produce to access the relation. R1 is a leaf in the
operator tree, i.e., it can produce tuples on its own. Therefore
it scans the relation R1, and for each tuple loads the required
attributes and calls σx=7.consume(attributes,R1) to hand
the tuple to the selection. The selection filters the tuples, and
if it qualifies it passes it by calling Ba=b(attributes, σx=7).
The join sees that it gets tuples from the left side, and thus
stores them in the hash table. After all tuples from R1 are
produced, the control flow goes back to the join, which will
call Bc=z.produce to get the tuples from the probe side etc.

However, this produce/consume interface is only a mental
model. These functions do not exist explicitly, they are only
used by the code generation. When compiling an SQL query,
the query is first processed as usual, i.e., the query is parsed,
translated into algebra, and the algebraic expression is opti-
mized. Only then do we deviate from the standard scheme.
The final algebraic plan is not translated into physical al-
gebra that can be executed, but instead compiled into an
imperative program. And only this compilation step uses the
produce/consume interface internally to produce the required
imperative code. This code generation model is illustrated
in Figure 5. It shows a very simple translation scheme that
converts B, σ, and scans into pseudo-code. The readers can
convince themselves that applying the rules from Figure 5 to
the operator tree in Figure 3 will produce the pseudo-code
from Figure 4 (except for differences in variable names and
memory initialization). The real translation code is signifi-
cantly more complex, of course, as we have to keep track of
the loaded attributes, the state of the operators involved, at-
tribute dependencies in the case of correlated subqueries, etc.,
but in principle this simple mapping already shows how we
can translate algebraic expressions into imperative code. We
include a more detailed operator translation in Appendix A.
As these code fragments always operate on certain pieces of
data at a time, thus having very good locality, the resulting
code proved to execute efficiently.

4. CODE GENERATION
4.1 Generating Machine Code

So far we have only discussed the translation of algebraic
expressions into pseudo-code, but in practice we want to
compile the query into machine code. Initially we exper-

C++
scan

C
+
+

C+
+

Figure 6: Interaction of LLVM and C++

imented with generating C++ code from the query and
passing it through a compiler at runtime, loading the re-
sult as shared library. Compiling to C++ was attractive
as the C++ code could directly access the data structures
and the code of our database system, which is also written
in C++. However, it has several disadvantages. First, an
optimizing C++ compiler is really slow, compiling a complex
query could take multiple seconds. Second, C++ does not
offer total control over the generated code, which can lead
to suboptimal performance. In particular, overflow flags
etc. are unavailable. Instead, we used the Low Level Vir-
tual Machine (LLVM) compiler framework [7] to generate
portable assembler code, which can then be executed directly
using an optimizing JIT compiler provided by LLVM. While
generating assembler code might sound daunting at first, pro-
ducing assembler code using LLVM is much more robust than
writing it manually. For example LLVM hides the problem
of register allocation by offering an unbounded number of
registers (albeit in Single Static Assignment form). We can
therefore pretend that we have a CPU register available for
every attribute in our tuple, which simplifies life considerably.
And the LLVM assembler is portable across machine architec-
tures, as only the LLVM JIT compiler translates the portable
LLVM assembler into architecture dependent machine code.
Furthermore, the LLVM assembler is strongly typed, which
caught many bugs that were hidden in our original textual
C++ code generation. And finally LLVM is a full strength
optimizing compiler, which produces extremely fast machine
code, and usually requires only a few milliseconds for query
compilation, while C or C++ compilers would need seconds
(see Section 6 and [6]).

Still, one does not want to implement the complete query
processing logic in LLVM assembler. First, because writing
assembler code is more tedious than using a high-level lan-
guage like C++, and second, because much of the database
logic like index structures is written in C++ anyway. But
one can easily mix LLVM and C++, as C++ methods can
be called directly from LLVM and vice versa. (To the com-
piler, there is no difference between both types of code, as
both result in native machine code and both have strongly
typed prototypes.) This results in a mixed execution model
which is metaphorically sketched in Figure 6. The complex
part of the query processing (e.g., complex data structure
management or spilling to disk) is written in C++, and
forms the cogwheels in Figure 6. The different operators are
connected together by LLVM code, which forms the chain in
Figure 6. The C++ “cogwheels” are pre-compiled; only the
LLVM “chain” for combining them is dynamically generated.
Thereby we achieve very low query compilation times. In
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the concrete example, the complex part of the scan (e.g.,
locating data structures, figuring out what to scan next)
is implemented in C++, and this C++ code “drives” the
execution pipeline. But the tuple access itself and the further
tuple processing (filtering, materialization in hash table) is
implemented in LLVM assembler code. C++ code is called
from time to time (like when allocating more memory), but
interaction of the C++ parts is controlled by LLVM. If com-
plex operators like sort are involved, control might go back
fully into C++ at some point, but once the complex logic is
over and tuples have to be processed in bulk, LLVM takes
over again. For optimal performance it is important that
the hot path, i.e., the code that is executed for 99% of the
tuples, is pure LLVM. Calling C++ from time to time (e.g.,
when switching to a new page) is fine, the costs for that are
negligible, but the bulk of the processing has to be done in
LLVM. While staying in LLVM, we can keep the tuples in
CPU registers all the time, which is about as fast as we can
expect to be. When calling an external function all registers
have to be spilled to memory, which is somewhat expensive.
In absolute terms it is very cheap, of course, as the registers
will be spilled on the stack, which is usually in cache, but if
this is done millions of times it becomes noticeable.

4.2 Complex Operators
While code generation for scans and selections is more or

less straightforward, some care is needed when generating
code for more complex operators like sort or join. The first
thing to keep in mind is that contrary to the simple examples
seen so far in the paper it is not possible or even desirable
to compile a complex query into a single function. This has
multiple reasons. First, there is the pragmatic reason that
the LLVM code will most likely call C++ code at some point
that will take over the control flow. For example an external
sorting operator will produce the initial runs with LLVM,
but will probably control the merge phase from within C++,
calling LLVM functions as needed. The second reason is that
inlining the complete query logic into a single function can
lead to an exponential growth in code. For example outer
joins will call their consumers in two different situations, first
when they have found a match, and second, when producing
NULL values. One could directly include the consumer code
in both cases, but then a cascade of outer joins would lead to
an exponential growth in code. Therefore it makes sense to
define functions within LLVM itself, that can then be called
from places within the LLVM code. Again, one has to make
sure that the hot path does not cross a function boundary.
Thus a pipelining fragment of the algebraic expression should
result in one compact LLVM code fragment.

This need for multiple functions affects the way that we
generate code. In particular, we have to keep track of all
attributes and remember if they are currently available in
registers. Materializing attributes in memory is a deliberate
decision, similar to spooling tuples to disk. Of course not
from a performance point of view, materializing in memory is
relatively fast, but from a code point of view materialization
is a very complex step that should be avoided if possible.

Unfortunately the generated assembler code for real queries
becomes complicated very quickly, which prevents us from
showing a complete plan here, but as illustration we include
a tiny LLVM fragment that shows the main machinery for
the Γz;count(∗)(σy=3(R2)) part of our running example in
Figure 7: The LLVM code is called by the C++ code for each

data fragment (i.e., a sequence of tuples stored consecutively).
The LLVM code first loads pointers to the columns that it
wants to access during processing. Then, it loops over all
tuples contained in the current fragment (code omitted). For
each such tuple, it loads the attribute y into a register and
checks the predicate. If the predicate is false, it continues
looping. Otherwise, it loads the attribute z into a register and
computes a hash value. Using this hash value, it looks up the
corresponding hash entry (using the C++ data structures,
which are visible in LLVM), and iterates over the entries
(code omitted). If no matching group is found, it checks if it
can assert sufficient free space to allocate a new group. If
not, it calls into a C++ function that provides new memory
and spills to disk as needed. This way, the hot code path
remains purely within LLVM, and consists mainly of the code
within the %then block plus the corresponding hash table
iteration. Note that the LLVM call directly calls the native
C++ method (using the mangled name @ ZN...), there is
no additional wrapper. Thus, C++ and LLVM can interact
directly with each other without performance penalty.

4.3 Performance Tuning
The LLVM code generated using the strategy sketched

above is extremely fast. The main work is done in a tight
loop over the tuples, which allows for good memory pre-
fetching and accurate branch prediction. In fact the code is
so fast that suddenly code fragments become a bottleneck
that were relatively unimportant as long as the other code
was slow. One prominent example is hashing. For TPC-H
Query 1 (which is basically a single scan and a hash-based
aggregation) for example more than 50% of the time of our
initial plan was spent on hashing, even though we only hash
two simple values. Another critical issue are branches. On
modern CPUs, branches are very cheap as long as the branch
prediction works, i.e., as long as the branches are taken either
nearly never or nearly always. A branch that is taken with
a probability of 50% however ruins the branch prediction
and is very expensive. Therefore the query compiler must
produce code that allows for good branch prediction.

These issues require some care when generating assembly
code. As mentioned before, we keep all tuple attributes in
(virtual) CPU registers. For strings we keep the length and
a pointer to the string itself in registers. In general we try to
load attributes as late as possible, i.e., either in the moment
that we need that attribute or when we get it for free anyway
because we have to access the corresponding memory. Similar
holds for computations of derived attributes. However when
these values are needed on the critical path (e.g., when
accessing a hash table using a hash value), it makes sense
to compute these values a bit earlier than strictly necessary
in order to hide the latency of the computation. Similarly,
branches should be laid out such that they are amenable
for ultra efficient CPU execution. For example the following
(high-level) code fragment is not very prediction friendly:

Entry* iter=hashTable[hash];

while (iter) {

... // inspect the entry

iter=iter->next;

}

The problem is that the while mixes up two things, namely
checking if an entry for this hash value exists at all, and
checking if we reached the end of the collision list. The first
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1. locate tuples in memory

2. loop over all tuples

3. filter y = 3

4. hash z

5. lookup in hash table (C++ data structure)

6. not found, check space

7. full, call C++ to allocate mem or spill

define internal void @scanConsumer(%8∗ %executionState, %Fragment R2∗ %data) {
body:

...
%columnPtr = getelementptr inbounds %Fragment R2∗ %data, i32 0, i32 0
%column = load i32∗∗ %columnPtr, align 8
%columnPtr2 = getelementptr inbounds %Fragment R2∗ %data, i32 0, i32 1
%column2 = load i32∗∗ %columnPtr2, align 8
... (loop over tuples , currently at %id, contains label %cont17)
%yPtr = getelementptr i32∗ %column, i64 %id
%y = load i32∗ %yPtr, align 4
%cond = icmp eq i32 %y, 3
br i1 %cond, label %then, label %cont17

then:
%zPtr = getelementptr i32∗ %column2, i64 %id
%z = load i32∗ %zPtr, align 4
%hash = urem i32 %z, %hashTableSize
%hashSlot = getelementptr %”HashGroupify::Entry”∗∗ %hashTable, i32 %hash
%hashIter = load %”HashGroupify::Entry”∗∗ %hashSlot, align 8
%cond2 = icmp eq %”HashGroupify::Entry”∗ %hashIter, null
br i1 %cond, label %loop20, label %else26
... (check if the group already exists , starts with label %loop20)

else26 :
%cond3 = icmp le i32 %spaceRemaining, i32 8
br i1 %cond, label %then28, label %else47
... (create a new group, starts with label %then28)

else47 :
%ptr = call i8∗ @ ZN12HashGroupify15storeInputTupleEmj

(%”HashGroupify”∗ %1, i32 hash, i32 8)
... (more loop logic)

}

Figure 7: LLVM fragment for the first steps of the query Γz;count(∗)(σy=3(R2))

case will nearly always be true, as we expect the hash table
to be filled, while the second case will nearly always be false,
as our collision lists are very short. Therefore, the following
code fragment is more prediction friendly:

Entry* iter=hashTable[hash];

if (iter) do {

... // inspect the entry

iter=iter->next;

} while (iter);

Of course our code uses LLVM branches and not C++
loops, but the same is true there, branch prediction improves
significantly when producing code like this. And this code
layout has a noticeable impact on query processing, in our
experiments just changing the branch structure improved
hash table lookups by more than 20%.

All these issues complicate code generation, of course. But
overall the effort required to avoid these pitfalls is not too
severe. The LLVM code is generated anyway, and spending
effort on the code generator once will pay off for all sub-
sequent queries. The code generator is relatively compact.
In our implementation the code generation for all algebraic
operators required for SQL-92 consists of about 11,000 lines
of code, which is not a lot.

5. ADVANCED PARALLELIZATION TECH-
NIQUES

In the previous sections we have discussed how to compile
queries into data-centric execution programs. By organizing
the data flow and the control flow such that tuples are
pushed directly from one pipeline breaker into another, and
by keeping data in registers as long as possible, we get
excellent data locality. However, this does not mean that

we have to process tuples linearly, one tuple at a time. Our
initial implementation pushes individual tuples, and this
already performs very well, but more advanced processing
techniques can be integrated very naturally in the general
framework. We now look at several of them.

Traditional block-wise processing [11] has the great disad-
vantage of creating additional memory accesses. However,
processing more than one tuple at once is indeed a very good
idea, as long as we can keep the whole block in registers. In
particular when using SIMD registers this is often the case.
Processing more than one tuple at a time has several advan-
tages: First, of course, it allows for using SIMD instructions
on modern CPUs [15], which can greatly speed up processing.
Second, it can help delay branching, as predicates can be
evaluated and combined without executing branches immedi-
ately [12, 14]. Strictly speaking the techniques from [14] are
very useful already for individual tuples, but the effect can be
even larger for blocks of tuples. This style of block process-
ing where values are packed into a (large) register fits very
naturally into our framework, as the operators always pass
register values to their consumers. LLVM directly allows for
modeling SIMD values as vector types, thus the impact on
the overall code generation framework are relatively minor.

SIMD instructions are a kind of inter-tuple parallelism,
i.e., processing multiple tuples with one instruction. The
second kind of parallelism relevant for modern CPUs is multi-
core processing. Nearly all database systems will exploit
multi-core architectures for inter-query parallelism, but as
the number of cores available on modern CPUs increases,
intra-query parallelism becomes more important. In prin-
ciple this is a well studied problem [10, 3], and is usually
solved by partitioning the input of operators, processing
each partition independently, and then merging the results
from all partitions. For our code generation framework this
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HyPer + C++ HyPer + LLVM
TPC-C [tps] 161,794 169,491
total compile time [s] 16.53 0.81

Table 1: OLTP Performance of Different Engines

kind of parallelism can be supported with nearly no code
changes. As illustrated in Figure 7, the code always operates
on fragments of data, that are processed in a tight loop, and
materialized into the next pipeline breaker. Usually, the
fragments are determined by the storage system, but they
could as well come from a parallelizing decision. Only some
additional logic would be required to merge the individual
results. Note that the “parallelizing decision” in itself is
a difficult problem! Spitting and merging data streams is
expensive, and the optimizer has to be careful about intro-
ducing parallelism. This is beyond the scope of this paper.
But for future work it is a very relevant problem, as the
number of cores is increasing.

6. EVALUATION
We have implemented the techniques proposed in this pa-

per both in the HyPer main-memory database management
systems [5], and in a disk-based DBMS. We found that the
techniques work excellent, both when operating purely in
memory and when spooling to disk if needed. However it
is difficult to precisely measure the impact our compilation
techniques have relative to other approaches, as query per-
formance is greatly affected by other effects like differences
in storage systems, too. The evaluation is therefore split into
two parts: We include a full systems comparison here, includ-
ing an analysis of the generated code. A microbenchmark
for specific operator behavior is included in Appendix B.

In the system comparison we include experiments run on
MonetDB 1.36.5, Ingres VectorWise 1.0, and a commercial
database system we shall call DB X. All experiments were
conducted on a Dual Intel X5570 Quad-Core-CPU with
64GB main memory, Red Hat Enterprise Linux 5.4. Our
C++ code was compiled using gcc 4.5.2, and the machine
code was produced using LLVM 2.8. The optimization levels
are explained in more detail in Appendix C.

6.1 Systems Comparison
The HyPer system in which we integrated our query com-

pilation techniques is designed as a hybrid OLTP and OLAP
system, i.e., it can handle both kinds of workloads concur-
rently. We therefore used the TPC-CH benchmark from
[5] for experiments. For the OLTP side it runs a TPC-C
benchmark, and for the OLAP side it executes the 22 TPC-H
queries adapted to the (slightly extended) TPC-C schema.
The first five queries are included in Appendix D. As we are
mainly interested in an evaluation of raw query processing
speed here, we ran a setup without concurrency, i.e., we
loaded 12 warehouses, and then executed the TPC-C trans-
actions single-threaded and without client wait times. Simi-
larly the OLAP queries are executed on the 12 warehouses
single-threaded and without concurrent updates. What is
interesting for the comparison is that HyPer originally com-
piled the queries into C++ code using hand-written code
fragments, which allows us to estimate the impact LLVM
has relative to C++ code.

We ran the OLTP part only in HyPer, as the other sys-
tems were not designed for OLTP workloads. The results

Q1 Q2 Q3 Q4 Q5
HyPer + C++ [ms] 142 374 141 203 1416
compile time [ms] 1556 2367 1976 2214 2592
HyPer + LLVM 35 125 80 117 1105
compile time [ms] 16 41 30 16 34
VectorWise [ms] 98 - 257 436 1107
MonetDB [ms] 72 218 112 8168 12028
DB X [ms] 4221 6555 16410 3830 15212

Table 2: OLAP Performance of Different Engines

are shown in Table 1. As can be seen in the first row, the
performance, measured in transactions per second, of the
LLVM version is slightly better than performance of opti-
mized C++ code. The difference is small, though, as most of
the TPC-C transactions are relatively simple and touch less
than 30 tuples. More interesting is the compile time, which
covers all TPC-C scripts (in a PL/SQL style script language).
Compiling the generated C++ code is more than a factor
of ten slower than using LLVM, and results in (slightly)
worse performance, which is a strong argument for our query
compilation techniques.

For the OLAP part, we ran the TPC-CH queries as pre-
pared queries and measured the warm execution time. The
results for the first five queries are shown in Table 2 (Q2
triggered a bug in VectorWise). DB X is clearly much slower
than the other systems, but this is not surprising, as it was de-
signed as a general purpose disk-based system (even though
here the data fits into main memory and we measure warm
execution times). The other systems are all much faster, but
HyPer with the LLVM code generation is frequently another
factor 2-4 faster, depending on the query. The comparison
between the C++ backend and the LLVM backend is par-
ticularly interesting here. First, while the C++ version is
reasonably fast, the compact code generated by the LLVM
backend is significantly faster. This is less noticeable for Q5,
which is dominated by joins, but for the other queries, in
particular the aggregation query Q1, the differences are large.
Q1 highlights this very well, as in principle the query is very
simple, just one scan and an aggregation. The corresponding
C++ code therefore looks very natural and efficient, but
simply cannot compete with the LLVM version that tries
to keep everything in registers. The second observation is
that even though the queries are reasonably fast when cross-
compiled into C++, the compile time itself is unacceptable,
which was part of the reason why we looked at alternatives
for generating C++ code. The compile time for the LLVM
version however is reasonably modest (the numbers include
all steps necessary for converting the SQL string into exe-
cutable machine code, not only the LLVM code generation).
Changing the backend therefore clearly payed off for HyPer,
both due to query processing itself and due to compile times.

6.2 Code Quality
Another interesting point is the quality of the generated

LLVM code. As shown above the raw performance is obvi-
ously good, but it is interesting to see how the generated
machine code performs regarding branching and cache ef-
fects. To study these effects, we ran all five queries using
the callgrind tool of valgrind 3.6.0, which uses binary instru-
mentation to observe branches and cache effects. We used
callgrind control to limit profiling to query processing itself.

In the experiment we compared the LLVM version of HyPer
with MonetDB. MonetDB performs operations in compact,
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Q1 Q2 Q3 Q4 Q5
LLVM MonetDB LLVM MonetDB LLVM MonetDB LLVM MonetDB LLVM MonetDB

branches 19,765,048 144,557,672 37,409,113 114,584,910 14,362,660 127,944,656 32,243,391 408,891,838 11,427,746 333,536,532
mispredicts 188,260 456,078 6,581,223 3,891,827 696,839 1,884,185 1,182,202 6,577,871 639 6,726,700
I1 misses 2,793 187,471 1,778 146,305 791 386,561 508 290,894 490 2,061,837
D1 misses 1,764,937 7,545,432 10,068,857 6,610,366 2,341,531 7,557,629 3,480,437 20,981,731 776,417 8,573,962
L2d misses 1,689,163 7,341,140 7,539,400 4,012,969 1,420,628 5,947,845 3,424,857 17,072,319 776,229 7,552,794
I refs 132 mil 1,184 mil 313 mil 760 mil 208 mil 944 mil 282 mil 3,140 mil 159 mil 2,089 mil

Table 3: Branching and Cache Locality

tight loops, and can therefore be expected to have a low
number of branch mispredictions. The results are shown in
Table 3. The first block shows the number of branches, the
number of branch mispredictions, and the number of level 1
instruction cache misses (I1). These numbers are indicators
for the control flow and the code locality of the query code.
Several things are noticeable. First, our generated LLVM
code contains far less branches than the MonetDB code. This
is not really surprising, as we try to generate all code up to
the next pipeline breaker in one linear code fragment. Second,
the number of branch mispredictions is significantly lower for
the LLVM code. One exception is Q2, but this is basically
a sub-optimal behavior of HyPer and not related to LLVM.
(Currently HyPer is very pessimistic about spooling to disc,
and copies strings around a lot, which causes more than 60%
of the mispredictions. MonetDB avoids these copies). For
all other queries the LLVM code has far less mispredictions
than MonetDB. Interestingly the relative misprediction rate
of MonetDB is quite good, as can be expected from the
MonetDB architecture, but in total MonetDB executes far
too many branches and thus has many mispredictions, too.

The next block shows the caching behavior, namely the
level 1 data cache misses (D1) and level 2 data misses (L2d).
For most queries these two numbers are very similar, which
means that if data is not in the level 1 cache it is probably not
in the level 2 cache either. This is expected behavior for very
large hash tables. Again the LLVM code shows a very good
data locality and has less cache misses than MonetDB. As
with branches, the string handling in Q2 degrades caching,
but this will be fixed in future HyPer versions. For all
other queries the LLVM code has far less cache misses than
MonetDB, up to a factor of ten.

The last block shows the number of executed instructions.
These numbers roughly follow the absolute execution times
from Table 2 and thus are not surprising. However, they
show clearly that the generated LLVM code is much more
compact than the MonetDB code. In a way that might stem
from the architecture of MonetDB which always operates on
Binary Association Tables (BATs), and thus has to touch
tuples multiple times.

7. CONCLUSION
The experiments have shown that data-centric query pro-

cessing is a very efficient query execution model. By compil-
ing queries into machine code using the optimizing LLVM
compiler, the DBMS can achieve a query processing efficiency
that rivals hand-written C++ code.

Our implementation of the compilation framework for com-
piling algebra into LLVM assembler is compact and maintain-
able. Thereforem the data-centric compilation approach is
promising for all new database projects. By relying on main-
stream compilation frameworks the DBMS automatically
benefits from future compiler and processor improvements
without re-engineering the query engine.
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APPENDIX
A. OPERATOR TRANSLATION

Due to space constraints we could only give a high-level
account of operator translation in Section 3, and include
a more detailed discussion here. We concentrate on the
operators Scan, Select, Project, Map, and HashJoin here, as
these are sufficient to translate a wide class of queries. The
first four operators are quite simple, and illustrate the basic
produce/consume interaction, while the hash join is much
more involved.

The query compilation maintains quite a bit of infrastruc-
ture that is passed around during operator translation. The
most important objects are codegen, which offers an interface
to the LLVM code generation (operator-> is overloaded to
access IRBuilder from LLVM), context, which keeps track of
available attributes (both from input operators and, for cor-
related subqeueries, from “outside”), and getParent, which
returns the parent operator. In addition, helper objects are
used to automate LLVM code generation tasks. In particular
Loop and If are used to automate control flow.

Scan
The scan uses the ScanConsumer helper class to access all
relation fragments, accesses all tuples contained in the current
fragment, registers the required columns as available upon
demand (they will be cached by the context), and passes
the tuple to the consuming operator. Note that, depending
on the relation type, the ScanConsumer logic might create
calls to C++ functions (e.g., page accesses) to access data
fragments.

void TableScanTranslator::produce(CodeGen& codegen,Context& context) const
{

// Access all relation fragments
llvm::Value∗ dbPtr=codegen.getDatabasePointer();
llvm::Value∗ relationPtr=codegen.getPtr(dbPtr,db.layout.relations[table]);
auto& required=scanConsumer.getPartitionPtr();
ScanConsumer scanConsumer(codegen,context)
for (;db.relations[table]−>generateScan(codegen,relationPtr,scanConsumer);) {

// Prepare accessing the current fragment
llvm::Value∗ partitionPtr=required;
ColumnAccess columnAccess(partitionPtr,required);

// Loop over all tuples
llvm::Value∗ tid=codegen.const64(0);
llvm::Value∗ limit=codegen.load(partitionPtr,getLayout().size);
Loop loop(codegen,codegen−>CreateICmpULT(tid,limit),{{tid,”tid”}});
{

tid=loop.getLoopVar(0);

// Prepare column access code
PartitionAccess::ColumnAccess::Row rowAccess(columnAccess,tid);
vector<ValueAccess> access;
for (auto iter=required.begin(),limit=required.end();iter!=limit;++iter)

access.push back(rowAccess.loadAttribute(∗iter));

// Register providers in new inner context
ConsumerContext consumerContext(context);
unsigned slot=0;
for (auto iter=required.begin(),limit=required.end();iter!=limit;++iter,++slot)

consumerContext.registerIUProvider(&(getOutput()[∗iter].iu),&access[slot]);

// Push results to consuming operators
getParent()−>consume(codegen,consumerContext);

// Go to the next tuple
tid=codegen−>CreateAdd(tid,codegen.const64(1));
loop.loopDone(codegen−>CreateICmpULT(tid,limit),{tid});
}
}
}

As a scan is a leaf operator, there is no consume part.

Selection
For the selection the produce part is simple, it just adds
the attributes required for the predicate to the context and
calls its input operator. The consume part filters out all
non-satisfying tuples.

void SelectTranslator::produce(CodeGen& codegen,Context& context) const
{

// Ask the input operator to produce tuples
AddRequired addRequired(context,getCondition().getUsed());
input−>produce(codegen,context);
}

void SelectTranslator::consume(CodeGen& codegen,Context& context) const
{

// Evaluate the predicate
ResultValue value=codegen.deriveValue(getCondition(),context);

// Pass tuple to parent if the predicate is satisfied
CodeGen::If checkCond(codegen,value);
{

getParent()−>consume(codegen,context);
}
}

Projection
The (bag) projection is nearly a no-op, and is compiled
away during operator translation, as it only informs its input
about the required columns. The real effect occurs within
the pipeline breakers, as they discard all columns that are
not required.

void ProjectTranslator::produce(CodeGen& codegen,Context& context) const
{

// Ask the input operator to produce tuples
SetRequired setRequired(context,getOutput());
input−>produce(codegen,context);
}

void ProjectTranslator::consume(CodeGen& codegen,Context& context) const
{

// No code required here, pass to parent
getParent()−>consume(codegen,context);
}

Map
The map operator computes new columns by evaluating func-
tions. Note that placement of computations, and ordering
of maps and selections has already been done by the query
optimizer. Therefore the translation is straight forward.

void MapTranslator::produce(CodeGen& codegen,Context& context) const
{

// Figure out which columns have to be provided by the input operator
IUSet required=context.getRequired();
for (auto iter=functions.begin(),limit=functions.end();iter!=limit;++iter) {

(∗iter).function−>getUsed(required);
required.erase((∗iter).result);
}

// Ask the input operator to produce tuples
SetRequired setRequired(context,required);
input−>produce(codegen,context);
}

void MapTranslator::consume(CodeGen& codegen,Context& context) const
{

// Offer new columns
vector<ExpressionAccess> accessors;
for (auto iter=functions.begin(),limit=functions.end();iter!=limit;++iter)

accessors.push back(ExpressionAccess(codegen,∗(∗iter).function));
for (unsigned index=0,limit=accessors.size();index<limit;index++)

context.registerIUProvider(functions[index].result,&accessors[index]);

// Pass to parent
getParent()−>consume(codegen,context);
}

Hash Join
The four operators shown above are relatively simple, as most
of the logic is handled by pure LLVM code. A hash join is
much more involved, as here control flow moves from LLVM
into C++ and back. One could implement the hash join
using only LLVM, of course, and for a pure main-memory
hash join that is even reasonable. But if the hash join is
expected to spool to disk if needed, it will have to call many
methods that are query independent (for example I/O), and
in our implementation these parts are written in C++.

We first sketch the C++ code, as it defines the code
template that is then augmented with LLVM fragments. The
C++ code loads the build side into main memory, spooling
to disk if needed. If data fits into main memory, it just joins
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with the probe side. Otherwise, it spools the probe side into
partitions, too, and joins the partitions. For simplicity we
limit ourselves to inner joins here, non-inner joins require
additional bookkeeping to remember which tuples have been
joined.

void HashJoin::Inner::produce()
{

// Read the build side
initMem();
produceLeft();
if (inMem) {

buildHashTable();
} else {

// Spool remaining tuples to disk
spoolLeft();
finishSpoolLeft();
}

// Is a in−memory join possible?
if (inMem) {

produceRight();
return;
}

// No, spool the right hand side, too
spoolRight();

// Grace hash join
loadPartition(0);
while (true) {

// More tuples on the right?
for (;rightScanRemaining;) {

const void∗ rightTuple=nextRight();
for (LookupHash lookup(rightTuple);lookup;++lookup) {

join(lookup.data(),rightTuple);
}
}

// Handle overflow in n:m case
if (overflow) {

loadPartitionLeft();
resetRightScan();
continue;
}

// Go to the next partition
if ((++inMemPartition)>=partitionCount) {

return;
} else {

loadPartition(inMemPartition);
}
}
}

Thus the LLVM code has to provide three functions: pro-
duce/consume as before, and an additional join function that
the C++ code can call directly when joining tuples that
had been spooled to disk. Note that in this case the hash
table lookups etc. are already implemented in C++, so join
is only called for likely join candidates. The produce func-
tion simply passes the control flow to the C++ code. The
consume functions (one for each join side) hashes the join
values, determines the relevant registers, and materializes
them into the hash table. Note that for performance reasons
the HyPer system skips the in-memory materialization of
the right hand side and directly probes the hash table if no
data was spooled to disk, but this was omitted here due to
space constraints.

void HJTranslatorInner::produce(CodeGen& codegen,Context& context) const
{

// Construct functions that will be be called from the C++ code
{

AddRequired addRequired(context,getCondiution().getUsed().limitTo(left));
produceLeft=codegen.derivePlanFunction(left,context);
}
{

AddRequired addRequired(context,getCondiution().getUsed().limitTo(right));
produceRight=codegen.derivePlanFunction(right,context);
}

// Call the C++ code
codegen.call(HashJoinInnerProxy::produce.getFunction(codegen),
{context.getOperator(this)});

}

void HJTranslatorInner::consume(CodeGen& codegen,Context& context) const
{

llvm::Value∗ opPtr=context.getOperator(this);

// Left side
if (source==left) {

// Collect registers from the left side
vector<ResultValue> materializedValues;
matHelperLeft.collectValues(codegen,context,materializedValues);

// Compute size and hash value
llvm::Value∗ size=matHelperLeft.computeSize(codegen,materializedValues);
llvm::Value∗ hash=matHelperLeft.computeHash(codegen,materializedValues);

// Materialize in hash table, spools to disk if needed
llvm::Value∗ ptr=codegen.callBase(HashJoinProxy::storeLeftInputTuple,
{opPtr,size,hash});

matHelperLeft.materialize(codegen,ptr,materializedValues);

// Right side
} else {

// Collect registers from the right side
vector<ResultValue> materializedValues;
matHelperRight.collectValues(codegen,context,materializedValues);

// Compute size and hash value
llvm::Value∗ size=matHelperRight.computeSize(codegen,materializedValues);
llvm::Value∗ hash=matHelperRight.computeHash(codegen,materializedValues);

// Materialize in memory, spools to disk if needed, implicitly joins
llvm::Value∗ ptr=codegen.callBase(HashJoinProxy::storeRightInputTuple,
{opPtr,size});

matHelperRight.materialize(codegen,ptr,materializedValues);
codegen.call(HashJoinInnerProxy::storeRightInputTupleDone,{opPtr,hash});
}
}

void HJTranslatorInner::join(CodeGen& codegen,Context& context) const
{

llvm::Value∗ leftPtr=context.getLeftTuple(),∗rightPtr=context.getLeftTuple();

// Load into registers. Actual load may be delayed by optimizer
vector<ResultValue> leftValues,rightValues;
matHelperLeft.dematerialize(codegen,leftPtr,leftValues,context);
matHelperRight.dematerialize(codegen,rightPtr,rightValues,context);

// Check the join condition, return false for mismatches
llvm::BasicBlock∗ returnFalseBB=constructReturnFalseBB(codegen);
MaterializationHelper::testValues(codegen,leftValues,rightValues,

joinPredicateIs,returnFalseBB);
for (auto iter=residuals.begin(),limit=residuals.end();iter!=limit;++iter) {

ResultValue v=codegen.deriveValue(∗∗iter,context);
CodeGen::If checkCondition(codegen,v,0,returnFalseBB);
}

// Found a match, propagate up
getParent()−>consume(codegen,context);
}

Example
As a small, illustrational example, we show the generated
LLVM code for the query

select d_tax from warehouse, district

where w_id=d_w_id and w_zip=’137411111’

below. It first scans warehouse, filters, and materializes into
the hash table. Then it scans district and joins. Note that
we “forced” a pure main-memory hash join to keep the code
size reasonable.

define void @planStart(%14∗ %executionState) {
body:

%0 = getelementptr inbounds %14∗ %executionState, i64 0, i32 0, i32 1,
i64 0

store i64 0, i64∗ %0, align 8
%1 = getelementptr inbounds %14∗ %executionState, i64 0, i32 1
call void @ ZN5hyper9HashTable5resetEv(%”hyper::HashTable”∗ %1)
%2 = bitcast %14∗ %executionState to %”hyper::Database”∗∗
%3 = load %”hyper::Database”∗∗ %2, align 8
%4 = getelementptr inbounds %”hyper::Database”∗ %3, i64 0, i32 1
%5 = load i8∗∗ %4, align 8
%warehouse = getelementptr inbounds i8∗ %5, i64 5712
%6 = getelementptr inbounds i8∗ %5, i64 5784
%7 = bitcast i8∗ %6 to i32∗∗
%8 = load i32∗∗ %7, align 8
%9 = getelementptr inbounds i8∗ %5, i64 5832
%10 = bitcast i8∗ %9 to %3∗∗
%11 = load %3∗∗ %10, align 8
%12 = bitcast i8∗ %warehouse to i64∗
%size = load i64∗ %12, align 8
%13 = icmp eq i64 %size, 0
br i1 %13, label %scanDone, label %scanBody

scanBody:
%tid = phi i64 [ 0, %body ], [ %34, %cont2 ]
%14 = getelementptr i32∗ %8, i64 %tid
%w id = load i32∗ %14, align 4
%15 = getelementptr inbounds %3∗ %11, i64 %tid, i32 0
%16 = load i8∗ %15, align 1
%17 = icmp eq i8 %16, 9
br i1 %17, label %then, label %cont2

then:
%w zip = getelementptr inbounds %3∗ %11, i64 %tid, i32 1, i64 0
%27 = call i32 @memcmp(i8∗ %w zip, i8∗ @”string 137411111”, i64 9)
%28 = icmp eq i32 %27, 0
br i1 %28, label %then1, label %cont2

then1:
%29 = zext i32 %w id to i64
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%30 = call i64 @llvm.x86.sse42.crc64.64(i64 0, i64 %29)
%31 = shl i64 %30, 32
%32 = call i8∗ @ ZN5hyper9HashTable15storeInputTupleEmj(%”hyper::

HashTable”∗ %1, i64 %31, i32 4)
%33 = bitcast i8∗ %32 to i32∗
store i32 %w id, i32∗ %33, align 1
br label %cont2

cont2:
%34 = add i64 %tid, 1
%35 = icmp eq i64 %34, %size
br i1 %35, label %cont2.scanDone crit edge, label %scanBody

cont2.scanDone crit edge:
%.pre = load %”hyper::Database”∗∗ %2, align 8
%.phi.trans.insert = getelementptr inbounds %”hyper::Database”∗ %.pre,

i64 0, i32 1
%.pre11 = load i8∗∗ %.phi.trans.insert, align 8
br label %scanDone

scanDone:
%18 = phi i8∗ [ %.pre11, %cont2.scanDone crit edge ], [ %5, %body ]
%district = getelementptr inbounds i8∗ %18, i64 1512
%19 = getelementptr inbounds i8∗ %18, i64 1592
%20 = bitcast i8∗ %19 to i32∗∗
%21 = load i32∗∗ %20, align 8
%22 = getelementptr inbounds i8∗ %18, i64 1648
%23 = bitcast i8∗ %22 to i64∗∗
%24 = load i64∗∗ %23, align 8
%25 = bitcast i8∗ %district to i64∗
%size8 = load i64∗ %25, align 8
%26 = icmp eq i64 %size8, 0
br i1 %26, label %scanDone6, label %scanBody5

scanBody5:
%tid9 = phi i64 [ 0, %scanDone ], [ %58, %loopDone ]
%36 = getelementptr i32∗ %21, i64 %tid9
%d w id = load i32∗ %36, align 4
%37 = getelementptr i64∗ %24, i64 %tid9
%d tax = load i64∗ %37, align 8
%38 = zext i32 %d w id to i64
%39 = call i64 @llvm.x86.sse42.crc64.64(i64 0, i64 %38)
%40 = shl i64 %39, 32
%41 = getelementptr inbounds %14∗ %executionState, i64 0, i32 1, i32 0
%42 = load %”hyper::HashTable::Entry”∗∗∗ %41, align 8
%43 = getelementptr inbounds %14∗ %executionState, i64 0, i32 1, i32 2
%44 = load i64∗ %43, align 8
%45 = lshr i64 %40, %44
%46 = getelementptr %”hyper::HashTable::Entry”∗∗ %42, i64 %45
%47 = load %”hyper::HashTable::Entry”∗∗ %46, align 8
%48 = icmp eq %”hyper::HashTable::Entry”∗ %47, null
br i1 %48, label %loopDone, label %loop

loopStep:
%49 = getelementptr inbounds %”hyper::HashTable::Entry”∗ %iter, i64 0,

i32 1
%50 = load %”hyper::HashTable::Entry”∗∗ %49, align 8
%51 = icmp eq %”hyper::HashTable::Entry”∗ %50, null
br i1 %51, label %loopDone, label %loop

loop:
%iter = phi %”hyper::HashTable::Entry”∗ [ %47, %scanBody5 ], [ %50, %

loopStep ]
%52 = getelementptr inbounds %”hyper::HashTable::Entry”∗ %iter, i64 1
%53 = bitcast %”hyper::HashTable::Entry”∗ %52 to i32∗
%54 = load i32∗ %53, align 4
%55 = icmp eq i32 %54, %d w id
br i1 %55, label %then10, label %loopStep

then10:
call void @ ZN6dbcore16RuntimeFunctions12printNumericEljj(i64 %d tax,

i32 4, i32 4)
call void @ ZN6dbcore16RuntimeFunctions7printNlEv()
br label %loopStep

loopDone:
%58 = add i64 %tid9, 1
%59 = icmp eq i64 %58, %size8
br i1 %59, label %scanDone6, label %scanBody5

scanDone6:
ret void
}

B. MICROBENCHMARKS
In addition to the main experiments, we performed a num-

ber of micro-benchmarks to study the impact of different
query processing schemes in more detail. We implemented
several techniques and ran them within the HyPer system.
This way, all approaches read exactly the same data from
exactly the same data structures, thus any runtime differ-
ences stem purely from differences in data and control flow
during query processing. Besides the data-centric compi-
lation scheme proposed in this paper, we implemented the
classical iterator model, both as interpreter (i.e., the standard
evaluation scheme in most databases), and as compiled into
executable code. In addition, we implemented block-wise
tuple processing [11], which roughly corresponds to the eval-
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Figure 8: Performance for Cascading Selections

uation schemes of modern cache-conscious database systems
like MonetDB and VectorWise. We only considered the com-
piled model here, as both MonetDB and VectorWise use
pre-compiled building blocks to reduce interpretation over-
head. Note that during the experiments the data is held in
a column-store layout, i.e., accessing more columns increases
the amount of scanned data.

As first experiment we started with a very simple aggrega-
tion query for our TPC-C data set

select count(*)

from orderline

where ol_o_id>0 and ol_d_id>0 and ol_w_id>0

and varied the number of filter conditions, all of which are
unselective (i.e., the result is the same for any combination
of filter conditions). As we were interested in the overhead of
data-passing, each filter condition was introduced as separate
selection operator, and then measured the execution time of
the query under the different evaluation schemes. The results
are shown in Figure 8. Clearly, the iterator model using an
interpreted predicate check (i.e., the evaluation scheme used
in most database systems) is very slow. It performs a very
large number of function calls and has poor locality. Compil-
ing the iterator model into executable code greatly improves
the runtime, in particular since the virtual function calls
necessary for predicate evaluation are eliminated. Clearly,
compiling into machine code is a good idea, interpreted ap-
proaches are significantly slower. The block-wise execution
model improves execution times even more. Without filter,
it is actually a bit slower, as the overhead of finding block
boundaries, setting up tuple blocks frames, etc., does not
pay off here. But even for a single selection the reduced
number of function calls and better locality pays off, and it
outperforms the iterator model. The data-centric approach
proposed here shows excellent performance for all queries.
Two points are particularly interesting: First, without filter
conditions, the query execution time is nearly zero. The
reason for this is that the compiler notices that our loop
over tuple fragments performs no work except increasing a
counter, and converts it into an addition of the fragment
size. Second, when filtering (and thus accessing) all three
columns, the performance seems to go down a bit. But in
reality, the two-filter case is too fast due to caching effects.
The three-filter query is reading tuple attributes at a rate
of 4.2 GB/s, which starts getting close to the bandwidth of
the memory bus of our machine, and branches depending
on these data reads. We might improve query processing a
bit by using conditional CPU operations, but with generic
selection code we cannot expect to get much faster.
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In a second experiment we looked at a query that is the
“opposite” of our first query: In the first query the operators
filtered the tuples but performed no computations. Now
we eliminate the selections but perform computations based
upon the attributes:

select sum(ol_o_id*ol_d_id*ol_w_id)

from orderline

To vary the complexity, we ran the query with only the
first product term, the first two product terms, and all
three product terms. The results are shown in Figure 9.
Again, the classical interpreted iterator model is very slow.
However when compiled the iterator model is performing
much better, it now requires just one virtual function call
per tuple. The block-oriented processing remains faster, but
the differences are small. Again, our data-centric approach
performs excellent. When aggregating three columns, the
system processes tuple attributes at a rate of 6.5GB/s, which
is the bandwidth of the memory bus. We cannot expect to
get faster than this without changes to the storage system.
Our query processing is so fast that is is basically “I/O
bound”, where I/O means RAM access.

C. OPTIMIZATION SETTINGS
When generating machine code, optimization settings can

affect the result performance quite significantly. We therefore
give a precise description of the optimization settings used
in the experiments here.

For the C++ code, machine code was generated using g++
4.5.2 with the optimization flags
-O3 -fgcse-las -funsafe-loop-optimizations.
Note that at gcc version 4.5, this subsumes many other

optimization settings like -ftree-vectorize, which systems
like MonetDB specify explicitly. These optimization op-
tions were manually tuned to maximize query performance.
Specifying -funroll-loops for example actually decreases
the performance of Q4 by 23%. There is a very subtle in-
teraction of optimization options. For example enabling
-funroll-loops also enables -fweb, which affects the regis-
ter allocator. Therefore it is hard to predict the effect of
individual optimization switches.

For the LLVM compiler we use a custom optimization level
by manually scheduling optimization passes. The precise
cascade is
llvm::createInstructionCombiningPass()

llvm::createReassociatePass()

llvm::createGVNPass()

llvm::createCFGSimplificationPass()

llvm::createAggressiveDCEPass()

llvm::createCFGSimplificationPass()

As our SQL compiler already produces very reasonable
LLVM code, we mainly rely upon optimization passes that
optimize the control flow. As a result the optimization time is
quite low compared to aggressive LLVM optimization levels.

D. QUERIES
We include the full SQL text of the queries Q1-Q5 below.

As described in [5], they are derived from TPC-H queries
but adapted to the combined TPC-C and TPC-H schema.

Q1
select ol number, sum(ol quantity) as sum qty,

sum(ol amount) as sum amount, avg(ol quantity) as avg qty,
avg(ol amount) as avg amount, count(∗) as count order

from orderline
where ol delivery d>timestamp ’2010−01−01 00:00:00’
group by ol number
order by ol number

Q2
select su suppkey, su name, n name, i id,

i name, su address, su phone, su comment
from item, supplier, stock, nation, region
where i id = s i id

and mod((s w id ∗ s i id), 10000) = su suppkey
and su nationkey = n nationkey
and n regionkey = r regionkey
and i data like ’%b’ and r name like ’Europ%’
and s quantity = (

select min(s quantity)
from stock, supplier, nation, region
where i id = s i id

and mod((s w id ∗ s i id),10000) = su suppkey
and su nationkey = n nationkey
and n regionkey = r regionkey
and r name like ’Europ%’ )

order by n name, su name, i id

Q3
select ol o id , ol w id , ol d id , sum(ol amount) as revenue, o entry d
from customer, neworder, ”order”, orderline
where c state like ’A%’

and c id = o c id and c w id = o w id and c d id = o d id
and no w id = o w id and no d id = o d id and no o id = o id
and ol w id = o w id and ol d id = o d id and ol o id = o id
and o entry d > timestamp ’2010−01−01 00:00:00’

group by ol o id, ol w id, ol d id , o entry d
order by revenue desc, o entry d

Q4
select o ol cnt , count(∗) as order count
from ”order”
where o entry d >= timestamp ’2010−01−01 00:00:00’

and o entry d < timestamp ’2110−01−01 00:00:00’
and exists (select ∗ from orderline

where o id = ol o id and o w id = ol w id and o d id = ol d id
and ol delivery d > o entry d)

group by o ol cnt
order by o ol cnt

Q5
select n name, sum(ol amount) as revenue
from customer, ”order”, orderline, stock, supplier , nation, region
where c id = o c id and c w id = o w id and c d id = o d id

and ol o id = o id and ol w id = o w id and ol d id=o d id
and ol w id = s w id and ol i id = s i id
and mod((s w id ∗ s i id),10000) = su suppkey
and ascii(substr(c state ,1,1)) = su nationkey
and su nationkey = n nationkey
and n regionkey = r regionkey and r name = ’Europa’
and o entry d >= timestamp ’2010−01−01 00:00:00’

group by n name
order by revenue desc
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