
gStore: Answering SPARQL Queries via Subgraph
Matching ∗

Lei Zou1, Jinghui Mo1, Lei Chen2, M. Tamer Özsu3, Dongyan Zhao1,4

1Peking University, China;
2 Hong Kong University of Science and Technology, China;

3 University of Waterloo, Canada;
4 Key Laboratory of Computational Linguistics (PKU), Ministry of Education, China

{ zoulei,mojinghui,zdy}@icst.pku.edu.cn, leichen@cse.ust.hk, tamer.ozsu@uwaterloo.ca

ABSTRACT
Due to the increasing use of RDF data, efficient processing of SPA-
RQL queries over RDF datasets has become an important issue.
However, existing solutions suffer from two limitations: 1) they
cannot answer SPARQL queries with wildcards in a scalable man-
ner; and 2) they cannot handle frequent updates in RDF repositories
efficiently. Thus, most of them have to reprocess the dataset from
scratch. In this paper, we propose a graph-based approach to store
and query RDF data. Rather than mapping RDF triples into a re-
lational database as most existing methods do, we store RDF data
as a large graph. A SPARQL query is then converted into a cor-
responding subgraph matching query. In order to speed up query
processing, we develop a novel index, together with some effec-
tive pruning rules and efficient search algorithms. Our method can
answer exact SPARQL queries and queries with wildcards in a uni-
form manner. We also propose an effective maintenance algorithm
to handle online updates over RDF repositories. Extensive experi-
ments confirm the efficiency and effectiveness of our solution.

1. INTRODUCTION
The RDF (Resource Description Framework) data model was

proposed for modeling Web objects as part of developing the se-
mantic web. It has been used in various applications. For ex-
ample, Yago and DBPedia extract facts from Wikipedia automat-
ically and store them in RDF format to support structural queries
over Wikipedia [19, 3]. Biologists also build RDF data collections,
such as Bio2RDF (bio2rdf.org) and Uniprot RDF (dev.isb-sib.ch/
projects/uniprot-rdf), for recording experimental data.

Generally speaking, RDF data can be represented as a collection
of triples denoted as SPO (sub ject, property, ob ject). A running

∗Lei Zou, Jinghui Mo and Dongyan Zhao were supported by
NSFC under Grant No.61003009 and RFDP under Grant No.
20100001120029. Lei Chen’s work was supported in part by RGC
NSFC JOINT Grant under Project No. N HKUST61 2/09, and

NSFC Grant No. 60736013 and 60803105. M. Tamer Özsu’s work
was supported in part by the Natural Sciences and Engineering Re-
search Council (NSERC) of Canada.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 37th International Conference on Very Large Data Bases,
August 29th - September 3rd 2011, Seattle, Washington.
Proceedings of the VLDB Endowment, Vol. 4, No. 8
Copyright 2011 VLDB Endowment 2150-8097/11/05... $ 10.00.

example is given in Figure 1(a). Note that, an RDF dataset can
also be modeled as a graph (called RDF graph), as shown in Figure
1(b). In order to query RDF repositories, SPARQL query language
[16] has been proposed by W3C. For example, we can retrieve the
names of individuals who were born on February 12, 1809 and died
on April 15, 1865 from the RDF dataset by the following SPARQL
query:
Q1: Select ?name Where { ?m <hasName> ?name. ?m <BornOn Date >
“1809-02-12”. ?m <DiedOnDate> “1865-04-15”. }

Although RDF data management has been studied in the past
decade, most existing solutions do not scale to large RDF reposi-
tories and cannot answer complex queries efficiently. Recent stud-
ies have focused on scalable techniques for large RDF repositories
(e.g. [2, 12, 13, 25, 22]). Although these existing RDF query en-
gines, such as RDF-3x [12], Hexastore [22] and SW-store [1], are
designed to address the scalability of SPARQL queries, they have
some common limitations: (1) they cannot support SPARQL with
wildcards in a scalable manner; and (2) it is very difficult for some
existing systems to handle frequent updates in RDF repositories,
forcing them to reprocess the dataset from scratch when there is an
update. x-RDF-3x [15], the advanced version of RDF-3x system,
can support updates, but, it still fails to support wildcard queries.

1.1 SPARQL Queries With Wildcards
In real applications, having full knowledge about a query object

may not be practical; thus, it may not be possible to specify exact
query criteria. For example, we may know that an important politi-
cian was born on February 12 and died on April 15, but we have no
idea about his exact birth and death years. In this case, we have to
perform a query with wildcards, as shown below:
Q2:Select ?name Where { ?m <hasName> ?name. ?m <BornOnDate> ?bd.
?m <DiedOnDate> ?dd. FILTER regex(str(?bd), “02-12”), regex(str(?dd),
“04-15”) }

Although there are techniques for supporting SPARQL queries
with wildcards and for managing large RDF datasets, to the best of
our knowledge, no technique exists to support both, i.e., the abil-
ity to execute SPARQL queries with wildcards in a scalable man-
ner. Existing RDF storage systems, such as Jena [23], Yars2 [11]
and Sesame 2.0 [5], cannot work well in large RDF datasets (such
as Yago dataset). SW-store[1], RDF-3x [12], x-RDF-3x [15] and
Hexastore [22] are designed to address scalability, however, they
can only support exact SPARQL queries, since they replace all lit-
erals (in RDF triples) by ids using a mapping dictionary.

1.2 Frequent Updates Over RDF Repositories
In some applications, RDF repositories are not static. For ex-

ample, Yago and DBpedia datasets are continually expanding to

482

Subject Predict Object

y:Abraham_Lincoln hasName Abraham Lincoln

y:Abraham_Lincoln BornOnDate 1809-02-12

y:Abraham_Lincoln DiedOnDate 1865-04-15

y:Abraham_Lincoln DiedIn y:Washington_D.C

y:Washington_D.C hasName Washington D.C.

y:Washington_D.C FoundYear 1790

y:United_States hasName United States

y:United_States hasCapital y:Washington_D.C

y:United_States rdf:type Country

y:Washington_D.C rdf:type y:city

y:Reese_Witherspoon rdf:type y:Actor

y:Reese_Witherspoon BornOnDate 1976-03-22

y:Reese_Witherspoon BornIn y:New_Orleans,_Louisiana

y:Reese_Witherspoon hasName ReeseWitherspoon

y:New_Orleans,_Louisiana FoundYear 1718

y:New_Orleans,_Louisiana rdf:type y:city

y:New_Orleans,_Louisiana locatedIn y:United_States

Prefix: y= http://en.wikipedia.org/wiki/

(a) RDF Tripes

hasName

BornOnDate

DiedOnDate
DiedIn

Abraham Lincoln

1809-02-12

1865-04-15

http://en.wikipedia.org/wiki/

Abraham_Lincoln

http://en.wikipedia.org/wiki/

Washington_D.C.

FoundYear

1790

Washington D.C.

hasName
http://en.wikipedia.org/wiki/

United_States

hasCapital

http://en.wikipedia.org/wiki/

Country

rdf:type

http://en.wikipedia.org/wiki/

City

rdf:type

http://en.wikipedia.org/wiki/

Reese_Witherspoon

http://en.wikipedia.org/wiki/

New_Orleans,_Louisiana

locatedIn

http://en.wikipedia.org/wiki/

Actor

1976-03-22

BornOnDate

rdf:type
BornIn

FoundYear

1718

rdf:type

005

008

004

003
006

001

007
002

United States

hasName

Reese Witherspoon

hasName

009

010

011

012

013

014

015

016 017

(b) RDF Graph G

Figure 1: RDF Graph

include the newly extracted knowledge from Wikipedia. The RDF
data in social networks, such as the FOAF project (foaf-project.org),
are also frequently updated to represent the individuals’ changing
relationships. In order to support queries over such dynamic RDF
datasets, query engines should be able to handle frequent updates
without much maintenance overhead.

1.3 Our Approach
In this work, we treat RDF datasets from a graph database per-

spective. A SPARQL query is transformed into a subgraph match-
ing query over a large RDF graph. Specifically, we can model an
RDF dataset (a collection of triples) as a labeled, directed multi-
edge graph (RDF graph), where each vertex corresponds to a sub-
ject or an object. Each triple represents a directed edge from a
subject to its corresponding object. Given a subject and an ob-
ject, there may exist more than one property between them, that is,
multiple-edges may exist between two vertices. Consequently, an
RDF graph is a multi-edge graph. Given a SPARQL query, we can
also represent it by a query graph, Q. Thus, a SPARQL query can
be transformed to a subgraph matching query over the RDF graph.

For example, Figure 1(b) shows an RDF graph corresponding to
RDF triples in Figure 1(a). We formally define an RDF graph in
Definition 2.1. Note that, the numbers next to boxes in Figure 1(b)
are not vertex labels, but vertex IDs that we introduce to simplify
the description. A SPARQL query can also be represented as a di-
rected labeled graph Q (referred as query graph in Definition 2.2).
Figure 2(a) shows the query graph corresponding to the SPARQL
query Q2. In this setting, answering SPARQL query Q reduces to
finding the matches of Q in RDF graph G.

However, the characteristics of an RDF graph are different from
a typical graph considered in the existing graph database literature
in three aspects. First, the size of an RDF graph (i.e., the number
of vertices and edges) is larger than what is considered in typical
graph databases by orders of magnitude. Second, the cardinality of
vertex and edge labels in an RDF graph is much larger than that in
traditional graph databases. For example, a typical dataset (i.e., the
AIDS dataset) used in the existing graph database work [17, 24]
has 10,000 data graphs, each with an average number of 20 ver-
tices and 25 edges. The total number of distinct vertex labels is
62. The total size of the dataset is about 5M bytes. However, the
Yago RDF graph has about 500M vertices and the total size is about
3.1GB. Therefore, I/O cost becomes a key issue in RDF query pro-
cessing. However, most existing subgraph query algorithms are
memory-based. Third, SPARQL queries combine several attribute-

like properties of the same entity, thus, they tend to contain stars
as subqueries [12]. A star query refers to the query graph that is a
star, formed by one central vertex and its neighbors.

Considering the three properties of an RDF graph, we propose a
novel indexing schema to speed up query processing. Firstly, we
store an RDF graph as a disk-based adjacency list table T . Then,
for each entity or class vertex (Definition 2.1) in the RDF graph,
according to its adjacent edge labels and neighbor vertex labels
(Definition 2.1), we assign a bitstring as its vertex signature. In
this way, an RDF graph is converted into a data signature graph
G∗ (Definition 4.3). Then, we propose a novel index (called VS∗-
tree) over G∗. At run time, we also encode all vertices of Q into
vertex signatures, and then convert Q into its corresponding query
signature graph Q∗. Finding all matches of Q∗ over G∗ will lead to
all candidate matches (denoted as CL) without any false negative.
Note that, we propose a novel filtering rule (Theorem 5.1) to reduce
the search space in finding CL. Finally, according to CL, we can
fix results by checking a small portion of the adjacency list table T .

The advantages of our methods lie in: 1) supporting exact SPAR-
QL queries and queries with wildcards in a uniform manner; and
2) having a light maintenance overhead of our index VS∗-tree, as
other height-balanced trees (such as B+-tree and R-tree) do.

To summarize, in this work, we make the following contribu-
tions.

1. We adopt the graph model as the physical storage scheme
for RDF data. Specifically, we store RDF data in disk-based
adjacency lists.

2. We transform an RDF graph into a data signature graph by
encoding each entity and class vertex. Then, a novel index
(VS∗-tree) is proposed over the data signature graph with
light maintenance overhead.

3. We develop a filtering rule for subgraph query over the data
signature graph, which can be seamlessly embedded into our
query algorithm that answers exact SPARQL queries and que-
ries with wildcards in a uniform manner.

4. We demonstrate through experiments that the performance of
our method is superior to existing methods in answering both
exact SPARQL queries and queries with wildcards, and our
solutions well support online updates with small overhead.

483

?name

?m

02-12
04-15

BornOnDate DiedOnDate

hasName

(a) Query Q2

?m ?city

FoundYear

1718

bornIn

bornOnDate

1976
?name

hasName

(b) Query Q3

Figure 2: Query Graphs

2. PRELIMINARIES
RDF data are a collection of triples denoted as SPO (subject,

property, object), where subject is an entity or a class, and property
denotes one attribute associated to one entity or a class, and object
is an entity, a class, or a literal value. According to the RDF stan-
dard, an entity or a class is denoted by a URI (Uniform Resource
Identifier). For example, in Figure 1, “http://en.wikipedia.org/wiki/
United States” is an entity, “http://en.wikipedia.org/wiki/Country”
is a class, and “United States” is a literal value. In this work, we
will not distinguish between an “entity” and a “class” since we have
the same operations over them. RDF data can also be modeled as
an RDF graph, which is formally defined as follows:

DEFINITION 2.1. A RDF graph is denoted as G = 〈V, LV , E,
LE〉, where (1) V = Vc ∪ Ve ∪ Vl is a collection of vertices that
correspond to all subjects and objects in RDF data, where Vc, Ve,
and Vl are collections of class vertices, entity vertices, and literal
vertices, respectively. (2) LV is a collection of vertex labels. Given
a vertex v ∈ Vl, its vertex label is its literal value. Given a vertex
v ∈ Vc∪Ve, its vertex label is its corresponding URI. (3) E = (v1, v2)
is a collection of directed edges that connect the corresponding
subjects and objects. (4) LE is a collection of edge labels. Given
an edge e ∈ E, its edge label is its corresponding property.

Figure 1(b) shows an example of an RDF graph. The vertices
that are denoted by boxes are entity or class vertices, and the oth-
ers are literal vertices. A SPARQL query Q is also a collection
of triples. However, some triples in Q have parameters or wild-
cards. In Q2 (in Section 1), “?m” is a parameter and “?dd” in
FILTER(regx(?dd,“04-15”)) is called a wildcard. Thus, as shown in
Figure2(a), we can rewrite “?dd” and FILTER(regx(?dd,“04-15”))
as “*04-15*”.

DEFINITION 2.2. A query graph is denoted as Q = 〈V, LV , E, LE〉,
where (1) V = Vc ∪ Ve ∪ Vl ∪ Vp ∪ Vw is collection of vertices that
correspond to all subjects and objects in a SPARQL query, where
Vp and Vw are collections of parameter vertices and wildcard ver-
tices, respectively, and Vc and Ve and Vl are defined in Definition
2.1. (2) LV is a collection of vertex labels. For a vertex v ∈ Vp,
its vertex label is φ. The vertex label of a vertex v ∈ Vw is the sub-
string without the wildcard. A vertex v ∈ Vc ∪ Ve ∪ Vl is defined in
Definition 2.1. (3) E and LE are defined in Definition 2.1.

Figure 2(a) shows a query example that corresponds to Example
2. “*02-12*” is a wildcard vertex, and its label is “02-12”. “?m” is
a parameter vertex and its label is φ.

DEFINITION 2.3. Consider an RDF graph G and a query graph
Q that has n vertices {v1, ..., vn}. A set of n distinct vertices {u1, ..., un}
in G is said to be a match of Q, if and only if the following condi-
tions hold:

1. If vi is a literal vertex, vi and ui have the same literal value;

2. If vi is an entity or class vertex, vi and ui have the same URI;

3. If vi is a parameter vertex, there is no constraint over ui;

4. If vi is a wildcard vertex, vi is a substring of ui and ui is a
literal value.

5. If there is an edge from vi to v j in Q with the property p, there
is also an edge from ui to u j in G with the same property p.

Given a query graph Q2 in Figure 2(a), vertices (005,009,010,011)
in RDF graph G form a match of Q2. Answering a SPARQL query
is equivalent to finding all matches of its corresponding query graph
in RDF graph.

DEFINITION 2.4. (Problem Definition) Given a query graph Q
over an RDF graph G, find all matches of Q over G according to
Definition 2.3.

3. OVERVIEW OF gStore
Our general framework consists of both offline and online pro-

cesses. During offline processing, we first represent an RDF dataset
by an RDF graph G and store it by its adjacency list table T , as
shown in Figure 4. Then, we encode each entity and class vertex
into a bitstring (called vertex signature). The encoding technique
will be discussed in Section 4. According to RDF graph’s structure,
we link these vertex signatures to form a data signature graph G∗,
in which, each vertex corresponds to a class or an entity vertex in
the RDF graph, as shown in Figure 3. Specifically, G∗ is induced
by all entity and class vertices in G together with the edges whose
endpoints are either entity or class vertices. At run time, we can
also represent a SPARQL query by a query graph Q and encode
it into a query signature graph Q∗. Then, finding matches of Q∗

over G∗ leads to candidates (denoted as CL). Finally, we verify
each candidate by checking adjacency list table T . Note that, the
matches of Q over G are denoted as RS .

Figure 3 shows an example of a data signature graph G∗, which
corresponds to RDF graph G in Figure 1(b). Note that each entity
and class vertex in G is encoded into a signature. We also encode
query Q3 (in Figure 2(b)) into a query signature graph Q∗, as shown
in Figure 3. There is only one match of Q∗ over G∗, that is CL =
{(001, 002)}. Finally, by checking the adjacency list T (in Figure
4), we can find that (001, 002) is also a match of Q over G.

0010 1000 1000 0100

1000 0001

0001 1000

0000 0001

001 002

003

004
005

1000 1000
006

0001 0100

008

0000 1000 1000 0000

Query Signature Graph

Data Signature Graph

0100 0100
007

*
Q

*
G

10000

00010

01000

00010

0010000010

00001

00010

10000

Figure 3: Signature Graphs

Finding matches of Q∗ over G∗ is known to be NP-hard since it
is analogous to subgraph isomorphism. Therefore, we propose an
index and filtering strategy to reduce the search space over which
we do matching. Reducing the search space has been considered in
other works as well (eg. [17, 24]).

According to this framework, there are two issues to be addressed.
First, the encoding technique should guarantee that there are no
no-false-negatives, i.e., RS ⊆ CL. Second, an efficient subgraph
matching algorithm is required to find matches of Q∗ over G∗. To
address the first issue, we propose a coding technique in Section 4.
For the second issue, we design novel index structures (called VS
and VS∗-trees) and query algorithms in Sections 5 and 6.

4. STORAGE SCHEME AND ENCODING
TECHNIQUE

We propose a graph-based storage scheme for RDF data. Specif-
ically, we store an RDF graph G using a disk-based adjacency list

484

table. Each (class or entity) vertex u is represented by an adja-
cency list, whose format is [vID, vLabel, ad jList], where vID is
the vertex ID, vLabel is the corresponding URI, and ad jList is the
list of its outgoing edges and the corresponding neighbor vertices.
Formally, ad jList = {(eLabel, nLabel)+}, where eLabel is v’s out-
going edge label that corresponds to some property and nLabel is
v’s neighbor vertex label. Vertex labels and edge labels of an RDF
graph are defined in Definition 2.1. Figure 4 shows the correspond-
ing adjacency list table (T) for the RDF graph in Figure 1(b).

Prefix: y= http://en.wikipedia.org/wiki/

y:Abraham_Li

ncoln

vLabelvID

001

adjList {(eLabel, nLabel)+}

(hasName, Abraham Lincoln) (BornOnDate, 1809-02-12),

(DiedOnDate, 1865-04-15) (DiedIn, y:Washington_D.C)

y:Washington_

D.C
002

(hasName, Washington D.C.) (FoundYear , 1790)

(rdf:type, y:city)

y:United_State

s
003

(hasName, United States) (hasCapital,y:Washington_D.C)

(rdf:type, y:country)

y:Reese_Withe

rspoon
004

(hasName, ReeseWitherspoon) (BornOnDate, 1976-03-22)

(hasCapital, y:New_Orleans,_Louisiana) (rdf:type, y:Actor)

y:New_Orlean

s,_Louisiana
005

(FoundYear, 1718),

(locatedIn, y:United_States) (rdf:type, y:city)

Figure 4: Disk-based Adjacency List Table T

According to Definition 2.3, if a vertex v (in query Q) can match
a vertex u (in RDF graph G), each neighbor vertex and each ad-
jacent edge of v should match to some neighbor vertex and some
adjacent edge of u. Thus, given a vertex u in G, we encode each
of its adjacent edge labels and the corresponding neighbor vertex
labels into bitstrings. We encode query Q with the same encod-
ing method. In this way, we can verify the match between Q and
G by simply checking the match between corresponding encoded
bitstrings. A similar encoding strategy has been proposed in our
earlier work [26]. The differences are that in this work we encode
strings to their bitstring representation, while in the previous work
we encode the eigenvalues of the adjacency matrix.

As mentioned earlier, each row in table T corresponds to an en-
tity vertex or a class vertex. We encode each of its outgoing edge
labels and the corresponding neighbor vertex label into a bitstring.
Specifically, we first encode each adjacent edge e(eLabel, nLabel)
into a bitstring. This bitstring is called edge signature (i.e., eS ig(e)).

DEFINITION 4.1. Given an adjacent edge e(eLabel, nLabel),
the edge signature of e is a bitstring, denoted as eS ig(e), which has
two parts: eS ig(e).e, eS ig(e).n. The first part eS ig(e).e (M bits)
denotes the edge label (i.e. eLabel) and the second part eS ig(e).n
(N bits) denotes the neighbor vertex label (i.e. nLabel).

Given an edge e(eLabel, nLabel), we discuss how to generate
eS ig(e).e and eS ig(e).n, respectively. Let |eS ig(e).e| = M. Us-
ing some appropriate hash functions, we set m out of M bits in
eS ig(e).e to be ‘1’. Specifically, in our implementation, we em-
ploy m different string hash functions Hi (i = 1, ...,m), such as
BKDR and AP hash functions [6]. For each hash function Hi, we
set the (Hi(eLabel) MOD M)-th bit in eS ig(e).e to be ‘1’, where
Hi(eLabel) denotes the hash function value.

In order to encode neighbor vertex label nLabel into eS ig(e).n,
we adopt the following technique. We first represent nLabel by a
set of n-grams [9], where an n-gram is a subsequence of n charac-
ters from a given string. For example, “1809-02-12” can be repre-
sented by a set of 3-grams: {(180),(809),(09-),...,(-12)}. Then, we
adopt some string hash function H for each n-gram g. We use H(g)
to denote hash value of g. Finally, we set the (H(g) MOD N)-th
bit in eS ig(e).n to be ‘1’. The above encoding technique introduces
some parameters, such as M, m, N and n. We discuss the param-
eter settings in Appendix D. Figure 10(a) (given in Appendix C)

shows a running example of edge signatures. Considering an edge
(hasName,“Abraham Lincoln”), we first map the edge label “has-
Name” into a bitstring of length 12, and then map the vertex label
“Abraham Lincoln” into a bitstring of length 16.

DEFINITION 4.2. Given a class or entity vertex v in the RDF
graph, the vertex signature vS ig(v) is formed by performing bit-
wise OR operations over all its adjacent edge signatures. Formally,
vS ig(v) is defined as follows:

vS ig(v) = eS ig(e1)|......|eS ig(en)

where eS ig(ei) is the edge signature for edge ei adjacent to v and
“|” is the bitwise OR operation.

Considering vertex 005 in Figure 1(b), there are four adjacent
edges. We can encode each adjacent edge by its edge signature, as
shown in Figure 10(a) (given in Appendix C). A vertex signature
is defined in Definition 4.2. Figure 10(b) shows the signature of
vertex 005.

DEFINITION 4.3. Given an RDF graph G, its corresponding
data signature graph G∗ is induced by all entity and class vertices
in G together with the edges whose endpoints are either entity or
class vertices. Each vertex v in G∗ has its corresponding vertex
signature vS ig(v) (defined in Definition 4.2) as its label. Given
an edge −−−→v1v2 in G∗, its edge label is also a signature, denoted as
S ig(−−−→v1v2), to denote the property between v1 and v2.

Note that we adopt the same hash function in Definition 4.1 to
define S ig(−−−→v1v2). Specifically, we set m out of M bits in S ig(−−−→v1v2)
to be ‘1’ by some string hash functions. Figure 3 shows an example
of data signature graph G∗.

Actually, we can also encode the query graph Q by an analo-
gous method. Specifically, considering an entity or class vertex v
in Q, for each adjacent edge pair e(eLabel, nLabel) of v in Q, we
encode e into a bitstring eS ig(e) according to Definition 4.1. Note
that, if the adjacent neighbor vertex of v is a parameter vertex, we
set eS ig(e).n to be a signature with all zeros; if the adjacent neigh-
bor vertex of v is a wildcard vertex, we only consider the substring
without “wildcard” in the label. For example, in Figure 2(a), we
can only encode substrings “02-12” and “04-15” for the wildcard
vertices “*02-12*” and “*04-15*”, respectively. The vertex signa-
ture vS ig(v) can be obtained by performing bitwise OR operations
over all adjacent edge signatures.

Given a query graph Q, we can obtain a query signature graph
Q∗ induced by all entity and class vertices in Q together with all
edges whose endpoints are also entity or class vertices. Each vertex
v in Q∗ is a vertex signature vS ig(v), and each edge −−−→v1v2 in Q∗ is
associated with an edge signature S ig(−−−→v1v2). Figure 3 shows Q∗

that corresponds to query Q3 in Figure 2(b).

DEFINITION 4.4. Consider a data signature graph G∗ and a
query signature graph Q∗ that has n vertices {v1, ..., vn}. A set of n
distinct vertices {u1, ..., un} in G∗ is said to be a match of Q∗, if and
only if the following conditions hold:

1. vS ig(vi)&vS ig(ui) = vS ig(vi), i = 1, ..., n, where ‘&’ is the
bitwise AND operator.

2. If there is an edge from vi to v j in Q∗, there is also an edge
from ui to u j in G∗.

Note that, each vertex u (and v) in data (and query) signature
graph G∗ (and Q∗) has one vertex signature vS ig(v). For the sim-
plicity of symbols, we use u (and v) to denote vS ig(u) in G∗ (and
vS ig(v) in Q∗) when the context is clear.

Given an RDF graph G and a query graph Q, their correspond-
ing signature graphs are G∗ and Q∗, respectively. The matches of

485

Q over G are denoted as RS , and the matches of Q∗ over G∗ are
denoted as CL.

THEOREM 4.1. RS ⊆ CL holds.

5. INDEXING STRUCTURE AND QUERY
ALGORITHM

The key problem to be addressed is how to find matches of Q∗

(query signature graph) over G∗ (data signature graph) efficiently.
A straightforward method can work as follows: first, for each ver-
tex vi ∈ V(Q∗), we find a list Ri = {ui1 , ui2 , ..., uin }, where vi&ui j

= vi, ui j ∈ V(G∗), and ui j ∈ Ri. Then, we perform a multi-way
join over these lists Ri to find matches of Q∗ over G∗ (finding CL).
Actually, the first step (finding Ri) is a classical inclusion query [7].

Given a set of objects with set-valued attributes, an inclusion (or
subset) query searches for all objects containing certain attribute
values [20]. Usually, signatures are used to indicate the presence
of individuals in sets. Therefore, we can represent a set of objects
with set-valued attributes as a set of signatures {si} and an inclusion
query as a query signature q. An inclusion (or subset) query is to
find all signature si, where q&si = q. In order to reduce the search
space, S-tree [7], a height-balanced tree, is proposed to organize all
signatures {si}. Each intermediate node is formed by superimposing
all child signatures in S-tree. Therefore, we can employ a S-tree [7]
to support the first step efficiently, i.e., finding Ri. An example of
S-tree is given in Figure 11 of Appendix C.

However, S-tree cannot support the second step (i.e. a multi-
way join), which is NP-hard as discussed earlier. Although many
subgraph matching methods have been proposed (e.g., [17, 24]),
they are not scalable to very large graphs. Therefore, we propose
new index structures for a large data signature graph G∗.

5.1 Indexing Structures–A Simple Version
In this subsection, we propose a simple method to build a VS-

tree (vertex signature tree). Although it is not optimized for query
performance, it illustrates the main idea of our methods.

Given a data signature graph G∗, we first build a S-tree over all
vertex signatures in G∗ (i.e.,V(G∗)). S-tree is a classical height bal-
anced tree that can support inclusion queries efficiently. Given a
query signature q and a set of data signatures {si}, an inclusion
query is to find all data signatures si, where q&si = q. In our
problem, each leaf entry of the S-tree is a vertex signature in G∗.
Interested readers can refer to [7] for details of the S-tree.

As mentioned earlier, S-tree cannot support the second step (i.e.,
multi-way join processing) efficiently. The proposed VS-tree sup-
ports the second step for finding matches of Q∗ over G∗. The intu-
ition behind VS-tree is as follows: Based on a S-tree, we can build
a multi-resolution summary graph, which can be used to reduce the
search space of subgraph query processing (as discussed in Theo-
rem 5.1). We adopt a bottom-up strategy to build a VS-tree.

First, a S-tree is built over all vertex signatures in G∗, namely,
each leaf entry of S-tree corresponds to one vertex signature in G∗.
Then, we link these leaf entries according to G∗’s structure. Specif-
ically, given two leaf entries d1 and d2 in a S-tree, we introduce an
edge between them, if and only if there is an edge between u1 and
u2 in G∗, where d1 (d2) corresponds to u1 (u2) in G∗. We also intro-
duce an edge signature S ig(−−−→v1v2) (Definition 4.3) as the edge label

of
−−−→
d1d2 in a VS-tree. A running example is given in Figure 5.
Second, given two leaf nodes dI

1 and dI
2 in the S-tree, we intro-

duce a super edge from dI
1 to dI

2, if and only if there is at least one
edge from d1’s children (i.e., leaf entries) to d2’s children. Specifi-
cally, if there are n (n > 1) edges from dI

1’s children to dI
2’s children

in the VS-tree, we introduce a super edge from dI
1 to dI

2. Further-

more, we assign an edge label for the edge
−−−→
dI

1dI
2 by performing

bitwise “OR” over these n edge labels from d1’s children to d2’s
children. Figure 12 (in Appendix C) illustrates the process. Note
that, we can also introduce a self-edge for a leaf node dI

1, if there is
at least one edge from one child of dI

1 to another child of dI
1. The

above process is iterated until the root of the VS-tree is reached.

0010 1000

1000 0100
1000 0001

0100 0100 0001 0100
0000 0001

1000 1000

0001 1000

0010 1001

1100 0100

1001 0101
1001 1000

1110 1101 1001 1001

1111 1101

1
G

2
G

3
G

*
G

2

1d 2

2d

3

2d

3

3d

3

4d

1

1d

10000
00010

01000

00010

00100

00010

00001

00010

3

1d 10010

00001

00010

01000

00010
00010

00100

00110

01011

10010

11111

DiedIn 00001

Rdf:type 00010

hasCapital 00100

LocatedIn 01000

bornIn 10000

Super Edge

Parent-Child Relation

Hash Function:

001

005

002

007

003

001

008

004

006

Figure 5: VS-tree

Figure 5 shows a running example of the VS-tree over G∗ in
Figure 3. Note that, we use dI

i to denote one node in the I-th level
of the VS-tree, which corresponds to the same node in the S-tree
(Figure 11). We use dI

i .S ig to denote the signature associated with
node dI

i . For simplicity, we use dI
i to denote dI

i .S ig when the context
is clear. The I-th level of the VS-tree is a summary graph, denoted
as GI , which is formed by all nodes at the I-th level together with
all edges between them in the VS-tree.

DEFINITION 5.1. Consider a query signature graph Q∗ with n
vertices vi (i=1,...,n) and a summary graph GI in the I-th level of
VS-tree. A set of nodes {dI

i } (i = 1, ..., n) at GI is called a summary
match of Q∗ over GI, if and only if the following conditions hold:

1. vS ig(vi)&dI
i .S ig = vS ig(vi), i = 1, ..., n;

2. For any edge −−−→v1v2 in Q∗, there must exist a super edge
−−−→
dI

1dI
2

in GI and S ig(−−−→v1v2)&S ig(
−−−→
dI

1dI
2) = S ig(−−−→v1v2).

Note that, a summary match is not an injective function from {vi} to
{dI

i }, namely, dI
i can be identical to dI

j (i � j). For example, given a

query signature graph Q∗ (in Figure 3) and a summary graph G3 of
VS-tree (in Figure 5), we can find one summary match {(d3

1
, d3

2
)}.

An interesting finding is that summary matches can be used to re-
duce the search space for subgraph search over G∗.

5.2 Query Algorithm–A Simple Version
In this section, we discuss how to find matches of Q∗ over G∗

using a VS-tree. We employ a top-down search strategy over the
VS-tree to find matches of Q∗ over G∗. According to Theorem 5.1,
the search space at the lower level of the VS-tree is bounded by
the summary matches over the upper level. Consequently, we can
reduce the total search space.

THEOREM 5.1. Given a query signature graph Q∗, a data sig-
nature graph G∗ and VS-tree built over G∗:

486

1) Given a summary graph GI in VS-tree, if there exists no sum-
mary match over GI, there must exist no match of Q∗ over G∗.

2) Assume that n vertices {u1, ..., un} forms a match (Definition
4.4) of Q∗ over G∗. Given a summary graph GI in VS-tree, ui’s an-
cestor in GI is node dI

i , i = 1, ..., n. {dI
1, ..., d

I
n}must form a summary

match (Definition 5.1) of Q∗ over GI.

We first illustrate the query algorithm (VS-query) using a running
example Q∗3 (in Figure 3). Figure 6 shows the query process. First,
we find summary matches of Q∗3 over G1 in VS∗-tree, which are
{(d1

1 , d
1
1)}. Then, we push the summary matches into queue H. We

always pop one summary match from H and expand it to its child
states (defined in Definition 5.2). Given a summary match (d1

1 , d
1
1),

its child states are formed by d1
1 .children× d1

1 .children = {d2
1 , d

2
2} ×{d2

1 , d
2
2}= {(d2

1 , d
2
1), (d2

1 , d
2
2), (d2

2 , d
2
1), (d2

2 , d
2
2)}. For each child state,

we check whether it is a summary match of Q∗. If so, we call it a
valid child state. We push all valid child states into queue H. In this
example, only {(d2

1 , d
2
1) is summary match of Q∗, i.e., a valid child

state. Thus, we put it into H. Iteratively, we pop some summary
match and expand it to its child states in each step. The above
process is iterated until reaching the leaf entries (i.e., vertices in
G∗) of VS-tree. Finally, we can find matches of Q∗ over leaf entries
of VS-tree, namely, the matches of Q∗ over G∗. The pseudo code
are given in Algorithm 1 in Appendix B.

DEFINITION 5.2. Child State. Given a query signature graph
Q∗ with n vertices vi (i = 1, ..., n), n nodes {dI

1, ..., d
I
n} in VS-tree

forms a summary match of Q∗, n nodes {dI′
1 , ..., d

I′
n } is a child state

of {dI
1, ..., d

I
n}, if and only if dI′

i is a child node of dI
i , i = 1, .., n. Fur-

thermore, if {dI′
1 , ..., d

I′
n } is also a summary match of Q∗, {dI′

1 , ..., d
I′
n }

is called a valid child state of {dI
1, ..., d

I
n}.

THEOREM 5.2. Given a query signature graph Q∗ and a data
signature graph G∗, VS-query algorithm (Algorithm 1) can find all
matches of Q∗ without any false positive and negative.

Step 1: 1 1

1 1(,)d d

1 1

1 1(,)d d

2 2

1 1(,)d d
2 2

1 2(,)d d
2 2

2 2(,)d d
2 2

2 2(,)d d

3 3

1 1(,)d d
3 3

1 2(,)d d
3 3

2 2(,)d d
3 3

2 1(,)d d

(001,002) (001,007) (005,002) (005,007)

Step 2: 2 2

1 1(,)d d

Step 3: 3 3

1 2(,)d d

Step 4:

Pruned Search Space

Queue H

(001,002)

CL:

Figure 6: Algorithm Process

6. OPTIMIZED METHODS
For illustration purposes, we presented a conceptually simple

strategy, including both index structure (VS-tree) and query algo-
rithm (VS-Query), in Section 5. We discuss optimizations to the
method in this section. First, let us discuss three limitations of VS-
tree and VS-query algorithm as presented in Section 5. Then, the
corresponding optimized methods will be presented.

As discussed in Section 5.2, we employ Theorem 5.1 to reduce
the search space in VS-query. It is straightforward to conclude
that the performance of VS-query depends on the number of sum-
mary matches of query Q∗. A negative finding of VS-tree is that
high level summary graphs GI have much larger densities (α =
|E(GI)|/|V(GI)|) than that in G∗. Consequently, there may exist a
large number of summary matches over GI , which leads to low
pruning power on some high levels of the VS-tree. One obvious
way to improve the performance is to reduce the number of super
edges in each GI , i.e. the summary graph over each level in the
VS-tree. As we note, VS-tree is based on S-tree, whose operations,

such as, node insertion, split, deletion, and merge, are optimized
for inclusion queries, not for reducing the number of super edges
in GI .

For example, we always insert a vertex signature v (in G∗) into
one node d, where v and d has the minimal Hamming distance [7],
which is a popular method to measure the similarity between two
bitstrings, i.e., signatures. For example, we insert a vertex u5 and
its adjacent edges into G∗, as shown in Figure 7(a). Figure 7(b)
shows the VS∗-tree T1 that corresponds to the original G∗. When
we insert u5 into T1, according to the Hamming distance, we insert
u5 into d2

1 as its child entry, since δ(u5, d2
1) = 2 < δ(u5, d2

2) = 5,
where δ(u5, d2

1) denotes that Hamming distance between u5 and d2
1.

According to the method in Section 5.1, we need to introduce an

extra super edge
−−−→
d2

1d2
2 in G2, as shown in the updated VS∗-tree T2

in Figure 7(c). Figure 7(d) shows another way of inserting u5 into
the same VS-tree T1, which introduces no new super edge into the
updated VS-tree T3. Given the same query signature graph Q∗,
there are two summary matches over G2 of T2, but only one sum-
mary match over G2of T3. This example motivates us to optimize
the operations over the VS-tree.

Another limitation of VS-query is that the multi-way join pro-
cessing always begins from the root of the VS-tree. Actually, some
high level summary graphs may provide little pruning power as
mentioned above. In order to optimize query performance, an “or-
acle” algorithm should “magically” know which level of VS-tree to
begin with to reduce the number of summary matches. Therefore,
a cost model will be proposed to guide our query algorithm.

Finally, let us recall Lines 5-9 of Algorithm 1. Given a sum-
mary match J = {dI

1, ..., d
I
n}, we first find children of dI

i , i = 1, ..., n.
Then, we find valid child states of J. Specifically, we materialize all
child states of J and check whether each one is a summary match
(or match) of Q∗. Essentially, finding valid child states of J is to
perform multi-way join over dI

i .children, i = 1, ..., n. Obviously,
the above brute-force enumeration is too expensive. Instead, we
can employ a DFS (depth-first search) strategy to find valid child
states.

Due to space limitation, in the body of the paper, we only address
the first issue regarding index construction in this section. The op-
timization methods for VS-query algorithm (the last two problems
mentioned above) will be discussed in Appendix B, where we also
propose an optimized query algorithm called VS∗-query.

6.1 Indexing Structure-An Optimized Method
In this section, we propose a new way to build the index struc-

ture, called VS∗-tree, which has the analogue structure with VS-
tree. However, the operations over VS∗-tree, such as insertion,
deletion and split, are optimized for subgraph query. Given a data
signature graph G∗, we build the corresponding VS∗-tree over G∗

by inserting the vertices of G∗ sequentially.

6.1.1 Insertion
Given a vertex u (in G∗) to be inserted, an insertion operation

begins at the root of VS∗-tree and iteratively chooses a child node
until it reaches a leaf node. After inserting v in a suitable leaf node
d, the signature of that leaf node must be updated. Furthermore,
the summary graph at the leaf level of VS∗-tree is also updated.
Specifically, if u has an edge (in G∗) adjacent to its other endpoint
in another leaf node, we need to introduce a super edge to d, or
update the edge signature associated with the super edge. If the leaf
signature and leaf summary graph have changed, the change must
be propagated upwards within the VS∗-tree. The main challenge of
insertion is the criterion for choosing a child node. The criterion
in the VS-tree only depends on the Hamming distance between the

487

1100 0000 1011 0001

1001 1000

(b)

1
G

2
G

*
G

0100 0000

1000 0000

1001 0000

0010 0001

0100 0000

1000 0000

1001 0000

0010 0001

0000 1000

*
G

*
G

1u
4u

2u
3u

01000 0001010000

10000 01000 00010

10000

A vertex to be

inserted

1u 4u

2u 3u

5u

0100 0000

1000 0000

10000

1001 0000

0010 0001

0001001000

0001010000

01000

1

1d

2

1d
2

2d

1u
4u

2u
3u

1100 1000 1011 0001

1001 1000 1
G

2
G

*
G

0100 0000

1000 0000

10000

1001 0000

0010 0001

0001001000

0001010000
10000

1

1d

2

1d
2

2d

1u

4u

2u

3u

0000 1000 10000
5u

1100 0000 1011 1001

1001 1000

(d) Inserting into

1
G

2
G

*
G

0100 0000

1000 0000

10000
1001 0000

0010 0001

00010

01000

1001010000

01000

1

1d

2

1d
2

2d

1u

4u

2u

3u

0000 1000

10000

5u

1T

3T 5u 2

2d

(c) Inserting into 2T 5u 2

1d

0000 1000 1000 0000

(e) Query Signature Graph

10000

*
Q

(a) Inserting into 5u *
G

01000

Figure 7: Motivation of Building VS∗-tree

signatures of u and the node in VS-tree. Now, the criterion in VS∗-
tree depends on both node signatures and G∗’s structure.

Given a vertex u and a non-leaf node d, d has n children d1,...,dn.
The distance between u and di (i = 1, ..., n) is formally defined as
follows:

Dist(u, di) =
δ(u, di)

|u| ×
β(u, di)

Maxn
j=1

(β(u, dj))
(1)

where δ(u, di) is the Hamming distance between u and di and |u|
is the length of the vertex signature (bitstring), and β(u, di) is the
number of newly introduced super edges adjacent to di, if u chooses
node di.

As mentioned earlier, after inserting vertex u into a suitable leaf
node, the signature of that leaf node and super edges adjacent to
it may be updated, the change must be propagated upwards within
the VS∗-tree. Note that, we can update the super edges adjacent to
that leaf node, according to the adjacent edges to u in G∗.

6.1.2 Split
Like other height balanced trees, insertion into a node that is

already full will invoke node split. Specifically, the B+1 entities
of the node will be partitioned into two new nodes, where B is the
maximal fanout for a node in VS∗-tree. We illustrate our strategy as
follows: First, we find two entities that have the maximal Hamming
distance between them as two seed nodes. Second, we associate
each left entry with the nearest seed node, according to Equation 1.
Note that, after node splitting, we have to update the signatures and
the super edges associated with the two new nodes. The updates
are very straightforward. Node splitting invokes insertions over the

upper level of VS∗-tree, which also leads to the splitting that may
be propagated to the root of the VS∗-tree.

6.1.3 Deletion
To delete a vertex u from VS∗-tree, we find the leaf node d where

u is stored, and delete u. After deleting u, the nodes along the path
from the root down to d will be affected. We adopt the bottom-up
strategy to update the signature of and super edges associated with
the nodes. After deletion, if some node d has less than b entries,
where b is the minimal fanout of node in VS∗-tree, then d is deleted
and its entries are reinserted into VS∗-tree.

7. MAINTENANCE IN gStore
In gStore, the updates over the adjacency list table (Figure 4)

are straightforward. The key challenge is the maintenance of VS∗-
tree to support updates over RDF datasets. We have discussed the
maintenance of VS∗-tree in Section 6. Further details about the
maintenance of gStore are given in Appendix E.

8. EXPERIMENTS
In this section, we evaluate our method over two real large RDF

datasets, and compare it with SW-store [1], RDF-3x [12], and x-
RDF-3x [15]. We also compare our method with one commercial
system BigOWLIM 1 and graph-based solution GRIN [21].

8.1 Datasets & Setup
We use two large real datasets in our experiments: 1) Yago (http:

//www.mpi-inf.mpg.de/yago-naga/yago/) extracts facts from Wiki-
pedia and integrates them with the WordNet thesaurus. It con-
tains about 20 million RDF triples and consumes 3.1GB; 2) DBLP
(http://sw.de ri.org/ aharth/2004/07/dblp/) contains a large number
of bibliographic descriptions. There are about 8 million triples con-
suming 0.8GB. Our algorithm is implemented using standard C++.
The experiments are conducted on a P4 3.0GHz machine with 2G
RAM running Ubuntu Linux. We test our method and all com-
petitors over both exact and wildcard queries. Since none of the
competitors, except for BigOWLIM, can support wildcard queries,
in order to enable comparison, we propose the following method:
Given a SPARQL query Q with wildcards, for each wildcard ver-
tex, we rewrite it as a parameter vertex. In this way, we can get
a SPARQL query Q′ without wildcards. Then, we employ RDF-
3x, SW-store, x-RDF-3x and GRIN to answer Q′. Finally, for each
result of Q′, we verify whether it is a result of Q based on the wild-
card condition.

For exact query evaluation, we use all SPARQL queries in [12]
over the Yago dataset. We also define 6 queries over DBLP dataset.
Due to space limitation, we do not list our sample queries in this
paper. More details about sample queries can be found in the full
version of this work2. For wildcard query evaluation, we rewrite all
SPARQL queries in [12] into queries with wildcards. Specifically,
for each exact SPARQL query Q, we replace each literal vertex in
Q as a wildcard vertex. In this way, we can get a query Q′′ with
wildcards. We also define 6 wildcard queries over DBLP dataset.
All sample queries are given in the full version of this work.

8.2 Offline Performance
We compare our method (gStore) with five competitors over both

Yago and DBLP datasets. For a fair comparison, we adopt the set-
tings in [12], i.e., each dataset is first converted into a factorized
form: one file T with RDF triples represented as integer triples,
and one dictionary file M to map from ids to literals. All methods
utilize the same input files and load them into their own systems.

1http://www.ontotext.com/owlim/big/
2http://www.icst.pku.edu.cn/intro/leizou/RDFQuery.pdf

488

The loading time is defined as the total offline processing time. The
total space cost is defined as the size of the whole database includ-
ing the corresponding indexes. We show load time and the total
space cost in Figures 15(a) and 15(b) (given in Appendix F), re-
spectively. Figure 15(a) and 15(b) show that our method has the
shortest loading time and least index sizes. Note that, x-RDF-3x is
slower than RDF-3x in indexing building, and they have the same
index sizes.

8.3 Online Performance
8.3.1 Exact Queries

We compare the performance of our method (VS∗-query) with
five competitors over both Yago and DBLP datasets. Figure 8
shows that VS∗-query is much faster than other methods. From
Figure 8, x-RDF-3x is a little slower than RDF-3x, since x-RDF-
3x introduces extra transactional overhead [15].

A1 A2 B1 B2 B3 C1 C2
0

1000

2000

3000

4000

5000

6000

Q
ue

ry
 R

es
po

ns
e

T
im

e
(in

 m
s)

Query Set

VS*−Query
RDF−3X
SW−Store
x−RDF−3x
BigOWLIM
GRIN

(a) Yago

Q1 Q2 Q3 Q4 Q5 Q6
0

500

1000

1500

2000

2500

3000

Q
ue

ry
 R

es
po

ns
e

T
im

e
(in

 m
s)

Query Set

VS*−Query
RDF−3X
SW−Store
x−RDF−3x
BigOWLIM
GRIN

(b) DBLP

Figure 8: Exact Query Response Time

8.3.2 Wildcard Queries
In order to enable comparison over wildcard queries, we adopt

the post-filtering method in Section 8.1 in RDF-3x, SW-store, x-
RDF-3x and GRIN. Since BigOWLIM has embedded full-text in-
dex, it can support wildcard queries. Figure 9 shows query response
times of different methods. It is observed that our method has the
same query response time as that in exact queries. As mentioned
earlier, we generate a wildcard query Q′ by replacing each literal
vertex into a wildcard vertex. Actually, Q′ and Q correspond to
the same query signature graphs. VS∗-query can answer both exact
and wildcard queries in a uniform manner, thus, they have the same
query response time. However, the query performance degrades
dramatically in other methods, since they cannot support wildcard
queries directly, as shown in Figure 9.

A1 A2 B1 B2 B3 C1 C2
0

5000

10000

15000

Q
ue

ry
 R

es
po

ns
e

T
im

e
(in

 m
s)

Query Set

VS*−Query
RDF−3X+PostFiltering
SW−Store+PostFiltering
x−RDF−3x+PostFiltering
BigOWLIM
GRIN+PostFiltering

(a) Yago

Q1 Q2 Q3 Q4 Q5 Q6
0

2000

4000

6000

8000

Q
ue

ry
 R

es
po

ns
e

T
im

e
(in

 m
s)

Query Set

VS*−Query
RDF−3X+PostFiltering
SW−Store+PostFiltering
x−RDF−3x+PostFiltering
BigOWLIM
GRIN+PostFiltering

(b) DBLP

Figure 9: Wildcard Query Response Time

9. CONCLUSIONS
In this paper, we propose to store and query RDF data from graph

database perspective. In order to speed up query processing, we
propose two novel indexes, VS-tree and VS∗-tree. The most im-
portant contribution in this paper is that our method can support
both exact and wildcard SPARQL queries in a scalable manner.
Furthermore, it can support online updates efficiently.

10. REFERENCES
[1] D. J. Abadi, A. Marcus, S. Madden, and K. Hollenbach. Sw-store: a

vertically partitioned dbms for semantic web data management.
VLDB J., 18(2):385–406, 2009.

[2] D. J. Abadi, A. Marcus, S. Madden, and K. J. Hollenbach. Scalable
semantic web data management using vertical partitioning. In VLDB,
pages 411–422, 2007.

[3] C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker, R. Cyganiak,
and S. Hellmann. Dbpedia - a crystallization point for the web of
data. J. Web Sem., 7(3):154–165, 2009.

[4] V. Bönström, A. Hinze, and H. Schweppe. Storing RDF as a graph.
In LA-WEB, pages 27–36, 2003.

[5] J. Broekstra, A. Kampman, and F. van Harmelen. Sesame: A generic
architecture for storing and querying RDF and RDF schema. In
ISWC, pages 54–68, 2002.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms. The MIT Press, 2001.

[7] U. Deppisch. S-tree: A dynamic balanced signature index for office
retrieval. In SIGIR, pages 77–87, 1986.

[8] C. Faloutsos and S. Christodoulakis. Signature files: An access
method for documents and its analytical performance evaluation.
ACM Trans. Inf. Syst., 2(4):267–288, 1984.

[9] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas,
S. Muthukrishnan, L. Pietarinen, and D. Srivastava. Using q-grams in
a DBMS for approximate string processing. IEEE Data Eng. Bull.,
24(4):28–34, 2001.

[10] L. Gravano, P. G. Ipeirotis, N. Koudas, and D. Srivastava. Text joins
in an RDBMS for web data integration. In WWW, pages 90–101,
2003.

[11] A. Harth, J. Umbrich, A. Hogan, and S. Decker. Yars2: A federated
repository for querying graph structured data from the web. In
ISWC/ASWC, pages 211–224, 2007.

[12] T. Neumann and G. Weikum. RDF-3X: a risc-style engine for RDF.
PVLDB, 1(1):647–659, 2008.

[13] T. Neumann and G. Weikum. Scalable join processing on very large
RDF graphs. In SIGMOD, pages 627–640, 2009.

[14] T. Neumann and G. Weikum. The RDF-3X engine for scalable
management of RDF data. VLDB J., 19(1):91–113, 2010.

[15] T. Neumann and G. Weikum. X-RDF-3X: Fast querying, high update
rates, and consistency for RDF databases. PVLDB, 1(1):256–263,
2010.

[16] J. Pérez, M. Arenas, and C. Gutierrez. Semantics and complexity of
SPARQL. ACM Trans. Database Syst., 34(3):16:1–16:45, 2009.

[17] D. Shasha, J. T.-L. Wang, and R. Giugno. Algorithmics and
applications of tree and graph searching. In PODS, pages 39–52,
2002.

[18] M. Stocker, A. Seaborne, A. Bernstein, C. Kiefer, and D. Reynolds.
SPARQL basic graph pattern optimization using selectivity
estimation. In WWW, pages 595–604, 2008.

[19] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: a core of
semantic knowledge. In WWW, pages 697–706, 2007.

[20] E. Tousidou, P. Bozanis, and Y. Manolopoulos. Signature-based
structures for objects with set-valued attributes. Inf. Syst.,
27(2):93–121, 2002.

[21] O. Udrea, A. Pugliese, and V. S. Subrahmanian. Grin: A graph based
RDF index. In AAAI, pages 1465–1470, 2007.

[22] C. Weiss, P. Karras, and A. Bernstein. Hexastore: sextuple indexing
for semantic web data management. PVLDB, 1(1):1008–1019, 2008.

[23] K. Wilkinson, C. Sayers, H. A. Kuno, and D. Reynolds. Efficient
RDF storage and retrieval in jena2. In SWDB, pages 131–150, 2003.

[24] X. Yan, P. S. Yu, and J. Han. Graph indexing: A frequent
structure-based approach. In SIGMOD, pages 335–346, 2004.

[25] Y. Yan, C. Wang, A. Zhou, W. Qian, L. Ma, and Y. Pan. Efficient
indices using graph partitioning in RDF triple stores. In ICDE, pages
1263–1266, 2009.

[26] L. Zou, L. Chen, J. X. Yu, and Y. Lu. A novel spectral coding in a
large graph database. In EDBT, pages 181–192, 2008.

489

APPENDIX
A. RELATED WORK

As noted earlier, three kinds of approaches are generally used to
store and query RDF data: one giant triple table, clustered property
tables and vertically partitioned tables.

1) One giant triple table. The methods in this category store all
RDF triples in a single three-column table, enabling them manip-
ulate all RDF triples in a uniform manner. However, these require
performing lots of self-joins over this table to answer a SPARQL
query. Some efforts have been made to address this issue, such as,
RDF-3x [12, 13] and Hexastore [22], which build several clustered
B+-trees for all permutations of three columns.

2) Property tables. There are two kinds of property tables. The
first one is called a clustered property table. The properties that
tend to occur in the same subjects are grouped into one cluster.
Each property cluster is mapped to a property table. The second
type is a property-class table. The subjects with the same type of
property are clustered into one property table.

3) Vertically partitioned tables. For each property, this approach
builds a single two-column (subject, object) table ordered by sub-
ject [1]. The advantage of the ordering is to perform fast merge join
during query processing. However, this approach does not scale
well as the number of properties increases.

As discussed earlier, although the above methods are designed
for the scalability of RDF data, they only support exact SPARQL
queries, and fail to support wildcard queries. For example, RDF-3x
and SW-store store RDF triples by replacing all literals with ids. In
this way, they can only support exact queries.

Furthermore, most of existing methods cannot handle online up-
dates over the underlying RDF repositories efficiently. For exam-
ple, in clustered property table-based methods (such as Jena and
SOR), if there are some updates over properties in RDF triples, we
have to re-do property clustering and re-build the property tables.
Although RDF-3X uses one giant triple table, it needs to modify
six clustered B+-trees to handle updates, and does Hexastore. In
SW-store, it is potentially expensive to insert data since each update
requires writing to many columns [1]. In order to address this issue,
it uses “overflow table + batching write”, meaning online updates
are recorded to overflow tables and SW-store periodically scans the
overflow tables to materialize the updates. Obviously, this kind of
maintenance method cannot work well for online social network
systems that require real time access.

The recent work xRDF-3x [15] proposes an efficient online main-
tenance algorithm, but, it fails to support wildcard SPARQL queries.
There exist some works that discuss the possibility of storing RDF
data as a graph (e.g., [4, 22]), but these approaches do not address
the scalability issues. Some are based on main memory implemen-
tations [18], while others utilize graph partitioning to reduce self-
joins of triple tables [25]. The key problem with graph partition-
ing method [25] is that it cannot support updates efficiently. Once
the RDF graph is updated, we have to re-partition the graph from
scratch. Otherwise, the correctness of results cannot be guaranteed.

B. VS∗-QUERY
In Section 5, we propose VS-query algorithm for finding matches

of Q∗ over G∗, as shown in Algorithm 1. As discussed earlier, there
are three limitations of VS-query. Due to space limitation, we only
addressed the first problem in Section 6, i.e., VS-tree is not opti-
mized for subgraph search. We propose VS∗-tree to optimize sub-
graph search in Section 6.1.

The second problem of VS-query is that it always begins the
multi-way join processing from the root of VS∗-tree. Consequently,

Algorithm 1 Query Algorithm Over VS-tree (VS-Query)

Require: Input: a query signature graph Q∗ and a data signature graph G∗
and a VS-tree.
Output: CL: All matches of Q∗ over G∗.

1: Set CL = φ
2: Find summary matches of Q∗ over G1, which are pushed into queue H.
3: while (|H| > 0) do
4: Pop one summary match from H, denoted as J.
5: for each child state S of J do
6: if S reaches leaf entries and S is a match of Q∗ then
7: Insert S into CL
8: if S does not reach the leaf nodes and S is a summary match of

Q∗ then
9: Push it into queue H.

10: Report CL.

we may generate a lot of summary matches. Actually, in order to
speed up query processing, an oracle algorithm should magically
know which level to begin with to reduce the number of summary
matches.

Finally, given a summary match J, we need to materialize all
child states of J and verify each one whether it is a summary match
(or match) of Q∗ in Algorithm 1, which is quite expensive.

In order to address the above two problems, some optimized
methods are proposed in the following subsections.

B.1 Which Level To Begin
As mentioned earlier, VS-query algorithm always begins its multi-

way join process from the root of VS-tree, which leads to a large
number of intermediate summary matches. In order to optimize
query performance, a cost model is needed to guide the level of
VS∗-tree that the algorithm should begin with. Specifically, we
introduce a concept “pruning power” of GI with regard to Q∗ (de-
noted as P(Q∗,GI)). Then, we propose a simple but effective method
to estimate P(Q∗,GI). Optimized query algorithms should begin its
multi-way join processing from GI that has the maximal pruning
power.

DEFINITION B.1. Given a query signature graph Q∗ with n edg-
es ei, i = 1, ..., n and m vertices v j, j = 1, ...,m, and summary graph
GI at the I-th level of VS∗-tree, the pruning power of GI with regard
to Q∗ is defined as follows:

P(Q∗,GI) = 1 − |N(Q∗,GI)|∏ j=m
j=1
|N(v j,GI)| (2)

where N(Q∗,GI) denotes the set of summary matches of Q∗ over GI,
and N(v j,GI) denotes the set of nodes d (in GI) and (d&v j = d).

Note that, in Equation 2,
∏ j=m

j=1
(|N(v j,GI)|) denotes the total sea-

rch space of Q∗ over GI , and
∏ j=m

j=1
|N(v j,GI)|− |N(Q∗,GI)| de-

notes the search space that can be pruned. As we know, finding
N(Q∗,GI) has the exponential time complexity. It is inefficient to
find N(Q∗,GI) exactly to compute the pruning power. Therefore,
we propose a simple but effective method to estimate P(Q∗,GI).

DEFINITION B.2. Given a query signature graph Q∗ with n ed-
ges ei, i = 1, ..., n and m vertices v j, j = 1, ...,m, and summary
graph GI at the I-th level of VS∗-tree, the estimated pruning power
of GI with regard to Q∗ is defined as follows:

P̃(Q∗,GI) =
∏i=n

i=1
P(ei,GI)

where P(ei,GI) is the pruning power of GI with regard to edge ei,
i = 1, ..., n.

490

Let edge ei=−−−→vi1 vi2 . P(ei,GI) is defined as follows:

P(ei,GI) = 1 − |N(ei,GI)|
|N(vi1 ,GI)| ∗ |N(vi2 ,GI)|

where N(vi1 ,G
I) denotes the set of nodes d in GI and (d&vi1 = d),

and N(ei,GI) denotes the set of summary matches of ei over GI.

Given an edge ei =
−−−→vi1 vi2 (in Q∗) and GI , it is very fast to find

N(GI , vi1) by invoking inclusion operation over VS∗-tree. The main
challenge of estimating P(ei,GI) arises from computing |N(ei,GI)|,
i.e., the number of summary matches of ei over GI .

In order to compute |N(GI , ei)|, we propose the following method
that has the linear time complexity. For each node di1 in N(vi1 ,G

I),
we insert di1 ’s adjacent neighbors into NN(vi1 ,G

I). Finally, we
compute |N(ei,GI)| = |NN(vi1 ,G

I) ∩ N(vi2 ,G
I)|. Obviously, this

method has the linear time complexity, i.e, O(|N(vi1 ,G
I)| +|N(vi2 ,

GI)|).
At run time, given a query signature graph Q∗, for each level

summary graph GI of VS∗-tree, it is effective to compute P̃(Q∗,GI)
according to Definition B.2. Then, query algorithm begins its multi-
way join processing from some summary graph GI that has the
maximal estimated pruning power, i.e., P̃(Q∗,GI). The pseudo
codes of query algorithm will be given in Algorithm 3.

Algorithm 2 Find Valid Child States

Require: Input: a query signature graph Q∗ with n vertices vi, i = 1, ..., n,
and a summary match of Q∗ over GI , which is denoted as M(dI

1
, ..., dI

n).
Output: S : all valid states of M with regard to Q∗.

1: Set S = φ and Q′ = φ.
2: for each node vi in Q∗ do
3: Compute N(vi, dI

i .children)

4: Select some vertex vi, where |N(vi, dI
i .children)| is minimal among all

vertices in Q∗.
5: Q′ = Q′ ∪ vi and M(Q′) = N(vi, dI

i .children).
6: while Q′! = Q∗ do
7: for each backward edge ei =

−−−−→vi1 vi2 that is adjacent to Q′ do
8: M(Q′ ∪ ei)=BackWard(ei,M(Q′))
9: Q′ = Q′ ∪ ei

10: for each forward edge ei =
−−−−→vi1 vi2 that is adjacent to Q′ do

11: M(Q′ ∪ ei)=ForWard(ei,M(Q′))
12: Q′ = Q′ ∪ ei
13: Set S =M(Q′) and return S
Backward(ei =

−−−−→vi1 vi2 ,M(Q′))
1: for each tuple t in M(Q′) do
2: If t cannot form a summary match of Q′ ∪ ei
3: Delete t from M(Q′)
4: M(Q′ ∪ ei) = M(Q′)
5: Return M(Q′ ∪ ei).

Forward(ei =
−−−−→vi1 vi2 ,M(Q′))

1: if vi1 ∈ Q′ ∧ vi2 � Q′ then
2: for each tuple t in M(Q′) do
3: for each node d in dI

i2
.children do

4: if t � d is a summary match of Q′ ∪ ei then
5: Insert t � d into M(Q′ ∪ ei)
6: if vi2 ∈ Q′ ∧ vi1 � Q′ then
7: for each tuple t in M(Q′) do
8: for each node d in dI

i2
.children do

9: if d � t is a summary match of Q′ ∪ ei then
10: Insert d � t into M(Q′ ∪ ei)
11: Return (Q′ ∪ ei)

B.2 Finding Valid Child States
Given a query signature graph Q∗ with n vertices vi, i = 1, ..., n,

a summary match of Q∗ over GI is denoted as J(dI
1, ..., d

I
n). Accord-

ing to Lines 5-9 of Algorithm 1, we need to materialize all child

states of J, i.e. dI
1.children × ... × dI

n.children, and then check each
one to determine whether it is a summary match (or match) of Q∗.
Assume that the fanout of a node in VS-tree is B. There are Bn

child states of J. Obviously, this method is inefficient. Essentially,
finding valid child states is to perform multi-way join processing
over dI

1.children (i = 1, ..., n).
Instead, we propose a DFS strategy to find all valid child states

of J. Initially, we set Q′ = φ, which denotes the structure of Q∗

that has been visited so far. We start a DFS over G∗ beginning
from some vertex vi that |N(vi, dI

i .children)| is minimal among all
vertices in G∗, where N(vi, dI

i .children) denotes all child nodes d of
dI

i and vi&d = vi. We insert vi into query Q′. Now, the matches of
Q′, i.e., J(Q′), are updated as N(vi, dI

i .children).

DEFINITION B.3. An edge e = −−−→v1v2 in Q∗ is called adjacent to
Q′ if and only if (e � Q′) ∧ (v1 ∈ Q′ ∨ v2 ∈ Q′).

Given an adjacent edge e = −−−→v1v2 to Q′, e is called a backward
edge if and only if (v1 ∈ Q′ ∧ v2 ∈ Q′). Otherwise, e is called a
forward edge.

For each edge ei adjacent to Q′, if ei is a backward edge, we em-
ploy Backward function in Algorithm 2 to find matches of Q′ ∪ ei,
i.e., J(Q′ ∪ ei). Otherwise, we employ Forward function to find
J(Q′ ∪ ei). Essentially, Forward function is a nested loop join pro-
cess, but Backward function is a selection process. Therefore, we
always process backward edges ahead of forward edges. The whole
process is iterated until Q′ = Q∗. Finally, we report all valid child
states of J, i.e., dI

1.children � ... � dI
n.children.

B.3 Putting It All Together–gStore
In this subsection, we recall the whole framework of our method,

a graph-based RDF store, called gStore. Basically, there are two
steps in gStore, including one offline and the other online.

In offline processing, we first represent an RDF dataset by an
RDF graph G and store it as a disk-based adjacency list table T .
According to the encoding method in Section 4, we encode G into
a data signature graph G∗. Finally, we build a VS∗-tree over G∗ by
invoking insertion operation (discussed in Section 6.1) sequentially.
At the end of the offline process, there are two data structures: a
disk-based adjacency list table T and a VS∗-tree over G∗.

At run time, we represent a SPARQL query by a query graph Q,
and encode it into a query signature graph Q∗. Then, we employ
the optimized query algorithm over VS∗-tree (i.e, Algorithm 3 that
will be discussed shortly) to find matches of Q∗ over G∗, denote
as CL. For each match in CL, we check whether it is a match of
Q over G. Finally, all matches of Q over G (denoted as RS) are
returned to users.

Algorithm 1 has presented a simple method to find CL. However,
this method is not optimized. We discuss an optimized algorithm
(Algorithm 3) that combines some optimizations in Sections B.1
and B.2.

Specifically, given a query signature graph Q∗, we first employ
the method in Section B.1 to find the I-th level (of VS∗-tree) that
has the maximal estimated pruning power. Then, for each vertex vi

in Q∗, we employ inclusion queries of S-tree down to GI , i.e, the I-
th level of VS∗-tree. The matching nodes of vi in GI are denoted as
M(vi,GI). We employ Algorithm 2 to find summary matches of Q∗

over GI , i.e., M(v1,GI) � ... � M(vn,GI), which are pushed into
queue H. In each subsequent step, we always pop one summary
match M from H. Then, we find valid child states of M by invoking
Algorithm 2. If valid child states have reached leaf entries of VS∗-
tree, we insert them into CL. Otherwise, they are pushed back to
H. The whole process is iterated until H = φ. Finally, we report
CL.

491

Algorithm 3 Optimized Query Algorithm Over VS∗-tree, VS∗-
query

Require: Input: a query signature graph Q∗ with n vertices vi, i = 1, ..., n,
and a VS∗-tree.
Output: CL: all matches of Q∗ over G∗.

1: Employ the method in Section B.1 to find the I-th level (of VS∗-tree)
that has the maximal estimated pruning power with regard to Q∗.

2: for each vertex vi in Q∗ do
3: Employ the inclusion method of S-tree over VS∗-tree down to GI to

find matching nodes of vi in GI , denoted as M(vi,GI).
4: Find all summary matches of Q∗ over GI by calling Algorithm 2 from

M(v1,GI) � � M(vn,GI), which are pushed into queue H.
5: while H � φ do
6: Pop one summary match from H, denoted as J.
7: Find all valid child states of J by calling Algorithm 2.
8: if these valid child states reaches leaf entries then
9: Insert them into CL

10: if these valid child states do not reach the leaf entries then
11: Push them into queue H
12: Report CL

C. ENCODING AND S-TREE
Figure 10 shows how to assign a vertex signature to a vertex in

a RDF graph. A sample of S-tree is given in Figure 11. In order to
build VS-tree, we need to introduce super edges between interme-
diate nodes. Figure 12 shows how to obtain super edge signatures.

(hasName, Abraham Lincoln)

0010 0010 0000 1000 0010 0110 1001

(BornOnDate, 1809-02-12)

0100 0010 0010 0100

(DiedOnDate, 1865-04-15)

1000 1000 0010 1000

(DiedIn, y:Washington_D.C)

0001 0100 0100 0010

().eSig e e ().eSig e n

0010 0000 0010

0000 0010 1000

0010 1000 0000

OR 1010 1010 1010 1100 1110 0110 1111

().vSig v e ().vSig v n

Vertex 005

(a) (b)

Figure 10: The Encoding Technique

0010 1000
1000 0100

001
002

1000 0001

003

0100 0100007
0001 0100

0080000 0001

005

1000 1000

006

0001 1000
004

0010 1001 1100 0100 1001 0101 1001 1000

1110 1101 1001 1001
2

1d 2

2d

3

1d
3

2d
3

3d 3

4d

2

1d 1111 11 01

Figure 11: S-tree

D. PARAMETER SETTING
As discussed earlier, we introduce some parameters in our cod-

ing methods and indexing structures. In this subsection, we discuss
how to set up these parameters to optimize query processing.

D.1 M and m
Given a vertex u in the RDF graph, we encode each edge label

(eLabel) adjacent to u into a bitstring eS ig(e).e with length M, and
set m out of M bits to be ‘1’. We obtain vS ig(u).e by performing
bitwise OR over all eS ig(e).e. Analogous to signature files, there

001 002

007005

10000

00010

3

1d
3

2d
10010

00010

10000OR

10010

Figure 12: Building Super Edges

29 59 97 149 199 251

200

400

600

800

In
de

x
S

iz
e

(M
B

 b
yt

es
)

|N|

VS*−tree

(a) Yago

29 59 97 149 199 251

100

200

300

400

500

600

700

In
de

x
S

iz
e

(M
B

 b
yt

es
)

|N|

VS*−tree

(b) DBLP

Figure 13: VS∗-tree Index Size VS. N

29 59 97 149 199 251

2

4

6

8

x 10
4

C
an

di
da

te
 S

iz
e

X

|N|

S−Q1
S−Q2
S−Q3

(a) Yago

29 59 97 149 199 251
10

2

10
4

10
6

C
an

di
da

te
 S

iz
e

X

|N|

S−Q1
S−Q2
S−Q3

(b) DBLP

Figure 14: Candidate Size X VS. |N|
may exist the “false drop” problem [8]. For example, given a ver-
tex v in query graph Q, all edge labels adjacent to v are denoted as
Ad jEdges(v,Q). We also use Ad jEdges(u,G) to denote all edge
labels adjacent to u in G. If Ad jEdges(v,Q) � Ad jEdges(u,G) ∧
v&u = v, we say that a false drop has occurred. v&u = v means that
u is a candidate match v. However, Ad jEdges(v,Q) � Ad jEdges(u,
G) means that u cannot match to v. Obviously, the key issue is how
to reduce the number of false drops.

According to a theoretical study [8], the probability of false drops
can be quantified by the following equation.

Pf alse drop = (1 − e−
|Ad jEdges(v,Q)|∗m

M)m∗|Ad jEdges(u,G)| (3)

where |Ad jEdges(v,Q)| is v’s degree in Q, |Ad jEdges (u,G)| is u’s
degree in G, M is the length of bitstring, and m out of M bits are
set to be ‘1’ in hash functions.

Given an RDF graph and query logs, it is straightforward to esti-
mate the average values for |Ad jEdges(v,Q)| and |Ad jEdges(u,G)|.
When Pf alse drop is fixed, we can employ Equation 3 to set up m
and M. In Yago, the average value for |Ad j Edges(u,G)| is 10,
and the average value for |Ad jEdges(q,Q)| is 3, while |Ad jEdges
(u,G)| = 20 and |Ad jEdges(q,Q)| = 3 in DBLP. We set up m = 2
and M = 97 in both Yago and DBLP. In this case, according to
Equation 3, Pf alse drop < 1.0 × 10−10.

D.2 N and n
Actually, we have the same false drop problems in comparing

vS ig(q).n with vS ig(v).n. Different from setting m and M, it is
quite difficult to quantify the probability of false drops when com-
paring vS ig(q).n and vS ig(v).n. Therefore, we adopt the following
method, using the “n-gram” technique. It has been experimentally
determined that n=3 works well [10].

492

It is clear that the larger N is, the fewer conflicts exist among
the vertex signatures. On the other hand, large N will lead to large
space cost of vertex signatures. Thus, we need to find a good trade-
off for N. We use three star queries to evaluate the pruning power
of the encoding technique. Given a star query S , we encode its
central vertex v into a vertex signature vS ig(v). We use X to denote
the number of vertex signatures vS ig(u), where vS ig(v)&vS ig(u) =
vS ig(v) in G∗. Obviously, X decreases with the increase of N as
shown in Figure 14. However, the decreasing trend slows down
when N > 149 in Yago and N > 97 in DBLP.

On the other hand, larger N leads to larger space cost of VS∗-
tree. In our experiment, in order to avoid I/O cost of VS∗-tree, we
require that the whole VS∗-tree can be cached in memory. Figure
13 shows the size of VS∗-tree with varying N. In our experiment,
the maximal available memory size assigned to VS∗-tree is 500 M
bytes.

According to the observations in Figures 13 and 14, we can set
N = 149 in Yago and N = 97 in DBLP.

E. MAINTENANCE
As mentioned earlier, most existing RDF stores cannot support

update effectively. In this section, we discuss the maintenance is-
sues in gStore. Obviously, the updates over the adjacency list table
are very straightforward. The main challenge is the maintenance of
G∗ and VS∗-tree to support updates over RDF dataset.

E.1 Insertion
Assume that a new triple 〈s, p, o〉 is inserted into RDF dataset.

s must be an entity or a class vertex in RDF graph G. Thus, s
must correspond to one vertex in G∗. If s has existed in G∗ before
insertion, we delete vertices s and its all adjacent edges from G∗.
We also employ the deletion method (discussed in Section 6.1.3)
to delete s from VS∗-tree. Then, we re-encode vertex s, and re-
insert s and its adjacent edges into G∗. Furthermore, we employ
insertion method (discussed in Section 6.1.1) of VS∗-tree to insert
s into VS∗-tree. If o is also an entity or a class vertex, we have the
analogous method.

E.2 Deletion
Assume that a new triple 〈s, p, o〉 is deleted from the RDF dataset.

s must be an entity or a class vertex in RDF graph G. Thus, s must
correspond to one vertex in G∗. We first delete s and all its adja-
cent edges from G∗, and employ the deletion method (discussed in
Section 6.1.3) to delete s from VS∗-tree. If after deleting 〈s, p, o〉,
there is no edge adjacent to s in the RDF graph, we can stop here.
Otherwise, we re-code s, and insert s into G∗ and VS∗-tree. If o is
also an entity or a class vertex, we have the analogous method.

F. MORE EXPERIMENT RESULTS

Yago DBLP
0

20

40

60

80

O
ffl

in
e

T
im

e
(in

 m
in

ut
es

)

Data Set

gStore
RDF−3X
SW−store
x−RDF−3x
BigOWLIM
GRIN

(a) Offline Processing Time

1 2
0

500

1000

1500

2000

2500

3000

3500

S
pa

ce
 C

os
t (

in
 M

B
)

Data Set

gStore
RDF−3X
SW−store
x−RDF−3x
BigOWLIM
GRIN

(b) DB Size

Figure 15: Evaluating Offline Performance

F.1 Effect of Pruning Power
Theorem 4.1 shows that CL (matches of Q∗ over G∗) is a subset

of RS (matches of Q over G). Figure 16(a) shows both |CL| and

A1 A2 B1 B2 B3 C1 C2
0

200

400

600

800

|C
L|

 &
 |R

S
|

Query Set

|RS|
|CL|

(a) |RS | VS. |CL|

A1 A2 B1 B2 B3 C1 C2
0

1000

2000

3000

4000

Q
ue

ry
 R

es
po

ns
e

T
im

e
(in

 m
s)

Query Set

VS−Query
VS*−Query

(b) Query Response Time

Figure 16: Yago Dataset

|RS | of queries over Yago dataset. We can find that |CL| < 3 ×
|RS |, which indicates the low cost of the verification process in our
method.

F.2 VS-query Versus VS∗-query
We compare VS-query with VS∗-query in both Yago and DBLP

datasets. Figure 16(b) shows that VS∗-query is much faster than
VS-query. The reason behind that is the following: For each sum-
mary match, we always need to materialize all child states in VS-
query, which is quite expensive. Furthermore, VS∗-query can choose
the level (in VS∗-tree) that leads to the minimal number of summary
matches.

F.3 S-tree+Join Versus VS∗-query
As mentioned in Section 5, in order to find matches of Q∗ over

G∗, a straightforward method can work as follows: for each vertex
vi in Q∗, we can employ S-tree to find Ri = {ui1 , ..., uin }, where
ui j &vi = vi and ui j ∈ G∗. Then, according to the structure of Q∗,
we join these lists Ri to find matches of Q∗ over G∗. A key problem
is that |Ri| may be very large. Consequently, it is quite expensive to
join Ri. According to our experiments in Yago, |Ri| >1000 in many
queries. Different from S-tree+Join method, most false positives
are filtered out at the higher levels in VS∗-tree. Therefore, VS∗-
query is much faster than S-tree+Join method, as shown in Figure
17(a).

F.4 Online Updates
RDF-3X had been extended for updates by deferred-indexing ap-

proach [14]. The updates are first recorded into differential indexes.
Periodically, differential indexes are merged into main indexes. x-
RDF-3x employs the similar update strategy except for introducing
“timestamp” of each triple [15]. Note that, the current available
codes of RDF-3x and x-RDF-3x do not provide update capabili-
ties. Therefore, we implement the update methods according to
[14] and [15], respectively. Figure 17(b) shows that our method
is much faster than RDF-3x and x-RDF-3x. Furthermore, RDF-3x
is faster than x-RDF-3x, since x-RDF-3x pays more overhead for
introducing timestamps.

A1 A2 B1 B2 B3 C1 C2
0

1000

2000

3000

4000

5000

6000

Q
ue

ry
 R

es
po

ns
e

T
im

e
(in

 m
s)

Query Set

Stree+Join
VS*−Query

(a) Evaluating Stree+Join Method Over

Yago

Ins. Ins. Del. Del.
0

1

2

3

4

x 10
4

tr
ip

le
s/

se
c

Operations

gStore
RDF−3x
x−RDF−3x

Yago Yago

DBLP

DBLP

(b) Evaluating Online Updates

Figure 17: More Experiments

493

