
Social Content Matching in MapReduce

Gianmarco De Francisci Morales
∗

Aristides Gionis Mauro Sozio
†

IMT Lucca and ISTI-CNR Pisa Yahoo! Research Max-Planck-Institut für Informatik
Italy Barcelona, Spain Saarbrücken, Germany

gdfm@yahoo-inc.com gionis@yahoo-inc.com msozio@mpi-inf.mpg.de

ABSTRACT
Matching problems are ubiquitous. They occur in economic
markets, labor markets, internet advertising, and elsewhere.
In this paper we focus on an application of matching for
social media. Our goal is to distribute content from in-
formation suppliers to information consumers. We seek to
maximize the overall relevance of the matched content from
suppliers to consumers while regulating the overall activity,
e.g., ensuring that no consumer is overwhelmed with data
and that all suppliers have chances to deliver their content.

We propose two matching algorithms, GreedyMR and
StackMR, geared for the MapReduce paradigm. Both al-
gorithms have provable approximation guarantees, and in
practice they produce high-quality solutions. While both
algorithms scale extremely well, we can show that Stack-
MR requires only a poly-logarithmic number of MapReduce
steps, making it an attractive option for applications with
very large datasets. We experimentally show the trade-offs
between quality and efficiency of our solutions on two large
datasets coming from real-world social-media web sites.

1. INTRODUCTION
The last decade has witnessed a fundamental paradigm

shift on how information content is distributed among peo-
ple. Traditionally, the majority of information content has
been produced by few specialized agents and consumed by
the big masses. Nowadays, an increasing number of plat-
forms allow everyone to participate both in information pro-
duction and in information consumption. The phenomenon
has been coined as democratization of content. The Internet,
and its younger children, user-generated content and social
media, have had a major role in this paradigm shift.

∗This work was done while the author was visiting Yahoo!
Research, Barcelona.
†Part of this work was done while the author was visiting
Yahoo! Research, Barcelona and IBM Almaden Research
Center, San Jose, California.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 37th International Conference on Very Large Data Bases,
August 29th - September 3rd 2011, Seattle, Washington.
Proceedings of the VLDB Endowment, Vol. 4, No. 7
Copyright 2011 VLDB Endowment 2150-8097/11/04... $ 10.00.

Blogs, micro-blogs, photo-sharing systems, and question-
answering portals, are some of the social media that people
participate in as both information suppliers and informa-
tion consumers. In such social systems, not only consumers
have many opportunities to find relevant content, but also
suppliers have opportunities to find the right audience for
their content. However, as the opportunities to find rel-
evant information and relevant audience increase, so does
the complexity of a system that would allow suppliers and
consumers to meet in the most efficient way.

Our motivation is building a “featured item” component
for social-media applications. Such a component would pro-
vide recommendations to consumers each time they log in
the system. For example, flickr displays photos to users
when they enter their personal pages, while Yahoo! Answers

displays questions that are still open for answering. For con-
sumers it is desirable that the recommendations are of high
quality and relevant to their interests. For suppliers it is
desirable that their content is delivered to consumers who
are interested in it and may provide useful feedback. In
this way, both consumers and suppliers are more satisfied
by using the system and they get the best out of it.

Naturally, we model this problem as a matching problem.
We associate a relevance score to each potential match of
an item t to a user u. This score can be seen as the weight
of the edge (t, u) of the bipartite graph between items and
users. For each item t and each user u we also consider
constraints on the maximum number of edges that t and u
can participate in the matching. These capacity constraints
can be estimated by the activity of each user and the relative
frequency with which items need to be delivered. The goal
is to find a matching that satisfies all capacity constraints
and maximizes the total weight of the edges in the matching.
This problem is known as b-matching.

The b-matching problem can be solved in polynomial time
by max-flow techniques. However, the fastest exact algo-
rithms today have complexity Õ(nm) [10, 13], for graphs
with n nodes and m edges, and thus do not scale to large
datasets. Instead in this paper we focus on approximation
algorithms that are scalable to very large datasets. We pro-
pose two b-matching algorithms, StackMR and Greedy-
MR, which can be implemented efficiently in the MapReduce
paradigm [8]. While both our algorithms have provable ap-
proximation guarantees, they have different properties.

We design the StackMR algorithm by drawing inspira-
tion from existing distributed algorithms for matching prob-
lems [12, 21]. StackMR is allowed to violate capacity con-
straints by a factor of (1 + ε), and yields an approximation

460



guarantee of 1
6+ε

, for any ε > 0. We show that StackMR
requires a poly-logarithmic number of MapReduce steps.
This makes StackMR appropriate for realistic scenarios
with large datasets. We also study a variant of StackMR,
called StackGreedyMR, in which we incorporate a greedy
heuristic in order to obtain higher-quality results.

On the other hand, GreedyMR is a simpler algorithm
to implement and has the desirable property that it can be
stopped at any time and provide the current best solution.
GreedyMR has a better quality guarantee than Stack-
MR, as it is a 1

2
-approximation algorithm. GreedyMR also

yields better solutions in practice. However, it cannot guar-
antee a poly-logarithmic number of steps. A simple exam-
ple shows that GreedyMR may require a linear number of
steps. Although GreedyMR is theoretically less attractive
than StackMR, in practice it is a very efficient algorithm,
and its performance is way far from the worst case.

Finally, we note that the b-matching algorithm takes as
input the set of candidate edges weighted by their relevance
scores. In some cases, this set of candidate edges is small, for
instance when items are recommended only among friends
in a social network. In other applications, any item can be
delivered to any user, e.g., a user in flickr may view a
photo of any other user. In the latter case, materializing all
pairs of item-user edges is an unfeasible task. Thus, we equip
our framework with a scheme that finds all edges with score
greater than some threshold σ, and we restrict the matching
to those edges. Interestingly, finding all similar item-user
pairs can also be implemented efficiently in MapReduce, by
modifying recent algorithms developed for computing the
self-join of a document collection [2].

Our main contributions are the following:

• We investigate the problem of b-matching in the con-
text of social content distribution, and devise a fully-
MapReduce framework to address it.

• We develop StackMR, an efficient variant of the algo-
rithm presented in [21]. We show how to adapt such an
algorithm in MapReduce, while requiring only a poly-
logarithmic number of steps. Our experiments show that
StackMR scales excellently to very large datasets.

• We introduce GreedyMR, a MapReduce adaptation of
a classical greedy algorithm. It has a 1

2
-approximation

guarantee, and is very efficient in practice.

• We employ recent techniques for similarity self-join in
MapReduce to build the input graph for the b-matching.

• We perform a thorough experimental evaluation using
large datasets extracted from real-world scenarios.

2. RELATED WORK
The general problem of assigning entities to users so to

satisfy some constraints on the overall assignment arises in
many different research areas of computer science. Entities
could be advertisements [3], items in an auction [22], sci-
entific papers [11] or media content, like in our case. The
b-matching problem finds applications also in machine learn-
ing [15] and in particular in spectral clustering [14].

The weighted b-matching problem can be solved in poly-
nomial time by employing maximum flow techniques [10, 13],
however, the running time is still superlinear in the worst
case. A faster approximation algorithm has been recently
proposed by Christiano et al. [5].

In a distributed environment, there are some results for
the unweighted version of the (simple) matching problem [9,
12], while for the weighted case the approximation guarantee
has progressively improved from 1

5
[24] to 1

2
[20]. For dis-

tributed weighted b-matching, a 1
2
-approximation algorithm

was developed by Koufogiannakis and Young [18]. However,
a MapReduce implementation is non-obvious.

The MapReduce paradigm [8] has been designed to deal
with the huge amount of data that is readily available nowa-
days. Many existing algorithms in data mining and ma-
chine learning have been adapted to MapReduce [4, 6, 19].
Karloff et al. [17] give an abstract model of computation for
MapReduce. Chierichetti et al. [4] and Karloff et al. [17] de-
velop algorithms for the classic problems of max cover and
minimum-spanning tree, respectively. However, MapReduce
implementations of algorithms for graph problems have been
relatively limited so far [7, 16]. A classical model for paral-
lel computation is the pram model, where processors have
access to a shared memory which can also be used to commu-
nicate. It has been shown that many algorithms developed
for the pram model can be adapted in MapReduce [17].

3. PRELIMINARIES

3.1 The MapReduce model
MapReduce [8] is a distributed computing paradigm based
on two higher-order functions: map and reduce. The map

function applies a user-defined function to each key-value
pair in the input. The result is a list of intermediate key-
value pairs, sorted and grouped by key, and passed as input
to the reduce function. The reduce function applies a sec-
ond user-defined function to every intermediate key and all
its associated values, and produces the final result. The
signatures of the functions that compose the phases of a
MapReduce computation are as follows:

map : 〈k1, v1〉 → [〈k2, v2〉]
reduce : 〈k2, [v2]〉 → [〈k3, v3〉]

MapReduce assumes a distributed file system from which
the map instances retrieve the input. The framework takes
care of moving, grouping, and sorting the intermediate data.
This phase is called shuffle, and strongly affects the efficiency
of any MapReduce-based implementation. In our work we
used hadoop, an open-source implementation of MapReduce.

3.2 Problem definition
In this section we introduce our notation and provide our

problem formulation. We are given a set of content items
T = {t1, . . . , tn}, which are to be delivered to a set of con-
sumers C = {c1, . . . , cm}. For each cj and ti, we assume
we are able to measure the interest of consumer cj in item
ti with a positive weight w(cj , ti). The distribution of the
items T to the consumers C can be clearly seen as a match-
ing problem on the bipartite graph with nodes T and C, and
edge weights w(ti, cj).

In order to avoid that each consumer cj receive too many
items, we enforce a capacity constraint b(cj) on the number
of items that are matched to cj . Similarly, we would like
to avoid the scenario when only a few items (e.g. the most
popular ones) participate in the matching. To this end, we
introduce a capacity constraint b(ti) on the number of con-
sumers that each item ti is matched to.

461



This variant of the matching problem is well known in the
theoretical computer science community as the b−matching
problem. This is defined as follows. We are given an undi-
rected graph G = (V, E) and a function b : V → N express-
ing node capacities (or budgets). Every edge e comes with
a positive weight w(e). A b-matching in G is a subset of E
such that for each node v in V at most b(v) edges incident
to v are in the matching. We wish to find a b-matching of
maximum weight.

Although all our algorithms can deal with any undirected
graph, we focus on bipartite graphs which are relevant in
our application scenarios. The problem we shall consider in
the rest of the paper is then defined as follows.

Problem 1 We are given an undirected bipartite graph G =
(T, C, E), where T represents a set of items and C represents
a set of consumers, a weight function w : E → R+, as well
as a capacity function b : T ∪ C → N. A b-matching in G
is a subset of E such that for each node v in T ∪C at most
b(v) edges incident to v are in the matching. We wish to
find a b-matching of maximum weight.

4. APPLICATION SCENARIOS
To instantiate the problem we just defined, we need to (i)

define the weights w(ti, cj) between items ti and consumers
cj , (ii) decide the set of potential edges that participates
in the matching, and (iii) define the capacity constraints
b(ti) and b(cj). In this paper we focus only on the matching
algorithm and we assume that addressing the details of the
above questions depends on the application. However, for
completeness we discuss our thoughts on the above issues.

Scenario. We envision a scenario in which an application
operates in consecutive phases. The duration of each phase
may range from hours to days. Before the beginning of the
i-th phase the application makes a tentative allocation of
which items will be delivered to which consumers during the
i-th phase. The items that participate in this allocation, i.e.,
the set T of Problem 1, are those that have been produced
during the (i − 1)-th phase, and perhaps other items that
have not been distributed in previous phases.

Edge weights. A simple approach is to represent items and
consumers in a vector space, i.e., items ti and consumers cj

are represented by term vectors v(ti) and v(cj). Then we
can define the edge weight w(ti, cj) using the dot-product
similarity w(ti, cj) = v(ti) · v(cj). More complex similarity
functions can be used, too. Borrowing ideas from informa-
tion retrieval, the terms in the vector representation can
be weighted with tf·idf scores. Alternatively, the weights
w(ti, cj) could be the output of a recommendation system
that takes into account user preferences and user activities.

Candidate edges. With respect to deciding which edges
to consider for matching, the simplest approach is to con-
sider all possible pairs (ti, cj). This is particularly attrac-
tive, since we let the decision of selecting edges entirely to
the matching algorithm. However, considering O(|T ||C|)
edges makes the system highly inefficient. Thus, we opt for
methods that prune the number of candidate edges. Our ap-
proach is to consider as candidates only edges whose weight
w(ti, cj) is above a threshold σ. The rationale is that since
the matching algorithm will seek to maximize the total edge
weight, we preferably discard low-weight edges.

We note that depending on the application, there may be
other ways to define the set of candidate edges. For exam-
ple, in social-networking sites it is common for consumers to
subscribe to suppliers they are interested in. In such an ap-
plication, we restrict to candidate edges (ti, cj) for which ti

has been created by a producer to whom cj has subscribed.

Capacity constraints. The consumer capacity constraints
express the number of items that need to be displayed to
each consumer. For example, if we display one different item
to a consumer each time they access the application, b(cj)
can be set to an estimate of the number of times that con-
sumer cj will access the application during the i-th phase.
Such an estimate can be obtained from log data.

For the item capacity constraints, we observe that B =P
c∈C b(c) is an upper bound on the total number of dis-

tributed items, so we require B =
P

t∈T b(t) as well. Now
we distinguish two cases, depending on whether there is a
quality assessment on the items T or not. If there is no
quality assessment, all items are considered equivalent, and
the total distribution bandwidth B can be divided equally
among all items, so b(t) = max{1, B

|T |}, for all t in T .

If there is a quality assessment on the items T , we assume
a quality estimate q(t) for each item t. Such an estimate
can be computed using a machine-learning approach, as the
one proposed by Agichtein et al. [1], which involves various
features like content, links, and reputation. Without loss of
generality we assume normalized scores, i.e.,

P
t∈T q(t) =

1. We can then divide the total distribution bandwidth
B among all items in proportion to their quality score, so
b(t) = max{1, q(t)B}. In a real-application scenario, the
designers of the application may want to control the func-
tion q(t) so that it satisfies certain properties, for instance,
it follows a power-law distribution.

5. ALGORITHMS

5.1 Computing the set of candidate edges
The first step of our algorithm is to compute the set of

candidate edges, which in Section 4 were defined to be the
edges with weight w(ti, cj) above a threshold σ. This step is
crucial in order to avoid considering O(|T ||C|) edges, which
would make the algorithm impractical.

The problem of finding all the pairs of ti ∈ T and cj ∈ C
so that w(ti, cj) ≥ σ is known as the similarity join prob-
lem. Since we aim at developing the complete system in
the MapReduce framework, we take advantage of recent ad-
vances in the problem of computing the similarity self-join
between documents in MapReduce. In particular, we adapt
the algorithm of Baraglia et al. [2], which to our knowledge
is the state-of-the-art in computing self-join in MapReduce.

The algorithm of Baraglia et al. works using the technique
of prefix filtering: the main idea is to create a pruned inverted
index on the whole set of documents and then query those
documents on the index. The pruning of the index is per-
formed in a way that for documents di not retrieved during
the querying of document dj it is guaranteed that the sim-
ilarity between di and dj is below the similarity threshold.
For each pair of documents returned in the querying phase
the algorithm needs to access the documents and verify if
the similarity is indeed greater than the threshold. The al-
gorithm of Baraglia et al. takes care that all of the above
tasks are implemented efficiently in MapReduce. Overall 2

462



MapReduce iterations are required.
Our algorithm for computing the set of candidate edges

is a simple modification of the algorithm of Baraglia et al.
First we interpret the items ti and the consumers cj as docu-
ments using their vector representation. Second the self-join
algorithm can be modified to join the two sets T and C with-
out considering pairs between two items or two consumers.

5.2 The stack algorithm
Our first matching algorithm, StackMR, is a variant of

the algorithm developed in [21]. The main difference is that
in [21] there is an involved mechanism to ensure that capac-
ity constraints are satisfied, which unfortunately does not
seem to have an efficient implementation in MapReduce.
Here we devise a more practical variant that allows node
capacities to be violated by a factor of at most (1 + ε), for
any ε > 0. This is a small price to pay in our application
scenarios, where small capacity violations can be tolerated.

For the sake of presentation, we describe our algorithm
first in a centralized environment and then in a parallel en-
vironment. Pseudocode for StackMR and for the algorithm
in [21] are included in the Appendix. (Algorithm 2 and 1,
respectively). The latter one has been slightly changed so
to take into account implementation issues. However, we
do not include an evaluation of this algorithm as it does not
seem to be efficient. In the next section we describe in detail
how to implement the former algorithm in MapReduce.

Our algorithm is based on the primal-dual schema, a suc-
cessful and well-established technique to develop approxi-
mation algorithms. The primal-dual schema has proved to
play an important role in the design of sequential and dis-
tributed approximation algorithms ([21, 23]). We believe
that primal-dual algorithms bear the potential of playing
an important role in the design of MapReduce algorithms
as well.

The first step of any primal-dual algorithm is to formulate
the problem at hand as an integer linear program (IP). Con-
sequently, integrality constraints are relaxed so that vari-
ables can take any value in the range [0, 1]. This linear pro-
gram (LP) is called primal. From the primal program we can
derive the so-called dual. There is a direct correspondence
between the variables of the primal and the constraints of
the dual, as well as, the variables of the dual and the con-
straints of the primal.

A typical primal-dual algorithm proceeds as follows: at
each step dual variables are raised and as soon as a dual
constraint is satisfied with equality (or almost) the corre-
sponding primal variable is set to one. The above procedure
is iterated until when no dual variable can be increased fur-
ther without violating a dual constraint. The approximation
guarantee follows from the fact that any feasible dual solu-
tion gives an upper bound on any optimum solution for the
primal. Thus, the closer these two quantities the better the
approximation guarantee. For a more exhaustive illustration
of the technique, see the book of Vazirani [23].

We now present our algorithm in a centralized environ-
ment. We first give the IP for the b-matching problem.

maximize
X
e∈E

w(e)xe (IP)

such that
X

e∈E, v∈e

xe ≤ b(v) ∀v ∈ V, (1)

where xe ∈ {0, 1} is associated to edge e, and a value of 1

means that e belongs to the solution. Equation (1) expresses
capacity constraints. The dual program is as follows.

minimize
X
v∈V

yv (DP)

such that
yu

b(u)
+

yv

b(v)
≥ w(e) ∀e = (u, v) ∈ E, (2)

yv ≥ 0 ∀v ∈ V. (3)

Dual constraints (2) are associated with edges e. An edge is
said to be covered if its corresponding constraint is satisfied
with equality. The variables occurring in such a constraint
are referred as e’s dual variables and play an important role
in the execution of the algorithm.

The centralized algorithm consists of two phases: a push
phase where edges are pushed on a stack in arbitrary order,
and a pop phase where edges are popped from the stack and
a feasible solution is computed. When an edge e(u, v) is
pushed on the stack, each of its dual variables is increased
by the same amount δ(e) so to satisfy Equation (2) with
equality. The amount δ(e) is derived from Equation (2) as

δ(e) =
(w(e)− yu/b(u)− yv/b(v))

2
. (4)

Whenever edges become covered they are deleted from the
input graph. The push phase terminates when no edge is
left. In the pop phase, edges are successively popped out of
the stack and included in the solution if feasibility is main-
tained. This discussion concludes the description of the cen-
tralized algorithm.

In a parallel environment, we wish to parallelize as many
operations as possible so to ensure poly-logarithmic running
time. Thus, we need a mechanism to bound the number of
push and pop steps, which in the centralized algorithm may
be linear in the number of edges. This is done by computing
at each step a maximal dεbe-matching. Note the difference
between maximum and maximal: a b-matching is maximal
if and only if it is not properly contained in any other b-
matching. All edges in a maximal set, called a layer of the
stack, are pushed on the stack in parallel. In the popping
phase, all edges within the same layer are popped out of
the stack and included in the solution in parallel. Edges
of nodes whose capacity constraints are satisfied or violated
are deleted from the stack and ignored from further consid-
eration. A maximal b-matching can be computed efficiently
in MapReduce as we will discuss in Section 5.3.

Unfortunately, the total number of layers may still be lin-
ear in the maximum degree of a node. To circumvent this
problem, we introduce the definition of weakly covered edges.
Roughly speaking, a weakly covered edge is an edge whose
constraint is only “partially satisfied” and thus gets covered
after a few number of iterations. A formal definition follows.

Definition 1 (Weakly covered edges) Given ε > 0, at
any time during the execution of our algorithm we say that
an edge e ∈ E is weakly covered if constraint (2) for e = uv
is such that

ȳu

b(u)
+

ȳv

b(v)
≥ 1

3 + 2ε
w(e), (5)

where ȳ denotes the current value of y.

Observe that Equation (5) is derived from Equation (2).
To summarize, our parallel algorithm proceeds as follows.

At each step of the push phase, we compute a maximal

463



dεbe-matching using the procedure by Garrido et al. [12].
All the edges in the maximal matching are then pushed on
the stack in parallel forming a layer of the stack. For each
of these edges we increase each of its dual variable by δ(e)
in parallel. Some edges might then become weakly covered
and are deleted from the input graph. The push phase is
executed until no edge is left.

At the end of the push phase, layers are iteratively popped
out of the stack and edges within the same layer are included
in the solution in parallel. This can violate node capacities
by a factor of at most (1+ε), as every layer contains at most
εb(v) edges incident to any node v. Edges of nodes whose
capacity constraints are satisfied or violated are deleted from
the stack and ignored from further consideration. This phase
is iterated until the stack becomes empty.

We can show that the approximation guarantee of our al-
gorithm is 1

6+ε
, for every ε > 0. Moreover, we can show that

the push phase is iterated at most O(log wmax
wmin

) steps, where

wmax and wmin are the maximum and minimum weight of
any edge in input, respectively. This together with the fact
that the procedure in [12] requires O(log3 n) rounds imply
the following theorem.

Theorem 1 Algorithm 2 has an approximation guarantee
of 1

6+ε
and violates capacity constraints by a factor of at

most 1 + ε. It requires O( log3 n
ε2
· log wmax

wmin
) communication

rounds, with high probability.

The non-determinism of the algorithm follows from the non-
determinism of the algorithm that computes maximal b-
matchings. The proof of Theorem 1 is very similar to the
proof in [21] and is omitted for lack of space. StackMR is
a factor of 1

ε
faster than the the algorithm presented in [21].

5.3 Adaptation in MapReduce
The distributed algorithm described in the previous sec-

tion works in an iterative fashion. In each iteration we first
compute a maximal matching, then we push it in a stack, we
update edges, and we pop all levels from the stack. Below
we describe how to implement these steps in MapReduce.

Maximal matching. For finding maximal b-matchings we
employ the algorithm of Garrido et al. [12], which is an
iterative probabilistic algorithm. Each iteration consists of
four stages: (i) marking, (ii) selection, (iii) matching, and
(iv) cleanup. The stages are as follows.

In the marking stage, each node v marks randomly d 1
2
b(v)e

of its incident edges. In the selection stage, each node v
selects randomly max{b 1

2
b(v)c, 1} edges marked by its neigh-

bors. At this point, a set of edges F have been selected. In
the matching stage, if some node v has capacity b(v) = 1 and
two incident edges in F , it randomly deletes one of them. At
this point the set F is a valid b-matching. The set F is added
to the solution and removed from the original graph. In the
cleanup stage, each node updates its capacity in order to
take into consideration the edges in F and saturated nodes
are removed from the graph. These stages are iterated until
there are no more edges left in the original graph. Garrido
et al. [12] show that the process requires, on expectation,
O(log3 n) iterations to terminate.

To adapt this algorithm in MapReduce, we need one job
for each stage.The input and output of each MapReduce job
is always of the same format: a consistent view of the graph

represented as adjacency lists. We maintain a “node-based”
representation of the graph because we need to make deci-
sions based on the local neighborhood of each node. Assum-
ing the set of nodes adjacent to vi is {vj , . . . , vk}, the input
and output of each job is a list 〈vi, [(vj , Tj), . . . , (vk, Tk)]〉,
where vi is the key and [(vj , Tj), . . . , (vk, Tk)] the associated
value. The variables T represent the state of each edge. We
consider five possible states of an edge: E in the main graph;
K marked; F selected; D deleted; and M in the matching.

Each map function performs the decisions altering the state
of the graph locally to each node. Each reduce function
unifies the diverging views of the graph at each node. For
each edge (vi, vj), each map function will emit both 〈vi〉 and
〈vj〉 as keys, together with the current state of the edge as
value. The reduce function will receive the views of the
state of the edge from both end-points, and will unify them,
yielding a consistent graph representation as output.

Each MapReduce job uses the same communication pat-
tern and state unification rules. They only differ in the way
they update the state of the edges. The communication
cost of each job is thus O(|E|), while the achievable degree
of parallelism is O(|V |).
Push, update, and pop. The basic scheme of communi-
cation for the push, update, and pop phases is the same as
the one for computing maximal matching. For these phases
of the algorithm, we maintain a separate state for each edge.
The possible states in which an edge can be are: E, edge in
the graph (default); S, edge stacked; R, edge removed from
the graph; and I, edge included in the solution. For each
edge we also maintain an integer variable that represents the
stack level in which the edge has been put.

During the push phase, for each edge included in the max-
imal matching, we set its state to S and the corresponding
stack level. The update phase is needed to propagate the
δ(e) contributions. Each edge sent to a node v carries the
value of its sending node yu/b(u). Thus, each node can com-
pute the new δ(e) and update its local yv. This phase also re-
moves weakly covered edges by setting their state to R, and
updates the capacities of the nodes for the next maximal-
matching phase. Removed edges are not considered for the
next maximal-matching phase. When all the edges in the
graph are either stacked (S) or removed (R), the pop phase
starts. During the pop phase, each stacked (S) edge in the
current level (starting from the topmost) is included in the
solution by setting its state to (I). The capacities are locally
updated, and nodes (and all incident edges) are removed
when their capacity becomes non-positive.

5.4 The greedy algorithm
In this section we present a second matching algorithm

based on a greedy strategy: GreedyMR. We analyze the
centralized version and then we adapt it in MapReduce.

The centralized greedy algorithm works by processing se-
quentially each edge in order of decreasing weight. It in-
cludes an edge e(u, v) in the solution if b(u) > 0 and b(v) >
0. In this case, it subtracts 1 from both b(u) and b(v).

It is immediate that the greedy algorithm produces a fea-
sible solution. In addition, it has a factor 1

2
approximation

guarantee. We believe that this is a well-known result, how-
ever, we were not able find a reference. Thus, for complete-
ness we include a proof in the Appendix.

The GreedyMR algorithm is a MapReduce adaptation of
the above centralized algorithm. We note that the adapta-

464



tion is not straightforward, due to the access to the globally-
shared variables b(v) that keep node capacities.

GreedyMR works as follows. In the map phase each
node v proposes its b(v) edges with maximum weight to its
neighbors. In the reduce phase, each node computes the in-
tersection between its own proposals and the proposals of its
neighbors. The set of edges in the intersection is included in
the solution. Then, each node updates its capacity. If it be-
comes 0, the node is removed from the graph. A pseudocode
for GreedyMR is shown in the Appendix (Algorithm 3).

In contrast with StackMR, GreedyMR is not guaran-
teed to finished in a poly-logarithmic number of iterations.
As a simple worst-case input instance, consider a path graph
u1u2, u2u3, ...uk−1uk such that w(ui, ui+1) ≤ w(ui+1, ui+2).
GreedyMR will face a chain of cascading updates that will
cause a linear number of MapReduce iterations. However,
as we will see in Section 6, in practice GreedyMR yields
quite competitive results compared to StackMR.

Finally, an additional advantage of GreedyMR is that
it maintains a feasible solution at each step. Therefore the
algorithm can be terminated at any step and return the cur-
rent solution. This property makes the algorithms especially
attractive in our application scenarios, where content can be
delivered to the users almost immediately and the algorithm
can continue running in the background.

6. EXPERIMENTAL EVALUATION
In this section we describe the experiments we perform.

We start with the description of the datasets we use.

Flickr. We extract two datasets from flickr, a photo-
sharing site. Table 1 shows statistics for the flickr-small

and flickr-large datasets. In these datasets items repre-
sent photos and consumers represent users.

Recall from our discussion in Section 4 that the capacity
b(u) of each user u should be set in proportion to the login
activity of the user in the system. Unfortunately, the login
activity is not available in the dataset, so we decide to use
as a proxy the number of photos n(u) that the user u has
posted. We then use a parameter α > 0 to set the capacity of
each user u as b(u) = α n(u). Higher values of the parameter
α simulate higher levels of activity in the system.

Next we need to specify the capacity of photos. Since our
primary goal is to study the matching algorithm, specifying
the actual capacities is beyond the scope of the paper. Thus
we use as a proxy, the number of favorites f(p) that each
photo p has received. The intuition is that we want to favor
good photos in order to increase user satisfaction. Following
Section 4, we set the capacity of each photo to

b(p) = f(p)

P
u αn(u)P
q f(q)

.

In order to estimate edge similarities, we represent each
photo by its tags, and each user by the set of all tags he
or she has used. Then we compute the similarity between
a photo and a user as the dot product of the their tag vec-
tors. We compute all edges whose similarity is larger than
a threshold σ using the MapReduce algorithm described in
Section 5.1. The distributions of edge similarities are shown
in Figure 6 in the Appendix.

Yahoo! Answers. We extract one dataset from the Yahoo!
Answers question-answering portal. In yahoo-answers, con-
sumers represent users, while items represent questions. The

Table 1: Dataset characteristics. |T |: number of items;

|C|: number of users; |E|: total number of item-user pairs

with non zero similarity.
Dataset |T | |C| |E|

flickr-small 2 817 526 550 667
flickr-large 373 373 32 707 1 995 123 827
yahoo-answers 4 852 689 1 149 714 18 847 281 236

motivating application is to propose unanswered questions
to users. Matched questions should fit the user interests. To
identify user interests, we represent users by the weighted
set of words in their answers. We preprocess the answers to
remove punctuation and stop-words, stem words, and apply
tf·idf weighting. We treat questions similarly.

As before, we extract a bipartite graph with edge weights
representing the similarity between questions and users. We
employ again a threshold σ to sparsify the graph, and present
results for different density levels. In this case, we set user
capacities b(u) by employing the number of answers n(u)
provided by each user u as a proxy to the activity of the user.
We use the same parameter α as for the flickr datasets to
set b(u) = α n(u). However, for this dataset we use a con-
stant capacity for all questions, in order to test our algorithm
under different settings. For each question q we set

b(q) =

P
u αn(u)

|Q| .

Variants. We also experiment with a number of variants of
the StackMR algorithm. In particular, we vary the edge-
selection strategy employed in the first phase of the maximal
b-matching algorithm (marking) [12]. The StackMR algo-
rithm proposes to its neighbors edges chosen uniformly at
random. In order to favor heavier edges in the matching, we
modify the selection strategy to propose the d 1

2
εb(v)e edges

with the largest weight. We call this variant StackGreedy-
MR. We also experiment with a third variant, in which we
choose edges randomly but with probability proportional
to their weights. Because it always performs worse than
StackGreedyMR and for lack of space we do not show the
results for this third variant.

Measures. We evaluate the proposed algorithms in terms
of quality and efficiency. Quality is measured in terms of
b-matching value achieved, and efficiency in terms of the
number of MapReduce iterations required. We evaluate our
algorithms by varying the following parameters: the simi-
larity threshold σ, which controls the number of edges that
participate in the matching; the slackness parameter ε; and
the factor α in determining capacities.

Results. Sample results on the quality and efficiency of our
matching algorithms for the three datasets, flickr-small,
flickr-large, and yahoo-answers, are shown in Figures 1, 2,
and 3, respectively. For each plot in these figures, we fix the
parameters ε and α and we vary the similarity threshold σ.
Our observations are summarized as follows.

Quality. GreedyMR consistently produces matchings
with higher value than the two stack-based algorithms. Since
GreedyMR has better approximation guarantee, this re-
sult is in accordance with theory. In fact, GreedyMR
achieves better results even though the stack algorithms
have the advantage of being allowed to exceed node capac-
ities. However, as we will see next, the violations are very

465



Figure 1: flickr-small dataset: matching value and

number of iterations as a function of the number of edges.

small, ranging from practically 0 to at most 6%. In the
flickr-large dataset, GreedyMR produces solutions that
have on average 31% higher value than solutions by Stack-
MR. In flickr-small and yahoo-answers, the improve-
ment of GreedyMR is 11% and 14%, respectively. When
comparing the two stack algorithms, we see that Stack-
GreedyMR is slightly better than StackMR. Again the
difference is more pronounced on the flickr-large dataset.

We also observe that in general the b-matching value in-
creases with the number edges. This behavior is expected, as
the number of edges increase the algorithms have more flex-
ibility. Since we add edges by lowering the edge-similarity
threshold, the gain in the b-matching value tends to saturate.
The only exception to this rule is for StackGreedyMR on
the flickr-large dataset. We believe this is due to the un-
even capacity distribution for the flickr-large dataset, see
Figure 7. Our belief is supported by fact that the decrease
is less visible for higher values of α.

Efficiency. Our findings validate the theory also in terms
of efficiency. In most settings the stack algorithms per-
form better than GreedyMR. The only exception is the
flickr-small dataset. This dataset is very small, so the
stack algorithms incur additional overhead when computing
maximal matchings. However, the power of the stack al-
gorithms is demonstrated on the large datasets. Not only
they require less MapReduce steps than GreedyMR, but
they scale extremely well. The performance of StackMR is
almost unaffected by increasing the number of edges.

Capacity violations. As explained in Section 5.2, Stack-
MR and StackGreedyMR can exceed the capacity of the
nodes by a factor of (1 + ε). However, in our experiments
the algorithms exhibit much lower capacity violations than
the worst case. We compute the average violation as

ε′ =
1

|V |
X
v∈V

max{|M(v)| − b(v), 0}
b(v)

,

where |M(v)| is the degree of node v in the matching M , and
b(v) is the capacity for each node v in V . Figure 4 shows

Figure 2: flickr-large dataset: matching value and

number of iterations as a function of the number of edges.

capacity violations for StackMR. The violations for Stack-
GreedyMR are similar, and omitted for lack of space. For
ε = 1, for the flickr-large dataset the violation is as low
as 6% in the worst case. As expected, more violations occur
when more edges are allowed to participate in the match-
ing, either by increasing the number of edges (lower σ) or
the capacities of the nodes (higher α). On the other hand,
for the yahoo-answers datasets, using the same ε = 1, the
violations are practically zero for any combination of the
other parameters. One reason for the difference between
the violations in these two datasets may be the capacity
distributions, as shown in Figure 7 in the Appendix. For all
practical purposes in our envisioned application scenarios
these violations are negligible.

Any-time stopping. An interesting property of Greedy-
MR is that it produces a feasible but suboptimal solution
at each iteration. This allows to stop the algorithm at any
time, or to query the current solution and let the algorithm
continue in the background. Furthermore, GreedyMR con-
verges very fast to a good global solution. Figure 5 shows
the value of the solution found by GreedyMR as a func-
tion of the iteration. For the three datasets, flickr-small,
flickr-large, and yahoo-answers, the GreedyMR algo-
rithm reaches 95% of its final b-matching value within 28.91%,
44.18%, and 29.35% of the total number of iterations re-
quired, respectively. The latter three numbers are averages
over all the parameter settings we tried in each dataset.

7. CONCLUSIONS
We investigate the problem of social content matching

and introduce two MapReduce algorithms: StackMR and
GreedyMR. Both algorithms have provable approximation
guarantees. In addition StackMR provably requires a log-
arithmic number of MapReduce iterations.

We test our algorithms on two large real-world datasets.
GreedyMR is a good solution for practitioners. In our
experiments it consistently finds the best b-matching value.
GreedyMR allows to query the solution at any time, which
is a desirable property for real systems. Furthermore, it is

466



Figure 3: yahoo-answers dataset: matching value and

number of iterations as a function of the number of edges.

Figure 4: Violation of capacities for StackMR.

easy to implement and reason about. Nevertheless, Stack-
MR has high theoretical and practical interest because of
its better running time. StackMR scales gracefully to very
large datasets and offers high-quality results.

8. ACKNOWLEDGEMENTS
Gianmarco De Francisci Morales was partially supported

by the EU-FP7-250527 (Assets) and the POR-FESR 2007-
2013 (VISITO Tuscany) projects.

Aristides Gionis was partially supported by the Spanish
Centre for the Development of Industrial Technology under
the CENIT program, project CEN-20101037, “Social Me-
dia” (http://www.cenitsocialmedia.es/).

9. REFERENCES
[1] E. Agichtein, C. Castillo, D. Donato, A. Gionis, and

G. Mishne. Finding high-quality content in social media. In
WSDM, pp. 183–194, 2008.

[2] R. Baraglia, G. De Francisci Morales, and C. Lucchese.
Document similarity self-join with mapreduce. In ICDM,
pp. 731–736, 2010.

[3] D. Charles, M. Chickering, N. R. Devanur, K. Jain, and
M. Sanghi. Fast algorithms for finding matchings in
lopsided bipartite graphs with applications to display ads.
In EC, pp. 121–128, 2010.

[4] F. Chierichetti, R. Kumar, and A. Tomkins. Max-cover in
map-reduce. In WWW, pp. 231–240, 2010.

Figure 5: Value of the b-matching achieved by the

GreedyMR algorithm as a function of the number of

MapReduce iterations. b-matching value is shown as a

fraction of the final value achieved.

[5] P. Christiano, J. A. Kelner, A. Madry, D. A. Spielman, and
S.-H. Teng. Electrical flows, laplacian systems, and faster
approximation of maximum flow in undirected graphs.
CoRR, arXiv:1010.2921v2, 2010.

[6] C.-T. Chu, S. K. Kim, Y.-A. Lin, Y. Yu, G. R. Bradski,
A. Y. Ng, and K. Olukotun. Map-reduce for machine
learning on multicore. In NIPS, pp. 281–288, 2006.

[7] J. Cohen. Graph twiddling in a MapReduce world.
Computing in Science and Engineering, 11(4):29–41, 2009.

[8] J. Dean and S. Ghemawat. Mapreduce: simplified data
processing on large clusters. CACM, 51(1):107–113, 2008.

[9] T. Fischer, A. Goldberg, D. Haglin, and S. Plotkin.
Approximating matchings in parallel. IPL, 46(3):115–118,
1993.

[10] H. Gabow. An efficient reduction technique for
degree-constrained subgraph and bidirected network flow
problems. In STOC, pp. 448–456, 1983.

[11] N. Garg, T. Kavitha, A. Kumar, K. Mehlhorn, and
J. Mestre. Assigning papers to referees. Algorithmica,
58(1):119–136, 2010.

[12] O. Garrido, S. Jarominek, A. Lingas, and W. Rytter. A
simple randomized parallel algorithm for maximal
f -matchings. IPL, 57(2):83–87, 1996.

[13] A. V. Goldberg and S. Rao. Beyond the flow
decomposition barrier. JACM, 45(5):783–797, 1998.

[14] T. Jebara and V. Shchogolev. B-matching for spectral
clustering. In ECML, pp. 679–686, 2006.

[15] T. Jebara, J. Wang, and S. Chang. Graph construction and
b-matching for semi-supervised learning. In ICML, pp.
441–448, 2009.

[16] U. Kang, C. Tsourakakis, and C. Faloutsos. PEGASUS: A
peta-scale graph mining system implementation and
observations. In ICDM, pp. 229–238, 2009.

[17] H. J. Karloff, S. Suri, and S. Vassilvitskii. A model of
computation for MapReduce. In SODA, pp. 938–948, 2010.

[18] C. Koufogiannakis and N. Young. Distributed fractional
packing and maximum weighted b-matching via
tail-recursive duality. In DISC, pp. 221–238, 2009.

[19] J. Lin and C. Dyer. Data-intensive text processing with
MapReduce. Morgan & Claypool Publishers, 2010.

[20] Z. Lotker, B. Patt-Shamir, and S. Pettie. Improved
distributed approximate matching. In SPAA, pp. 129–136,
2008.

[21] A. Panconesi and M. Sozio. Fast primal-dual distributed
algorithms for scheduling and matching problems.
Distributed Computing, 22(4):269–283, 2010.

[22] M. Penn and M. Tennenholtz. Constrained multi-object
auctions and b-matching. IPL, 75(1-2):29–34, 2000.

[23] V. Vazirani. Approximation algorithms. Springer-Verlag,
2001.

[24] M. Wattenhofer and R. Wattenhofer. Distributed weighted
matching. In DISC, pp. 335–348, 2004.

467



APPENDIX

A. ANALYSIS OF THE GREEDY
ALGORITHM

In the following theorem we prove the approximation guar-
antee of greedy. We believe this result to be well-known,
however we could not find a reference. Thus, we give a
proof for completeness and self containment.

Theorem 2 The greedy algorithm produces a solution with
approximation guarantee 1

2
for the weighted b-matching prob-

lem.

Proof. Let O be an optimum solution for a given prob-
lem instance and let A be the solution yielded by the greedy
algorithm. For every node v, let Ov and Av denote the sets
of edges O∩∆G(v) and A∩∆G(v), respectively, where ∆G(v)
is the set of edges in G incident to v. The total weight of a
set of edges T is denoted by w(T ). We say that a node is sat-
urated if exactly b(v) edges of v are in the greedy solution A
and we let S denote the set of saturated nodes.

For every node v, we consider the sets bOv ⊆ Ov\A, defined

as follows: each edge e(u, v) ∈ O \A is assigned to a set bOv,
for which v is a saturated node and the weight of any edge
in Av is larger than w(e). Ties are broken arbitrarily. There
must be such a node v, for otherwise e would be included
in A. The idea of the proof is to relate the weight of edge e
with the weights of the edges of Av, which prevent e from

entering the solution. From the definition of the bOv’s it
follows that

w(O \A) =
X
v∈S

w( bOv). (6)

For every saturated node v we have that |Ov| ≤ b(v) = |Av|.
From this and from the definition of the bOv’s we have thatX

v∈S

w(Av \O) ≥
X
v∈S

w( bOv). (7)

From Equations (6) and (7) we obtain

2w(A) ≥ w(A ∩O) +
X
v∈S

w(Av \O)

≥ w(A ∩O) +
X
v∈S

w( bOv)

≥ w(O),

which concludes the proof.

The analysis is tight as proved by the following simple
example. Consider a cycle consisting of three nodes u, v, z
and three edges uv, vz, zu. Let b(u) = b(z) = 1 and let
b(v) = 2. Moreover, let w(uv) = w(vz) = 1 while w(zu) =
(1+ε) where ε > 0. It is easy to see that the greedy algorithm
would select the edge whose weight is 1+ε, while the weight
of the optimum solution is 2.

B. ADDITIONAL PLOTS
Figure 6 shows the distribution of edge similarities for

our three datasets, and Figure 7 shows the distribution of
capacities.

C. PSEUDOCODE OF OUR ALGORITHMS
Algorithms 1 and 2 present the variants of the StackMR

algorithm with no capacity violations and (1 + ε) capacity
violations, respectively. Algorithm 3 shows the GreedyMR
algorithm.

Algorithm 1 StackMR satisfying all capacity constraints

1: /* Pushing Stage */
2: while E is non empty do
3: Compute a maximal dεbe-matching M (each vertex v has

capacity dεb(v)e), using the procedure in [12];
4: Push all edges of M on the distributed stack (M becomes

a layer of the stack);
5: for all e ∈M in parallel do
6: Let δ(e) = (w(e)− yu/b(u)− yv/b(v)) /2;
7: increase yu and yv by δ(e);
8: end for
9: Update E by eliminating all edges that have become weakly

covered
10: end while
11: /* Popping Stage */
12: while the distributed stack is nonempty do
13: Pop a layer M out of the distributed stack.
14: In parallel tentatively include all edges of M in the solu-

tion.
15: If there is a vertex v whose capacity is exceeded then mark

all edges in M incident to v as overflow, remove them from
the solution and remove all edges in E \M incident to v
from the graph.

16: For each vertex v: let b̄(v) be the number of edges in M
that are incident to v; update b(v)← b(v)−b̄(v); if b(v) = 0
then remove all edges incident to v.

17: end while
18: /* Computing a feasible solution */
19: while there are overflow edges do
20: Let L̄ be the set of overflow edges such that for every e ∈ L̄

there is no overflow edge f , incompatible with e, for which
δ(f) > (1 + ε)δ(e).

21: Compute a maximal b-matching M̄ including only edges of
L̄ (M̄ shall be referred to as a sublayer of the stack);

22: In parallel, for each edge e ∈ M̄ , include e in the solution
if this maintains the solution feasible.

23: For each vertex v: let b̄(v) be the set of edges in M̄ that
are incident to v (these edges are included in the solution);
update b(v) ← b(v) − b̄(v); if b(v) ≤ 0 then remove from
the set of overflow edges all edges incident to v.

24: Remove all edges in M̄ from the set of overflow edges.
25: end while

468



Figure 6: The distribution of edge similarities for the three datasets.

Figure 7: The distribution of capacities for the three datasets.

Algorithm 2 StackMR violating capacity constraints by
a factor of at most (1+ε)

1: /* Pushing Stage */
2: while E is non empty do
3: Compute a maximal dεbe-matching M (each vertex v

has capacity dεb(v)e), using the procedure in [12];
4: Push all edges of M on the distributed stack (M be-

comes a layer of the stack);
5: for all e ∈M in parallel do
6: Let δ(e) = (w(e)− yu/b(u)− yv/b(v)) /2;
7: increase yu and yv by δ(e);
8: end for
9: Update E by eliminating all edges that have become

weakly covered
10: end while
11: /* Popping Stage */
12: while the distributed stack is nonempty do
13: Pop a layer M out of the distributed stack.
14: In parallel include all edges of M in the solution.
15: For each vertex v: let b̄(v) be the set of edges in M

that are incident to v; update b(v) ← b(v) − b̄(v); if
b(v) ≤ 0 then remove all edges incident to v.

16: end while

Algorithm 3 GreedyMR

1: while E is non empty do
2: for all v ∈ V in parallel do

3: Let cLv be the set of b(v) edges incident to v with maxi-
mum weight;

4: Let F be cLv ∩ cLU where U = {u ∈ V : ∃ e(v, u) ∈ E} is
the set f vertexes sharing an edge with v;

5: Update M ←M ∪ F ;
6: Update E ← E \ F ;
7: Update b(v)← b(v)− bF (v);
8: If b(v) = 0 remove v from V and remove all edges inci-

dent to v from E;
9: end for

10: end while
11: return M ;

469


