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ABSTRACT
In this paper we analyze the efficiency of various search re-
sults diversification methods. While efficacy of diversifica-
tion approaches has been deeply investigated in the past,
response time and scalability issues have been rarely ad-
dressed. A unified framework for studying performance and
feasibility of result diversification solutions is thus proposed.
First we define a new methodology for detecting when, and
how, query results need to be diversified. To this purpose,
we rely on the concept of “query refinement” to estimate
the probability of a query to be ambiguous. Then, relying
on this novel ambiguity detection method, we deploy and
compare on a standard test set, three different diversifica-
tion methods: IASelect, xQuAD, and OptSelect. While the
first two are recent state-of-the-art proposals, the latter is
an original algorithm introduced in this paper. We evalu-
ate both the efficiency and the effectiveness of our approach
against its competitors by using the standard TREC Web
diversification track testbed. Results shown that OptSelect
is able to run two orders of magnitude faster than the two
other state-of-the-art approaches and to obtain comparable
figures in diversification effectiveness.

1. INTRODUCTION
Web Search Engines (WSEs) are nowadays the most pop-

ular mean of interaction with the Web. Users interact with
them by usually typing a few keywords representing their
information need. Queries, however, are often ambiguous
and have more than one possible interpretation [3, 19].

Consider, for example, the popular single-term query “ap-
ple”. It might refer to Apple Corp., to the fruit, or to a
tour operator which is very popular in the US. Without
any further information that may help to disambiguate the
user intent, search engines should produce a set of results
possibly covering all (the majority of) the different inter-
pretations of the query. To help users in finding the right
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information they are looking for, many different interfaces
have been proposed to present search results. The first, and
näıve, solution has been paging the ranked results list. In-
stead of presenting the whole list of results, the search engine
presents results divided in pages (also known with the term
SERP, i.e. Search Engine Result Page) containing ten re-
sults each. Some alternative interfaces have been proposed.
Results clustering approaches, for instance, organize search
results into folders that group similar items together [28, 9].
On the other side of the same coin, results diversification [1]
follows an intermediate approach that aims at “packing” the
highest possible number of diverse, relevant results within
the first SERP.

Given that web search engines’ mission of satisfying their
users is of paramount importance, diversification of web
search results is a hot research topic nowadays. Never-
theless, the majority of research efforts have been put on
studying effective diversification methods able to satisfy web
users. In this paper we take a different turn and consider
the problem from the efficiency perspective. As Google’s
co-founder Larry Page declares1: “Speed is a major search
priority, which is why in general we do not turn on new
features if they will slow our services down.” This pa-
per, which extends a preliminary short version presented at
WWW 2011 [16] is, to the best of our knowledge, the first
work discussing efficiency in SERP diversification. The ap-
proach we follow to achieve an efficient and viable solution
is based on analyzing query log information to infer knowl-
edge about when diversification actions have to be taken,
and what users expectations are. Indeed, the original con-
tributions presented are several:

• We define a methodology for detecting when, and how,
query results need to be diversified. We rely on the
well-known concept of query refinement to estimate
the probability of a query to be ambiguous. In ad-
dition, we show how to derive the most likely refine-
ments, and how to use them to diversify the results.

• We define a novel utility measure to evaluate how use-
ful is a result for a diversified result list.

• We propose OptSelect, an original algorithm allowing
the diversification task to be accomplished effectively
and very efficiently.

1
http://www.google.com/corporate/tech.html
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• Relying on our diversification framework, we deploy
OptSelect and two other recent state-of-the-art diver-
sification methods in order to evaluate on the standard
TREC Web diversification track testbed both the ef-
ficiency and the effectiveness of our approach against
its competitors.

The paper is organized as follows: Section 2 discusses re-
lated works. Section 3 presents a formalization of the prob-
lem, the specialization extraction method, and the algorithm
we propose. Section 4 shows the efficiency of our solutions.
Section 5 discusses some experimental results. In Section 6
we present our conclusions and we outline possible future
work.

2. RELATED WORK
Result diversification has recently attracted a lot of inter-

est. A very important pioneering work on diversification is
[8]. In this paper, the authors present the Maximal Marginal
Relevance (MMR) problem, and they show how a trade-off
between novelty and relevance of search results can be made
explicit through the use of two different functions, the first
measuring the similarity among documents, and the other
the similarity between documents and the query.

Zhai et al. [31] stated that in general it is not sufficient
to return a set of relevant results as the correlation among
the returned results is also very important. In a later work,
Zhai et al. [30] formalize and propose a risk minimization
approach that allow an arbitrary loss function over a set of
returned documents to be defined. Loss functions aim at
determining the dissatisfaction of the user with respect to
a particular set of results. Such loss function depends on
the language models rather than on categorical information
about two documents [29].

Diversification has also been studied for purposes different
from search engine result diversification. Ziegler et al. [32]
study the diversification problem from a “recommendation”
point of view. Radlinski et al. [20] propose a learning al-
gorithm to compute an ordering of search results from a
diverse set of orderings. Vee et al. [27] study the diversifi-
cation problem in the context of structured databases with
applications to online shopping. Clarke et al. [11] study di-
versification in question answering.

Agrawal et al. [1] present a systematic approach to diver-
sify results that aims to minimize the risk of dissatisfaction
of the web search engine users. Furthermore, authors gener-
alize some classical IR metrics, including NDCG, MRR, and
MAP, to explicitly account for the value of diversification.
They show empirically that their algorithm scores higher in
these generalized metrics compared to results produced by
commercial search engines.

Gollapudi et al. [13] use the axiomatic approach to char-
acterize and design diversification systems. They develop
a set of axioms that a diversification system is expected to
satisfy, and show that no diversification function can satisfy
all these axioms simultaneously. Finally, they propose an
evaluation methodology to characterize the objectives and
the underlying axioms. They conduct a large scale evalua-
tion based on data derived from Wikipedia and a product
database.

Rafiei et al. [22] model the diversity problem as expec-
tation maximization and study the challenges of estimating
the model parameters and reaching an equilibrium. One

model parameter, for example, is the correlation between
pages which authors estimate using textual contents of pages
and click data (when available). They conduct experiments
on diversifying randomly selected queries from a query log
and the queries chosen from the disambiguation topics of
Wikipedia.

Clough et al. [12] examine user queries with respect to
diversity. They analyze 14.9 million queries from the MSN
query log by using two query log analysis techniques (click
entropy and reformulated queries). Authors found that a
broad range of query types may benefit from diversification.
They also found that, although there is a correlation be-
tween word ambiguity and the need for diversity, the range
of results users may wish to see for an ambiguous query
stretches well beyond traditional notions of word sense.

Santos et al. [25, 24, 26] introduce a novel probabilistic
framework (xQuAD) for Web search result diversification,
which explicitly accounts for the various aspects associated
to an underspecified query. In particular, they diversify a
document ranking by estimating how well a given document
satisfies each uncovered aspect and the extent to which dif-
ferent aspects are satisfied by the ranking as a whole. Au-
thors evaluate the xQuAD framework in the context of the
diversity task of the TREC 2009 Web track. They exploit
query reformulations provided by three major WSEs to un-
cover different query aspects.

Similarly to [24], we exploit related queries as a mean
of achieving diversification of query results. Nevertheless,
our approach is very different from the above two. In [24],
the authors exploit query reformulations provided by com-
mercial Web search engines. All these reformulations are
then taken into account during query processing in order
to achieve a result set covering all the facets. In our case,
the different meanings and facets of queries are instead dis-
closed by analyzing user behaviors recorded in query logs.
During the analysis also the popularity of the different spe-
cializations is derived. Popularity distribution is then used
to maximize the “usefulness” of the final set of documents
returned. An approach orthogonal to our is instead investi-
gated by Radlinski and Dumais in [19], where the problem
of generating queries that can yield to a more diverse results
set is studied starting from the observation that the top-k
results retrieved for a query might not contain representative
documents for all of its interpretations.

3. DIVERSIFYING USING QUERY LOG
Users generally query a search engine by submitting a

sequence of requests. Splitting the chronologically ordered
sequence of queries submitted by a given user into sessions,
is a challenging research topic [18, 4, 15]. Since our ap-
proach exploits user session information, but session split-
ting methodologies are out of the scope of this paper, we
resort to adopt a state-of-the-art technique based on Query-
Flow Graph [5, 6]. It consists of building a Markov Chain
model of the query log and subsequently finding paths in
the graph which are more likely to be followed by random
surfers. As a result, by processing a query log Q we obtain
the set of logical user sessions exploited by our result diver-
sification solution. Both the query topics possibly benefiting
from diversification, and the probability of each distinct spe-
cialization among the spectrum of possibilities, are in fact
mined from logs storing historical information about the in-
teraction of users with the WSE.
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As an example, let us assume that in a given query log
the queries leopard mac OS X, leopard tank, and leopard
pictures, are three specializations of query leopard that com-
monly occur in logical query sessions. The presence of the
same query refinements in several sessions issued by different
users gives us evidence that a query is ambiguous, while the
relative popularity of its specializations allow us to compute
the probabilities of the different meanings. On the basis of
this information learned from historical data, once a query
q is encountered by the WSE, we: (a) check if q is ambigu-
ous or faceted, and if so, (b) exploit the knowledge about
the different specializations of q submitted in the past to
retrieve documents relevant for all of them. Finally, (c) use
the relative frequencies of these specializations to build a
final result set that maximize the probability of satisfying
the user. In the following, we describe more precisely how
ambiguous/faceted queries are detected and managed.

3.1 Mining Specializations from Query Logs
We assume that a query log Q is composed by a set of

records 〈qi, ui, ti, Vi, Ci〉 storing, for each submitted query
qi: (i) the anonymized user ui; (ii) the timestamp ti at
which ui issued qi; (iii) the set Vi of URLs of documents
returned as top-k results of the query, and, (iv), the set Ci

of URLs corresponding to results clicked by ui. Let q and q′

be two queries submitted by the same user during the same
logical session recorded in Q. We adopt the terminology pro-
posed in [6], and we say that a query q′ is a “specialization”
of q if the user information need is stated more precisely in
q′ than in q (i.e., q′ is more specific than q). Let us call Sq

the set of specializations of an ambiguous/faceted query q
mined from the query log.

Given the above generic definition, any algorithm that
exploits the knowledge present in query log sessions to pro-
vide users with useful suggestions of related queries, can be
easily adapted to the purpose of devising specializations of
submitted queries. Given the popularity function f() that
computes the frequency of a query topic in Q, and a query
recommendation algorithm A trained with Q, Algorithm 1
can be used to detect efficiently and effectively queries that
can benefit from result diversification, and to compute for
them the set of most common specializations along with
their probabilities.

Algorithm 1 AmbiguousQueryDetect(q,A, f(), s)

/* given the submitted query q, a query recommendation algorithm

A, and an integer s compute the set Ŝq ⊆ Q of possible specializa-
tions of q */

1. Ŝq ← A(q);

/* select from Ŝq the most popular specializations */

2. Sq ← {q′ ∈ Ŝq |f(q′) ≥ f(q)
s
};

3. If |Sq | ≥ 2 Then Return (Sq); Else Return (∅);

In this work, we experimented the use of a very efficient
query recommendation algorithm [7] for computing the pos-
sible specializations of queries. The algorithm used learns
the suggestion model from the query log, and returns as re-
lated specializations, only queries that are present in Q, and
for which related probabilities can be, thus, easily computed.
Note that any other approach for deriving user intents from
query logs, (as an example, [21, 23]), could be used and
easily integrated in our diversification framework.

Definition 1 (Probability of Specialization). Let

Q̂ = {q ∈ Q, s.t. |Sq| > 1} be the set of ambiguous queries

in Q, and P (q′|q) the probability for q ∈ Q̂ to be specialized
from q′ ∈ Sq.

We assume that the distribution underlying the possible
specialization of an ambiguous query is known and complete,

i.e.,
∑

q′∈Sq
P (q′|q) = 1, and P (q′|q) = 0, ∀q′ /∈ Sq, ∀q ∈ Q̂.

To our purposes these probability distributions are simply
estimated by dividing the frequency returned by Algorithm 1
using the following formula:

P (q′|q) = f(q′)/
∑

q′∈Sq

f(q′)

Obviously, query logs can not give the complete knowledge
about all the possible specializations for a given ambiguous
query, but we can expect that the most popular interpreta-
tions are present in a large query log covering a long time
period. Now, let us give some additional assumptions and
notations.
D is the collection of documents indexed by the search

engine which returns, for each submitted query q, an ordered
list Rq of documents. The rank of document d ∈ D within
Rq is indicated with rank(d,Rq).

Moreover, let d1 and d2 be two documents of D, and δ :
D ×D → [0,1] a distance function having the non-negative,
and symmetric properties, i.e. (i) δ(d1, d2) = 0 iff d1 = d2,
and (ii) δ(d1, d2) = δ(d2, d1).

Definition 2 (Results’ Utility). The utility of a re-
sult d ∈ Rq for a specialization q′ is defined as:

U(d|Rq′) =
∑

d′∈Rq′

1− δ(d, d′)
rank(d′, Rq′)

. (1)

where Rq′ is the list of results that the search engine returned
for specialized query q′.

Such utility represents how good d ∈ Rq is for satisfying
a user intent that is better represented by specialization q′.
The intuition for U is that a result d ∈ Rq is more useful for
specialization q′ if it is very similar to a highly ranked item
contained in the results list Rq′ .

The utility function specified in Equation (1) uses the fol-
lowing function to measure the distance between two docu-
ments:

δ(d1, d2) = 1− cosine(d1, d2) (2)

where cosine(d1, d2) is the cosine similarity between the two
documents.

In the methods presented in the following, we use a nor-

malized version of results’ utility, Ũ (d|Rq′), which is defined
as the normalization of U (d|Rq′) in the [0, 1] interval. The
normalization factor is computed by assuming that, in the
optimal case, result d is at distance δ(d, ·) = 0. In this case,
the utility function is equal to

∑
d′∈Rq′

1

rank(d′, Rq′)
=

|Rq′ |∑
i=1

1

i
= H|Rq′ |

where H|Rq′ | is the |Rq′ |-th harmonic number. Therefore,

Ũ (d|Rq′) =
U (d|Rq′)

H|Rq′ |
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Using the above definitions, we can now define three dif-
ferent query-logs-based approaches to diversification. The
first two methods are adaptations of the Agrawal et al. [1]
algorithm, and the Santos’s et al. xQuAD framework [24].
The last one refers to our novel formulation detailed in Sec-
tion 3.1.3.

3.1.1 The QL Diversify(k) Problem
In a recent paper, Agrawal et al. [1] defined the Diver-

sify(k) problem, a covering-like problem aimed to include
the maximum number of possible “categories” into the list
of k results that are returned in response to a user’s query.

We briefly recall the definition of the problem, as stated
in the original paper [1]:

Diversify(k): Given query q, a set of documents Rq,
a probability distribution of categories for the query
P (c|q), the quality values of the documents V (d|q, c),
∀d ∈ D and an integer k. Find a set of documents S ⊆ Rq

with |S| = k that maximizes

P (S|q) =
∑
c

P (c|q)

(
1−

∏
d∈S

(1− V (d|q, c))

)
(3)

Equation (3) uses two concepts similar to those we have
already introduced: the probability of a query to be part
of a category is very similar to our concept of probability of
specialization (see Definition 1), while quality value V (d|q, c)
resembles Ũ(d|Rq′).

It is possible to see the set of possible specializations Sq as
the set of possible categories for q mined from a query log.
The utility, in this case, can be seen as the utility of selecting
resulting document d for category/specialization q′. Thus,
the problem becomes choosing a subset S of Rq with |S| = k
that maximizes:

P (S|q) =
∑

q′∈Sq

P
(
q′|q
)(

1−
∏
d∈S

(
1− Ũ (d|Rq′)

))
(4)

We call this problem QL Diversify(k) to differentiate it
from the original Agrawal et al. formulation [1].

3.1.2 The xQuAD Diversify(k) Problem
In [24], Santos et al. propose a probabilistic framework

called xQuAD. Compared to [1], the proposed framework
extends the measure with which documents produced for
ambiguous query q are iteratively selected. To this aim,
xQuAD evaluates also the initial ranking of such documents
for q. Formally, the problem is the following:

xQuAD Diversify(k): Given a query q, a set of ranked
documents Rq retrieved for q, a mixing parameter λ ∈
[0, 1], two probability distributions P (d|q) and P (d, S̄|q)
measuring, respectively, the likelihood of document d be-
ing observed given q, and the likelihood of observing d
but not the documents in the solution S. Find a set of
documents S ⊆ Rq with |S| = k that maximizes for each
d ∈ S

(1− λ) · P (d|q) + λ · P (d, S̄|q) (5)

xQuAD is a greedy algorithm that iteratively selects a
new document, and pushes it into the current solution. The
selection process consists in choosing each time the docu-
ment d∗ ∈ S̄ = R \ S that maximizes Equation (5). Such
formula combines two probabilities: the first evaluates the
relevance of a document d as the expectation for d to be
observed given the query q, namely P (d|q). The second
probability measures the diversity of a candidate document
d as the product of two components (see Equation (6)). The
first component is, thus, the relevance of d with respect to
a set of specializations Sq, and it is obtained by multiply-
ing the likelihood of a specialization q′ by the likelihood of
d considering a particular specialization q′. Furthermore,
the second component estimates the coverage degree of the
current solution S with respect to each specialization q′.

P (d, S̄|q) =
∑

q′∈Sq

[
P (q′|q)P (d|q′)

∏
dj∈S

1− P (dj |q′)
]

(6)

As for the Agrawal’s formulation, P (dj |q′) can be seen as
the utility of selecting resulting document dj for specializa-

tion q′. Thus, we measure P (dj |q′) using Ũ (d|Rq′). Simi-
larly to [1], at each step, the algorithm updates the coverage
degree of solution S for each candidate document, then it
scans R \ S in order to choose the best document.

3.1.3 The MaxUtility Diversify(k) Problem
The problem addressed in the Agrawal’s paper, is actually

the maximization of the weighted coverage of the categories
with pertinent results. The objective function does not con-
sider directly the number of categories covered by the result
set; it might be the case that even if the categories are less
than |Sq|, some of these will not be covered by the results set.
This may happen because the objective function considers
explicitly how much a document satisfies a given category.
Hence, if a category that is a dominant interpretation of the
query q is not covered adequately, more documents related
to such category will be selected, possibly at the expense of
other categories.

We believe, instead, that it is possible to maximize the
sum of the various utilities for the chosen subset S of doc-
uments by guaranteeing that query specializations are cov-
ered proportionally to the associated probabilities P (q′|q).
Motivated by the above observation, we define the following
problem.

MaxUtility Diversify(k): Given a query q, the set Rq

of results for q, two probability distributions P (d|q) and
P (q′|q)∀q′ ∈ Sq measuring, respectively, the likelihood
of document d being observed given q, and the likelihood

of having q′ as a specialization of q, the utilities Ũ(d|Rq′)
of documents, a mixing parameter λ ∈ [0, 1], and an
integer k. Find a set of documents S ⊆ Rq with |S| = k
that maximizes

Ũ (S|q) =
∑
d∈S

∑
q′∈Sq

(1− λ)P (d|q) + λP
(
q′|q
)
Ũ (d|Rq′)

(7)
with the constraints that every specialization is covered
proportionally to its probability. Formally, let Rq ./ q

′ =
{d ∈ Rq|U (d|Rq′) > 0}. We require that for each q′ ∈ Sq,
|Rq ./ q

′| ≥ bk · P (q′|q)c.
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Our technique aims at selecting from Rq the k results
that maximize the overall utility of the list of results. When
|Sq| ≤ k the results are in someway split into |Sq| subsets
each one covering a distinct specializations. The more pop-
ular a specialization, the greater the number of results rel-
evant for it. Obviously, if |Sq| > k we select from Sq the k
specializations with the largest probabilities.

4. EFFICIENCY EVALUATION
Efficiency of diversification algorithms is an important is-

sue to study. Even the best diversification algorithm can
be useless if its high computational cost forbids its actual
use in a real-world IR system. In the following discus-
sion, IASelect is the greedy algorithm used to approximate
QL Diversify(k), xQuAD refers to the greedy algorithm
used to approximate xQuAD Diversify(k), and eventually
OptSelect is our algorithm solving the MaxUtility Diver-
sify(k) problem. We consider diversification to be done on
a set of |Rq| = n results returned by the baseline retrieval
algorithm. Furthermore, we consider |Sq|, i.e. the number
of specifications for a query q to be a constant (indeed, it is
usually a small value depending on q).

IASelect. As shown by Agrawal et al. the Diversify(k)
problem, and thus also the QL Diversify(k) problem, is
NP-Hard. Since the problem’s objective function is sub-
modular, an opportune greedy algorithm yields to a solu-
tion whose value is smaller than (1− 1/e) times the optimal
one [17]. The greedy algorithm consists in adding to the
results set the documents giving the largest marginal in-
crease to the objective function. Since there is an insertion
operation for each result needed in the final result set, the
algorithm performs k insertions. For each insertion the algo-
rithm searches for the document with the largest marginal
utility that has not yet been selected. Since marginal utility
is computed for each candidate document in terms of the
current solution and each specialization, its value must be
updated at each insertion. Hence, the computational cost
of the procedure is linear in the number of categories/spe-
cializations multiplied by the number n of candidate docu-
ments. Thus, the solution proposed has a cost CI (n, k) =∑k

i=1[ |Sq| · (n− i) ] = k|Sq|
(
n− k+1

2

)
= O (nk).

xQuAD. It is a greedy algorithm that iteratively selects a
new document, and pushes it into the current solution. The
selection process consists in choosing each time the docu-
ment d∗ ∈ R \ S that maximizes Equation (5). As specified
in Section 3.1.2, such formula combines the probability for a
document d of being relevant for a query q, i.e., P (d|q) and
the diversity of a candidate document d, respectively.

Similarly to the solution proposed in [1], at each step, the
algorithm updates the coverage degree of solution S for each
candidate document, then it scans R \ S in order to choose
the best document. The procedure is linear in the number
of items in Sq multiplied by the number of documents in
R \ S. Since the selection is performed k times, the final

computational cost is given by CX (n, k) =
∑k

i=1[ |Sq| · (n−
i) ]. As for the Agrawal’s solution, thus, CX (n, k) = O (nk).

Optselect. While QL Diversify(k) aims to maximize the
probability of covering useful categories, the MaxUtility Di-
versify(k) aims to maximize directly the overall utility.
This simple relaxation allows the problem to be simplified
and solved optimally in a very simple and efficient way. Fur-

thermore, the constraints bounding the minimum number of
results tied to a given specialization, boost the quality of the
final diversified result list, ensuring that the covered special-
izations reflect the most popular preferences expressed by
users in the past.

Another important difference between Equation (7) and
Equation (4) is that the latter needs to select, in advance,
the subset S of documents before computing the final score.
In our case, instead, a simple arithmetic argument shows
that:

Ũ (S|q) =
∑
d∈S

Ũ (d|q) (8)

where Ũ (d|q) is the overall utility of document d for query q.
This value is computed according to the following equation:

Ũ (d|q) =
∑

q′∈Sq

(1− λ)P (d|q) + λP
(
q′|q
)
Ũ (d|Rq′) (9)

By combining (8), and (9) we obtain:

Ũ (S|q) = (1− λ)|Sq|
∑
d∈S

P (d|q) +

+ λ
∑

q′∈Sq

P
(
q′|q
)∑
d∈S

Ũ (d|Rq′)

Therefore, to maximize Ũ (S|q) we simply resort to com-
pute for each d ∈ Rq: i) the relevance of d for the query q,
ii) the utility of d for specializations q′ ∈ Sq and, then, to
select the top-k highest ranked documents. Obviously, we
have to carefully select results to be included in the final list
in order to avoid choosing results that are relevant only for
a single specialization. For this reason we use a collection
of |Sq| heaps each of those keeps the top bk · P (q′|q)c + 1
most useful documents for that specialization. Algorithm 2
in Appendix A returns the set S maximizing the objective
function in Equation (7). Moreover, the running time of
the algorithm is linear in the size of the documents consid-
ered. Indeed, all the heap operations are carried out on data
structures having a constant size bounded by k.

Similarly to the other two solutions discussed, the pro-
posed solution is computed by using a greedy algorithm.
OptSelect is however computationally less expensive than
its competitors. The main reason is that for each inserted
element, it does not recompute the marginal utility of the
remaining documents w.r.t. all the specializations. The
main computational cost is given by the procedure which
tries to add elements to each heap related to a specializa-
tion in Sq. Since each heap is of at most k positions, each
insertion has cost log2 k, and globally the algorithm costs
CO(n, k) = n|Sq| log2 k = O (n log2 k).

Table 1 reports and compares the theoretical complexity
of the three considered methods. Our newly proposed Opt-
Select algorithm is faster than the previously proposed ones.

Empirical efficiency evaluation. In addition to the the-
oretical considerations above, we also conducted tests in the
TREC 2009 Web track’s Diversity Task framework to empir-
ically compare the efficiency of the three solutions proposed.
In particular, we measured the time required by OptSelect,
xQuAD and IASelect to diversify the list of retrieved doc-
uments. All the tests were conducted on a Intel Core 2
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Algorithm Complexity

IASelect O (nk)
xQuAD O (nk)
OptSelect O(nlog2k)

Table 1: Time complexity of the three algorithms
considered.

Quad PC with 8Gb of RAM and Ubuntu Linux 9.10 (kernel
2.6.31-22).

Table 2 reports the average time required by the three
algorithms to diversify the initial set of documents for the
50 queries of the TREC 2009 Web Track’s Diversity Task.
We study the performance by varying both the number of
documents which the diversified result set is chosen from
(|Rq|), and the size of the returned list S denoted by k (i.e.
k = |S|). The results show that, for each value of k, the
execution time of all the tested methods is linear by varying
the size of Rq. The only difference among these trends is
in favor of OptSelect which slope is lower than its competi-
tors. By varying, instead, the value of k, the execution times
follow the complexities resumed in Table 1. The most re-
markable result is that, increasing the number of documents
returned, OptSelect outperforms xQuAD and IASelect in all
the conducted tests. In particular, OptSelect is two orders
of magnitude faster than its competitors.

|Rq|
k

10 50 100 500 1000

OptSelect
1,000 0.34 0.58 0.66 0.89 0.98
10,000 1.36 2.13 2.46 3.32 3.57
100,000 4.81 8.32 9.57 12.94 13.92

xQuAD
1,000 0.43 1.64 3.31 14.82 30.18
10,000 3.27 16.69 32.22 148.41 298.63
100,000 36.27 143.67 285.69 1,425.82 2,849.83

IASelect
1,000 0.57 1.68 3.92 20.81 39.82
10,000 4.23 23.03 40.82 203.11 409.43
100,000 48.04 205.46 408.61 2,039.22 4,071.81

Table 2: Execution time (in msec.) of OptSelect,
xQuAD, and IASelect by varying both the size of
the initial set of documents to diversify (|Rq|), and
the size of the diversified result set (k = |S|).

4.1 Feasibility of the Diversification Solution
Something worth to be discussed is the feasibility of our

diversification solution. Differently from other approaches,
our solution does not require any pre-existing taxonomy (or
classification model) built in advance. The only information
we need are: the ambiguous queries, the list of their possible
specializations mined from a long-term query log, the proba-
bilities associated with such specializations, and the sets Rq′

of documents highly relevant for each specialization. It is
worth noting that the number of documents highly relevant
for each specialization that need to be maintained is very
small compared to the set of documents Rq to be re-ranked
on the basis of the specializations, i.e., |Rq′ | � |Rq|. A
back-of-the-envelope computation highlights the small foot-
print of the data structures needed to actually implement

our method. Given the ambiguous query q̂ having the largest
number |Sq̂| of specializations, we have to store |Rq̂ ′ | doc-
uments for each one of the specializations q̂ ′. Let L be the
average length in bytes of these documents. Actually only
short summaries, and not whole documents, can be used
without significative loss in the precision of our method.
Resuming, storing N ambiguous query along with the data
needed to assess the similarity among results lists incurs in
a maximal memory occupancy of N · |Sq̂| · |Rq̂ ′ | · L bytes.

5. TESTING EFFECTIVENESS
We conducted our experiments to measure the effective-

ness of the three methods in the context of the diversity task
of the TREC 2009 Web track [10]. The goal of this task is
to produce a ranking of documents for a given query that
maximizes the coverage of the possible aspects underlying
this query, while reducing its overall redundancy with re-
spect to the covered aspects. In our experiments, we used
ClueWeb-B, the subset of the TREC ClueWeb09 dataset2

and two query logs (AOL and MSN). Both ClueWeb-B and
the two query logs used are described in Appendix B. The
query associated with each topic of the TREC 2009 Web
track was used as initial ambiguous/faceted query.

The two query logs were first preprocessed in order to
devise the logical user sessions as described in Section 3.
Moreover the sessions obtained were used to build the model
for the recommendation algorithm described in [7]. Given a
query q, such algorithm was used to compute efficiently the
set and the associated probabilities of its popular specializa-
tions Sq (see Algorithm 1).

The results obtained for the diversity task of the TREC
2009 Web track are evaluated according to the two official
metrics: α-NDCG and IA-P. The α-normalized discounted
cumulative gain (α-NDCG [11]) metric balances relevance
and diversity through the tuning parameter α. The larger
the value of α, the more diversity is rewarded. In contrast,
when α = 0, only relevance is rewarded, and this metric is
equivalent to the traditional NDCG [14]. Moreover, we used
the intent-aware precision (IA-P [1]) metric, which extends
the traditional notion of precision in order to account for
the possible aspects underlying a query and their relative
importance. In our evaluation, both α-NDCG and IA-P are
reported at five different rank cutoffs: 5, 10, 20, 100, and
1000. While the first four cutoffs focus on the evaluation at
early ranks which are very important in a web context, the
last cutoff gives the value of the two metrics for all the set of
results. Both α-NDCG and IA-P are computed following the
standard practice in the TREC 2009 Web-Track’s Diversity
Task [10]. In particular, α-NDCG is computed with α = 0.5,
in order to give an equal weight to relevance and diversity.

An ad-hoc modified version of the Terrier3 IR platform
was used for both indexing and retrieval. We extended Ter-
rier in order to obtain short summaries of retrieved docu-
ments, which are used as document surrogates in our diver-
sification algorithm. We used Porter’s stemmer and stan-
dard English stopword removal for producing the ClueWeb-
B index. We evaluate the effectiveness of our method in
diversifying the results retrieved using a probabilistic docu-
ment weighting model: DPH Divergence From Randomness
(DFR) model [2].

2
http://boston.lti.cs.cmu.edu/Data/clueweb09/

3
http://www.terrier.org
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Table 3 shows the results of the tests conducted with
the DPH baseline (no diversification), i) our OptSelect, ii)
Agrawal’s IASelect, and iii) the xQuAD framework. We set
|Rq′ | = 20, k = 1000, and |Rq| = 25, 000. Furthermore,
xQuAD and OptSelect use a value for parameter λ equal
to 0.15 (the value maximizing α-NDCG@20 in [24]). We
applied the utility function in (1) to the snippets returned
by the Terrier search engine instead of applying it to the
whole documents, and we forced its returning value to be 0
when it is below a given threshold c. Nine different values of
the utility threshold c were tested. The specializations and
the associated probabilities were obtained in all the cases by
using the previously described approach [7].

The results reported in the Table show that OptSelect and
xQuAD behave similarly, while IASelect performs always
worse. OptSelect shows good performance for small values
of c, in particular for c ∈ {0, 0.05}. For both the two val-
ues of the threshold, OptSelect obtains very good α-NDCG
performance and the best IA-P values. A deeper analysis
of Table 3 shows that OptSelect obtains better results than
the other two methods in terms of IA-P@5 for c = 0.05.
The best α-NDCG performances for OptSelect are instead
obtained for c = 0.20. For this value of the threshold, OptS-
elect shows a good trade-off between α-NDCG and IA-P, in
particular for short results’ lists (@5, @10, @20). However,
none of these differences can be classified as statistically sig-
nificant according to the Wilcoxon signed-rank test at 0.05
level of significance. Increasing the value of the threshold c,
effectiveness starts to degrade. In fact, for c ≥ 0.75 all the
algorithms perform basically as the DPH baseline.

The xQuAD framework obtains good α-NDCG and IA-P
performance for c = 0.05. xQuAD performs well also for
c = 0.20. Note that our formulation of the xQuAD frame-
work performs better than reported in the original paper
by Santos et al. [24]. Essentially, this behavior could be
explained by the following two reasons: i) our method for
measuring the “diversity” of a document based on Equa-
tion (1) is superior to the one used in [24], ii) our method
for deriving specializations, and their associated probabil-
ities is able to carry out more accurate results. We leave
this analysis to a future work. By comparing OptSelect
(c = 0.20) and xQuAD (c = 0.05), we highlight better per-
formances for OptSelect in terms of IA-P@5, and IA-P@20,
while the xQuAD framework slightly outperforms OptSelect
for α-NDCG, with an exception for α-NDCG@5 where the
two methods behave similarly.

Agrawal’s IASelect shows its best performances when the
threshold c is not used. However, it never outperforms Opt-
Select and xQuAD. Both α-NDCG and IA-P values improve
over the DPH baseline but are always remarkably lower than
the best values obtained using OptSelect and QuAD.

6. CONCLUSIONS AND FUTURE WORK
We studied the problem of diversifying search results by

exploiting the knowledge derived from query logs. We pre-
sented a general framework for query result diversification
comprising: (i) an efficient and effective methodology, based
on state-of-the-art query recommendation algorithms, to de-
tect ambiguous queries that would benefit from diversifica-
tion, and to devise all the possible common specializations
to be included in the diversified list of results along with
their probability distribution; (ii) OptSelect: a new diversi-
fication algorithm which re-ranks the original results list on

the basis of the mined specializations.
A novel formulation of the problem has been proposed

and motivated. It allows the diversification problem to be
modeled as a maximization problem. The approach is eval-
uated by using the metrics and the datasets provided for
the TREC 2009 Web Track’s Diversity Task. Our experi-
mental results show that our approach is both efficient and
effective. In terms of efficiency, our approach performs two
orders of magnitude faster than its competitors and it re-
markably outperforms its competitors in all the tests.

In terms of effectiveness, our approach outperforms the
Agrawal’s IASelect, and it shows the best results in terms of
IA-P [1]. It produces also results that are comparable with
the xQuAD framework in terms of α-NDCG [11].

Future work will regard: i) the exploitation of users’ search
history for personalizing result diversification, ii) the use of
click-through data to improve our effectiveness results, and
iii) the study of a search architecture performing the diver-
sification task in parallel with the document scoring phase.
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A. Ashkan, S. Büttcher, and I. MacKinnon. Novelty and
diversity in information retrieval evaluation. In Proc.
SIGIR’08, pages 659–666. ACM, 2008.

[12] P. Clough, M. Sanderson, M. Abouammoh, S. Navarro, and
M. Paramita. Multiple approaches to analysing query
diversity. In Proc SIGIR’09, pages 734–735. ACM, 2009.

[13] S. Gollapudi and A. Sharma. An axiomatic approach for
result diversification. In Proc. WWW’09, pages 381–390.
ACM, 2009.

457



c
α-NDCG IA-P

@5 @10 @20 @100 @1000 @5 @10 @20 @100 @1000

DPH Baseline - 0.190 0.212 0.240 0.303 0.303 0.092 0.093 0.088 0.058 0.006

OptSelect

0 0.213 0.227 0.255 0.318 0.352 0.111 0.100 0.092 0.061 0.012
0.05 0.213 0.228 0.256 0.319 0.352 0.112 0.101 0.091 0.061 0.012
0.10 0.195 0.220 0.246 0.312 0.343 0.102 0.097 0.090 0.062 0.012
0.15 0.190 0.216 0.246 0.305 0.341 0.101 0.098 0.090 0.061 0.012
0.20 0.214 0.241 0.262 0.324 0.359 0.110 0.101 0.090 0.060 0.012
0.25 0.190 0.213 0.238 0.305 0.339 0.095 0.098 0.087 0.058 0.012
0.35 0.186 0.206 0.235 0.302 0.335 0.089 0.090 0.086 0.058 0.012
0.50 0.186 0.208 0.236 0.300 0.334 0.091 0.091 0.087 0.058 0.012
0.75 0.190 0.212 0.240 0.303 0.337 0.092 0.093 0.088 0.058 0.012

xQuAD

0 0.211 0.241 0.260 0.320 0.354 0.103 0.102 0.090 0.058 0.012
0.05 0.214 0.242 0.260 0.323 0.355 0.108 0.103 0.089 0.058 0.012
0.10 0.193 0.226 0.249 0.308 0.341 0.101 0.101 0.090 0.058 0.012
0.15 0.200 0.227 0.253 0.315 0.348 0.099 0.095 0.087 0.058 0.012
0.20 0.204 0.234 0.262 0.321 0.354 0.096 0.099 0.087 0.058 0.012
0.25 0.181 0.211 0.236 0.303 0.336 0.090 0.095 0.085 0.058 0.012
0.35 0.185 0.209 0.239 0.302 0.335 0.091 0.092 0.088 0.058 0.012
0.50 0.190 0.212 0.240 0.303 0.336 0.092 0.093 0.087 0.058 0.012
0.75 0.190 0.212 0.240 0.303 0.337 0.092 0.093 0.088 0.058 0.012

IASelect

0 0.206 0.215 0.245 0.302 0.334 0.097 0.089 0.079 0.044 0.009
0.05 0.205 0.214 0.243 0.299 0.330 0.098 0.090 0.078 0.044 0.009
0.10 0.193 0.200 0.227 0.279 0.309 0.098 0.088 0.075 0.039 0.008
0.15 0.169 0.185 0.207 0.259 0.288 0.089 0.078 0.064 0.039 0.008
0.20 0.182 0.197 0.229 0.284 0.314 0.085 0.074 0.067 0.046 0.009
0.25 0.198 0.214 0.243 0.301 0.332 0.092 0.083 0.076 0.052 0.011
0.35 0.192 0.208 0.241 0.299 0.332 0.095 0.093 0.087 0.057 0.012
0.50 0.192 0.214 0.243 0.306 0.338 0.093 0.091 0.087 0.058 0.012
0.75 0.190 0.212 0.240 0.303 0.337 0.092 0.093 0.088 0.058 0.012

Table 3: Values of α-NDCG, and IA-P for OptSelect, xQuAD, and IASelect by varying the threshold c.

[14] K. Järvelin and J. Kekäläinen. Cumulated gain-based
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APPENDIX
A. OPTSELECT ALGORITHM

The pseudocode of Algorithm 2 describes the steps for
solving the MaxUtility Diversify(k) problem.

Algorithm 2 OptSelect (q, Sq, Rq, k)

01. S ← ∅;
/* Heap(n) instantiates a new n-size heap */
02. M ← new Heap(k);
03. For Each q′ ∈ Sq Do
04. Mq′ ← new Heap(bk · P (q′|q)c+ 1);
05. For Each d ∈ Rq Do

06. If Ũ(d|Rq′ ) > 0 Then Mq′ .push(d); Else M.push(d);

07. For Each q′ ∈ Sq s.t. Mq′ 6= ∅ Do

08. x← pop d with the max Ũ(d|q) from Mq′ ;
09. S ← S ∪ {x};
10. While |S| < k Do

11. x← pop d with the max Ũ(d|q) from M ;
12. S ← S ∪ {x};
13. Return (S);

B. DATASETS USED
To assess effectiveness we have followed the guidelines of

the Diversity Task of TREC. We have used the ClueWeb-B
dataset, i.e. the subset of the TREC ClueWeb09 dataset4

collection used in the TREC 2009 Web track’s Diversity
Task, comprising a total of 50 million English Web docu-
ments. A total of 50 topics were available for this task. Each
topic includes from 3 to 8 sub-topics manually identified
by TREC assessors, with relevance judgements provided at
subtopic level. As an example the first TREC topic is identi-
fied by the query obama family tree, and three subtopics are
provided: i) Find the TIME magazine photo essay “Barack
Obama’s Family Tree”, ii) Where did Barack Obama’s par-
ents and grandparents come from?, and iii) Find biographical
information on Barack Obama’s mother.

The two query logs used are AOL and MSN. The AOL
data-set contains about 20 millions of queries issued by about
650, 000 different users. The queries were submitted to the
AOL search portal over a period of three months from 1st
March, 2006 to 31st May, 2006. The MSN Search query log
contains 15 millions of queries submitted to the MSN US
search portal over a period of one month in 2006. Queries
are mostly in English. Both query logs come with all the
information needed to address the diversification problem
according to our approach.

C. EVALUATION BASED ON QUERY LOG
DATA

The second evaluation we propose exploits the user ses-
sions and the query specializations coming from the query
logs of two commercial search engines. The aim of this eval-
uation is to show the importance of having a good diversifi-
cation method based on real users’ interests.

The two query logs were split into two different subsets.
The first one (containing approximatively the 70% of the
queries) was used for training (i.e., to build the data struc-
tures described in the previous section), and the second one
for testing. For any ambiguous query q obtained by applying
4
http://boston.lti.cs.cmu.edu/Data/clueweb09/

the Algorithm 1 to the test set of each query log, we first sub-
mitted the query to the Yahoo! BOSS search engine, then
we re-ranked the results list by means of the Algorithm 2 to
obtain the corresponding diversified list of results. Finally,
we compared the two lists obtained by means of the utility
function as in Definition 2. The goal is to show that our
diversification technique can provide users with a list of k
documents having a utility greater than the top-k results
returned by the Yahoo! BOSS Search Engine.

To assess the impact of our diversification strategy on the
utility of the diversified results list, we computed the ratio
between the normalized utilities of the results in S and the
top-k results in Rq, i.e., the diversified and the original one.
More formally, we computed∑k

i=1 Ũ(di ∈ S)∑k
i=1 Ũ(di ∈ Rq)

where S is the diversified list produced by OptSelect, whereas
Rq is the original list of results obtained from Yahoo! BOSS.
It is clear that if the two lists share all the results, the ratio
is equal to 1.

In our tests, we set the number of results retrieved from
Yahoo! BOSS (|Rq|) equal to 200, while both |Rq′ | and k
equal to 20.
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Figure 1: Average utility per number of specializa-
tions referring to the AOL and MSN query logs.

Figure 1 shows the average utility per number of special-
izations for the two query logs considered in our experi-
ments. In all cases taken into account, our method diversi-
fies the final list by improving the usefulness measure for a
factor ranging from 5 to 10 with respect to the usefulness of
the original result set.

Furthermore, we measured the number of times our method
is able to provide diversified results when they are actually
needed, i.e., a sort of recall measure. This was done by
considering the number of times a user, after submitting an
ambiguous/faceted query, issued a new query that is a spe-
cialization of the previous one. In both cases we are able to
provide diversified results for a large fraction of the queries.
Concerning AOL, we are able to diversify results for the 61%
of the cases, whereas for MSN this recall measure raises up
to 65%.
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