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ABSTRACT
With the recent surge of social networks such as Facebook,
new forms of recommendations have become possible – rec-
ommendations that rely on one’s social connections in or-
der to make personalized recommendations of ads, content,
products, and people. Since recommendations may use sen-
sitive information, it is speculated that these recommenda-
tions are associated with privacy risks. The main contribu-
tion of this work is in formalizing trade-offs between accu-
racy and privacy of personalized social recommendations.

We study whether “social recommendations”, or recom-
mendations that are solely based on a user’s social network,
can be made without disclosing sensitive links in the so-
cial graph. More precisely, we quantify the loss in utility
when existing recommendation algorithms are modified to
satisfy a strong notion of privacy, called differential privacy.
We prove lower bounds on the minimum loss in utility for
any recommendation algorithm that is differentially private.
We then adapt two privacy preserving algorithms from the
differential privacy literature to the problem of social recom-
mendations, and analyze their performance in comparison to
our lower bounds, both analytically and experimentally. We
show that good private social recommendations are feasible
only for a small subset of the users in the social network or
for a lenient setting of privacy parameters.

1. INTRODUCTION
Making recommendations or suggestions to users in or-

der to increase their degree of engagement is a common
practice for websites. For instance, YouTube recommends
videos, Amazon suggests products, and Netflix recommends
movies, in each case with the goal of making as relevant a
recommendation to the user as possible. The phenomenal
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participation of users in social networks such as Facebook,
MySpace, and LinkedIn, has given tremendous hope for de-
signing a new type of user experience, the social one. The
feasibility of social recommendations has been fueled by ini-
tiatives such as Facebook’s Open Graph API and Google’s
Social Graph API, that explicitly create an underlying graph
where people, events, movies, etc., are uniformly represented
as nodes, and connections, such as friendship relationships,
event participation, interest in a book or a movie, are repre-
sented as edges between those nodes. The connections can
be established through friendship requests, event RSVPs,
and social plug-ins1, such as the “Like” button.

Recommendations based on social connections are espe-
cially crucial for engaging users who have seen very few
movies, bought only a couple of products, or never clicked
on ads. While traditional recommender systems default
to generic recommendations, a social-network aware sys-
tem can provide recommendations based on active friends.
There has been much research and industrial activity to
solve two problems: (a) recommending content, products,
ads not only based on the individual’s prior history but also
based on the likes and dislikes of those the individual trusts
[2, 15], and (b) recommending others whom the individual
might trust [11]. In this work, we focus on recommenda-
tion algorithms based exclusively on graph link-analysis, i.e.
algorithms that rely on underlying connections between peo-
ple, and other entities, rather than their individual features.

Improved social recommendations come at a cost – they
can potentially lead to a privacy breach by revealing sensi-
tive information. For instance, if you only have one friend, a
social recommendation algorithm that recommends to you
only the products that your friends buy, would reveal the
entire shopping history of that friend - information that he
probably did not mean to share. Moreover, a system that
uses only trusted edges in friend suggestions may leak infor-
mation about lack of trust along specific edges, which would
also constitute a privacy breach.

In this paper, we present the first theoretical study of the
privacy-utility trade-offs in personalized graph link-analysis
based social recommender systems. There are many differ-
ent settings in which social recommendations may be used
(friend, product, interest recommendations, or trust propa-
gation), each having a slightly different formulation of the
privacy concerns (the sensitive information is different in
each case). However, all these problems have a common
structure – recommendations are made based on a social
graph (consisting of people and other entities), where some

1http://developers.facebook.com/plugins
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subset of edges are sensitive. For clarity of exposition, we
ignore scenario specific constraints, and focus on a generic
model. Our results on privacy-utility trade-offs are simple
and not unexpected. The main contributions are intuitive
and precise trade-off results between privacy and utility for
a clear formal model of personalized social recommenda-
tions, emphasizing impossibility of social recommendation
algorithms that are both accurate and private for all users.

Our Contributions. We consider a graph where all
edges are sensitive, and an algorithm that recommends a
single node v to some target node u. We assume that the
algorithm is based on a utility function (satisfying certain
natural properties (Section 4.1)) that encodes the “good-
ness” of recommending each node in the graph to this tar-
get node. We focus on graph link-analysis recommenders;
hence, the utility function must only be a function of the
nodes and edges in the graph. Suggestions for graph link-
analysis based utility functions include number of common
neighbors, number of weighted paths, and PageRank distri-
butions [12, 14]. We consider an attacker who wishes to de-
duce the existence of a single edge (x, y) in the graph with
n nodes by passively observing a recommendation (v, u).
We measure the privacy of the algorithm using ε-differential
privacy - requiring the ratio of the likelihoods of the algo-
rithm recommending (v, u) on the graphs with, and without,
the edge (x, y), respectively, to be bounded by eε. We de-
fine accuracy of a recommendation algorithm R as the ratio
between R’s expected utility to the utility achieved by an
optimal (non-private) recommender. In this setting:

• We present and quantify a trade-off between accuracy and
privacy of any social recommendation algorithm that is
based on any general utility function. This trade-off shows
a lower bound on the privacy parameter ε that must be
incurred by an algorithm that wishes to guarantee any
constant-factor approximation of the maximum possible
utility. (Section 4.2)

• We present stronger lower bounds on privacy and the
corresponding upper bounds on accuracy for algorithms
based on two particular utility functions previously sug-
gested for social recommendations – number of common
neighbors and weighted paths [11, 12, 14]. If privacy is
to be preserved when using the common neighbors utility
function, only nodes with Ω(logn) neighbors can hope to
receive accurate recommendations. (Section 5)

• We adapt two well-known privacy-preserving algorithms
from the differential privacy literature for the problem of
social recommendations. The first (Laplace), is based on
adding random noise drawn from a Laplace distribution
to the utility vector [8] and then recommending the high-
est utility node. The second (Exponential), is based on
exponential smoothing [19]. (Section 6)

• We perform experiments on two real graphs using several
utility functions. The experiments compare the accuracy
of Laplace and Exponential mechanisms, and the upper
bound on achievable accuracy for a given level of privacy,
as per our proof. Our experiments suggest three take-
aways: (i) For most nodes, the lower bounds imply harsh
trade-offs between privacy and accuracy when making so-
cial recommendations; (ii) The more natural Laplace al-
gorithm performs as well as Exponential; and (iii) For a
large fraction of nodes, the gap between accuracy achieved
by Laplace and Exponential mechanisms and our theoret-

ical bound is not significant. (Section 7)

• We briefly consider the setting when an algorithm may
not know (or be able to compute efficiently) the entire
utility vector, and propose and analyze a sampling based
linear smoothing algorithm that does not require all util-
ities to be pre-computed (Appendix F). We conclude by
mentioning several directions for future work. (Section 8)

We now discuss related work and systems, and then for-
malize our model and problem statement in Section 3.

2. RELATED WORK
Several papers propose that social connections can be ef-

fectively utilized for enhancing online applications [2, 15].
Golbeck [9] uses the trust relationships expressed through
social connections for personalized movie recommendations.
Mislove et al. [20] attempt an integration of web search
with social networks and explore the use of trust relation-
ships, such as social links, to thwart unwanted communica-
tion [21]. Approaches incorporating trust models into rec-
ommender systems are gaining momentum [22, 26, 27]. In
practical applications, the most prominent example of graph
link-based recommendations is Facebook’s recommendation
system that recommends to its users Pages corresponding
to celebrities, interests, events, and brands, based on the so-
cial connections established in the people and Pages social
graph2. More than 100,000 other online sites 3, including
Amazon4 and the New York Times, are utilizing Facebook’s
Open Graph API and social plug-ins. Some of them rely
on the social graph data provided by Facebook as the sole
source of data for personalization. Depending on the web-
site’s focus area, one may wish to benefit from personalized
social recommendations when using the site, while keeping
one’s own usage patterns and connections private - a goal
whose feasibility we analyze in this work.

There has been recent work discussing privacy of recom-
mendations, but it does not consider the social graph. Ca-
landrino et al. [5] demonstrate that algorithms that recom-
mend products based on friends’ purchases have very prac-
tical privacy concerns. McSherry and Mironov [18] show
how to adapt the leading algorithms used in the Netflix
prize competition to make privacy-preserving movie recom-
mendations. Aı̈meur et al. [1] propose a system for data
storage for privacy-preserving recommendations. Our work
differs from all of these by considering the privacy/utility
trade-offs in graph-link analysis based social recommender
systems, where the graph links are private.

Bhaskar et al. [4] consider mechanisms analogous to the
ones we adapt, for an entirely different problem of making
private frequent item-set mining practically efficient, with
distinct utility notion, analysis, and results.

3. MODEL
This section formalizes the problem definition and initi-

ates the discussion by describing what a social recommen-
dation algorithm entails. We subsequently state the chosen
notion of privacy, differential privacy. Finally, we define the
accuracy of an algorithm and state the problem of designing
a private and accurate social recommendation algorithm.
2http://www.facebook.com/pages/browser.php
3http://developers.facebook.com/blog/post/382
4https://www.amazon.com/gp/yourstore?ie=UTF8&ref_
=pd_rhf_ys
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3.1 Social Recommendation Algorithm
Let G = (V,E) be the graph that describes the network of

connections between people and entities, such as products
purchased. Each recommendation is an edge (i, r), where
node i is recommended to the target node r. Given graph
G, and target node r, we denote the utility of recommending
node i to node r by uG,ri , and since we are considering the
graph as the sole source of data, the utility is some func-
tion of the structure of G. We assume that a recommenda-
tion algorithm R is a probability vector on all nodes, where
pG,ri (R) denotes the probability of recommending node i to
node r in graph G by the specified algorithm R. We con-
sider algorithms aiming to maximize the expected utility∑
i u

G,r
i ·pG,ri (R) of each recommendation. Our notation de-

fines algorithms as probability vectors, thus capturing ran-
domized algorithms; note that all deterministic algorithms
are special cases. For instance, an obvious candidate for a
recommendation algorithm would be Rbest that always rec-
ommends the node with the highest utility (equivalent to
assigning probability 1 to the node with the highest utility).
Note that no algorithm can attain a higher expected utility
of recommendations than Rbest.

When the graph G and the target node r are clear from
context, we drop G and r from the notation – ui denotes
utility of recommending i, and pi denotes the probability
that algorithm R recommends i. We further define umax =
maxi ui, and dmax - the maximum degree of a node in G.

3.2 Privacy definition
Although there are many notions of privacy that have

been considered in the literature, since privacy protections
are extremely important in social networks, in this work we
use a strong definition of privacy, differential privacy [7]. It
is based on the following principle: an algorithm preserves
privacy of an entity if the algorithm’s output is not sensitive
to the presence or absence of the entity’s information in the
input data set. In our setting of graph link-analysis based
social recommendations, we wish to maintain the presence
(or absence) of an edge in the graph private.

Definition 1. A recommendation algorithm R satisfies
ε-differential privacy if for any pair of graphs G and G′ that
differ in one edge (i.e., G = G′ + {e} or vice versa) and
every set of possible recommendations S,

Pr[R(G) ∈ S] ≤ exp(ε)× Pr[R(G′) ∈ S] (1)

where probabilities are over random coin tosses of R.

Differential privacy has been widely used in the privacy lit-
erature [3, 8, 17, 19].

In this paper we show trade-offs between utility and pri-
vacy for algorithms making a single social recommendation.
Restricting our analysis to algorithms making one recom-
mendation allows us to relax the privacy definition. We
require Equation 1 to hold only for edges e that are not in-
cident to the node receiving the recommendation. This re-
laxation reflects the natural setting in which the node receiv-
ing the single recommendation (the attacker) already knows
whether or not it is connected to other nodes in the graph,
and hence we only need to protect the knowledge about the
presence or absence of edges that don’t originate from the
attacker node. While we consider algorithms making a single
recommendation throughout the paper, we use the relaxed
variant of differential privacy only in Sections 5 and 7.

3.3 Problem Statement
We define the private social recommendation problem as

follows. Given utility vectors (one per target node), de-
termine a recommendation algorithm that (a) satisfies the
ε-differential privacy constraints and (b) maximizes the ac-
curacy of recommendations. We define accuracy of an al-
gorithm before formalizing our problem. For simplicity, we
focus on the problem of making recommendations for a fixed
target node r. Therefore, the algorithm takes as input only
one utility vector ~u, corresponding to utilities of recommend-
ing each of the nodes in G to r, and returns one probability
vector ~p (which may depend on ~u).

Definition 2 (Accuracy). The accuracy of an algo-

rithm R is defined as min~u
∑
uipi

umax
.

In other words, an algorithm is (1− δ)-accurate if (1) for
every input utility vector ~u, the output probabilities pi are

such that
∑
uipi

umax
≥ (1−δ), and (2) there exists an input util-

ity vector ~u such that the output pi satisfies
∑
uipi

umax
= (1−δ).

The second condition is added for notational convenience (so
that an algorithm has a well defined accuracy). In choos-
ing the definition of accuracy, we follow the paradigm of
worst-case performance analysis from the algorithms litera-
ture; average-case accuracy analysis may be an interesting
direction for future work.

Recall that umax is the maximum utility achieved by any
algorithm (in particular by Rbest). Therefore, an algorithm
is said to be (1 − δ)-accurate if for any utility vector, the
algorithm’s expected utility is at least (1−δ) times the utility
of the best possible algorithm. A social recommendation
algorithm that aims to preserve privacy of the edges will
have to deviate from Rbest, and accuracy is the measure of
the fraction of maximum possible utility it is able to preserve
despite the deviation. Notice that our definition of accuracy
is invariant to rescaling utility vectors, and hence all results
we present are unchanged on rescaling utilities.

We now formalize our problem definition.

Definition 3 (Private Social Recommendations).
Design a social recommendation algorithm R with maximum
possible accuracy under the constraint that R satisfies ε-
differential privacy.

4. GENERIC PRIVACY LOWER BOUNDS
The main focus of this paper is to theoretically determine

the bounds on maximum accuracy achievable by any algo-
rithm that satisfies ε-differential privacy. Instead of assum-
ing a specific graph link-based recommendation algorithm,
more ambitiously we aim to determine accuracy bounds for
a general class of recommendation algorithms.

In order to achieve that, we first define properties that
one can expect most reasonable utility functions and recom-
mendation algorithms to satisfy. We then present a general
bound that applies to all algorithms and utility functions
satisfying those properties in Section 4.2 and present tighter
bounds for several concrete choices of utility functions in
Section 5.

4.1 Properties of Utility Functions and Algo-
rithms

We present two axioms, exchangeability and concentration,
that should be satisfied by a meaningful utility function in
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the context of recommendations on a social network. Our
axioms are inspired by work of [14] and the specific utility
functions they consider: number of common neighbors, sum
of weighted paths, and PageRank based utility measures.

Axiom 1 (Exchangeability). Let G be a graph and
let h be an isomorphism on the nodes giving graph Gh, s.t.
for target node r, h(r) = r. Then ∀i : uG,ri = u

Gh,r
h(i) .

This axiom captures the intuition that in our setting of
graph link-analysis based recommender systems, the util-
ity of a node i should not depend on the node’s identity.
Rather, the utility for target node r only depends on the
structural properties of the graph, and so, nodes isomorphic
from the perspective of r should have the same utility.

Axiom 2 (Concentration). There exists S ⊂ V (G),
such that |S| = β, and

∑
i∈S ui ≥ Ω(1)

∑
i∈V (G) ui.

This says there are some β nodes that together have at least
a constant fraction of the total utility. This is likely to be
satisfied for small enough β in practical contexts, as in large
graphs there are usually a small number of nodes that are
very good recommendations for r and a long tail of those
that are not. Depending on the case, β may be a constant,
or may be a function growing with the number of nodes.

We now define a property of a recommendation algorithm:

Definition 4 (Monotonicity). An algorithm is said
to be monotonic if ∀i, j, ui > uj implies that pi > pj.

The monotonicity property is a very natural notion for a
recommendation algorithm to satisfy. It says that the al-
gorithm recommends a higher utility node with a higher
probability than a lower utility node.

In our subsequent discussions, we only consider the class
of monotonic recommendation algorithms for utility func-
tions that satisfy the exchangeability axiom as well as the
concentration axiom for a reasonable choice of β. In Ap-
pendix A we briefly mention how the lower bounds can be
altered to avoid this restriction.

A running example throughout the paper of a utility func-
tion that satisfies these axioms and is often successfully de-
ployed in practical settings [11, 14] is that of the number
of common neighbors utility function: given a target node
r and a graph G, the number of common neighbors utility
function assigns a utility uG,ri = C(i, r), where C(i, r) is the
number of common neighbors between i and r.

4.2 General Lower Bound
In this section we show a lower bound on the privacy

parameter ε for any differentially private recommendation
algorithm that (a) achieves a constant accuracy and (b) is
based on any utility function that satisfies the exchangeabil-
ity and concentration axioms, and the monotonicity prop-
erty. We only present an overview of the proof techniques.
An interested reader can find the details in Appendix B.

We explain the proof technique for the lower bound using
the number of common neighbors utility metric. Let r be
the target node for a recommendation. The nodes in any
graph can be split into two groups – V rhi, nodes which have
a high utility for the target node r and V rlo, nodes that have
a low utility. In the case of common neighbors, all nodes
i in the 2-hop neighborhood of r (who have at least one

common neighbor with r) can be part of V rhi and the rest -
of V rlo. Since the recommendation algorithm has to achieve
a constant accuracy, it has to recommend one of the high
utility nodes with constant probability.

By the concentration axiom, there are only a few nodes
in V rhi, but there are many nodes in V rlo; in the case of com-
mon neighbors, node r may only have 10s or 100s of 2-hop
neighbors in a graph of millions of users. Hence, there exists
a node i in the high utility group and a node ` in the low
utility group such that Γ = pi/p` is very large (Ω(n)). At
this point, we show that we can carefully modify the graph
G by adding and/or deleting a small number (t) of edges
in such a way that the node ` with the smallest probabil-
ity of being recommended in G becomes the node with the
highest utility in G′ (and, hence, by monotonicity, the node
with the highest probability of being recommended). By the
exchangeability axiom, we can show that there always exist
some t edges that make this possible. For instance, for com-
mon neighbors utility, we can do this by adding edges be-
tween a node i and t of r’s neighbors, where t > maxi C(i, r).
It now follows from differential privacy that

ε ≥ 1

t
log Γ.

More generally, let c be a real number in (0, 1), and let
V rhi be the set of nodes 1, . . . , k each of which have utility
ui > (1 − c)umax, and let V rlo be the nodes k + 1, . . . , n
each of which have utility ui ≤ (1− c)umax of being recom-
mended to target node r. Recall that umax is the utility of
the highest utility node. Let t be the number of edge alter-
ations (edge additions or removals) required to turn a node
with the smallest probability of being recommended from
the low utility group V rlo into the node of maximum utility
in the modified graph.

The following lemma states the main trade-off relation-
ship between the accuracy parameter 1− δ and the privacy
parameter ε of a recommendation algorithm:

Lemma 1. ε ≥ 1
t

(
ln( c−δ

δ
) + ln(n−k

k+1
)
)

This lemma gives us a lower bound on the privacy guar-
antee ε in terms of the accuracy parameter 1 − δ. Equiva-
lently, the following corollary presents the result as an up-
per bound on accuracy that is achievable by any ε differ-
ential privacy preserving social recommendation algorithm:

Corollary 1. 1− δ ≤ 1− c(n−k)
n−k+(k+1)eεt

Consider an example of a social network with 400 million
nodes, i.e., n = 4 · 108. Assume that for c = 0.99, we
have k = 100; this means that there are at most 100 nodes
that have utility close to the highest utility possible for r.
Recall that t is the number of edges needed to be changed
to make a low utility node into the highest utility node,
and consider t = 150 (which is about the average degree
in some social networks). Suppose we want to guarantee
0.1-differential privacy, then we compute the bound on the
accuracy 1 − δ by plugging in these values in Corollary 1.

We get (1 − δ) ≤ 1 − 3.96∗108

4∗108+3.33∗108 ≈ 0.46. This suggests
that for a differential privacy guarantee of 0.1, no algorithm
can guarantee an accuracy better than 0.46.

Using the concentration axiom with parameter β we prove:

Lemma 2. For (1− δ) = Ω(1) and β = o(n/ logn),

ε ≥ logn− o(logn)

t
(2)
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This expression can be intuitively interpreted as follows:
in order to achieve good accuracy with a reasonable amount
of privacy (where ε is independent of n), either the number
of nodes with high utility needs to be very large (i.e. β needs
to be very large, Ω(n/ logn)), or the number of steps needed
to bring up any node’s utility to the highest utility needs to
be large (i.e. t needs to be large, Ω(logn)).

Lemma 2 will be used in Section 5 to prove stronger lower
bounds for two well studied specific utility functions, by
proving tighter upper bounds on t, which imply tighter lower
bounds for ε. We now present a generic lower bound that
applies to any utility function.

Theorem 1. For a graph with maximum degree dmax =
α logn, a differentially private algorithm can guarantee con-
stant accuracy (approximation to utility) only if

ε ≥ 1

α

(
1

4
− o(1)

)
(3)

As an example, the theorem implies that for any util-
ity function that satisfies exchangeability and concentration
(with any β = o(n/ logn)), and for a graph with maximum
degree logn, there is no 0.24-differentially private algorithm
that achieves any constant accuracy.
Extensions to the model. Our results can be general-
ized to algorithms that do not satisfy monotonicity, algo-
rithms providing multiple recommendations, and to settings
in which we are interested in preserving node identity pri-
vacy. We refer the reader to Appendix A for details.

5. SPECIFIC UTILITY LOWER BOUNDS
In this section, we start from Lemma 2 and prove stronger

lower bounds for particular utility functions using tighter
upper bounds on t. Proof details are in Appendix C.

5.1 Privacy bound for Common Neighbors
Consider a graph and a target node r. We can make any

node x have the highest utility by adding edges from it to
all of r’s neighbors. If dr is r’s degree, it suffices to add
t = dr+O(1) edges to make a node the highest utility node.
We state the theorem for a generalized version of common
neighbors utility function.

Theorem 2. Let U be a utility function that depends only
on and is monotonically increasing with C(x, y), the number
of common neighbors between x and y. A recommendation
algorithm based on U that guarantees any constant accuracy
for target node r has a lower bound on privacy given by

ε ≥ 1−o(1)
α

where dr = α logn.

As we will show in Section 7, this is a very strong lower
bound. Since a significant fraction of nodes in real-world
graphs have small dr (due to a power law degree distribu-
tion), we can expect no algorithm based on common neigh-
bors utility to be both accurate on most nodes and satisfy
differential with a reasonable ε. Moreover, this is contrary
to the commonly held belief that one can eliminate privacy
risk by connecting to a few high degree nodes.

Consider an example to understand the consequence of
this theorem of a graph on n nodes with maximum degree
logn. Any algorithm that makes recommendations based on
the common neighbors utility function and achieves a con-
stant accuracy is at best, 1.0-differentially private. Specif-
ically, for example, such an algorithm cannot guarantee a
0.999-differential privacy on this graph.

5.2 Privacy bound for Weighted Paths
A natural extension of the common neighbors utility func-

tion and one whose usefulness is supported by the literature
[14], is the weighted path utility function, defined as

score(s, y) =
∑inf
l=2 γ

l−2|paths(l)

(s,y)|, where |paths(l)

(s,y)|
denotes the number of length l paths from s to y. Typi-
cally, one would consider using small values of γ, such as
γ = 0.005, so that the weighted paths score is a “smoothed
version” of the common neighbors score.

Again, let r be the target node of degree dr. We can show
that the upper bound for the parameter t used in Lemma 2
for a weighted paths based utility functions with parameter
γ is t ≤ (1 + o(1))dr, if γ = o( 1

dmax
). Hence,

Theorem 3. A recommendation algorithm based on the
weighted paths utility function with γ = o( 1

dmax
) that guar-

antees constant accuracy for target node r has a lower bound
on privacy given by ε ≥ 1

α
(1− o(1)), where dr = α logn.

Notice that in Theorem 3, we get essentially the same
bound as in Theorem 2 as long as the path weight param-
eter γ times the maximum degree is asymptotically grow-
ing. So the same example as before suggests roughly that
for nodes with at most logarithmic degree, a recommen-
dation algorithm with constant accuracy cannot guarantee
anything better than constant differential privacy.

6. PRIVACY-PRESERVING ALGORITHMS
There has been a wealth of literature on developing dif-

ferentially private algorithms [3, 8, 19]. In this section we
adapt two well known privacy tools, Laplace noise addition
[8] and exponential smoothing [19], to our problem. For the
purpose of this section, we will assume that given a graph
and a target node, our algorithm has access to (or can ef-
ficiently compute) the utilities ui for all other nodes in the
graph. Recall that our goal is to compute a vector of prob-
abilities pi such that (a)

∑
i ui · pi is maximized, and (b)

differential privacy is satisfied.
Maximum accuracy is achieved byRbest, the algorithm al-

ways recommending the node with the highest utility umax.
However, it is well known that any algorithm that satisfies
differential privacy must recommend every node, even the
ones that have zero utility, with a non-zero probability [24].

The following two algorithms ensure differential privacy:
The Exponential mechanism creates a smooth probability

distribution from the utility vector and samples from it.

Definition 5. Exponential mechanism: Given nodes
with utilities (u1, . . . , ui, . . . , un), algorithm AE(ε) recom-
mends node i with probability

e
ε

∆f
ui/
∑n
k=1 e

ε
∆f

uk , where ε ≥ 0 is the privacy parameter,
and ∆f is the sensitivity of the utility function5.

Unlike the Exponential mechanism, the Laplace mecha-
nism more closely mimics the optimal mechanism Rbest. It
first adds random noise drawn from a Laplace distribution,
and like the optimal mechanism, picks the node with the
maximum noise-infused utility.

Definition 6. Laplace mechanism: Given nodes with
utilities (u1, . . . , ui, . . . , un), algorithm AL(ε) first computes
a modified utility vector (u′1, . . . , u

′
n) as follows: u′i = ui + r

5∆f = maxr maxG,G′:G=G′+e ||~uG,r − ~uG
′,r||
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where r is a random variable chosen from the Laplace dis-
tribution with scale6 ( ∆f

ε
) independently at random for each

i. Then, AL(ε) recommends node z whose noisy utility is
maximal among all nodes, i.e. z = arg maxi u

′
i.

Theorem 4. Algorithms AL(ε) and AE(ε) guarantee ε
differential privacy.
Please refer to Appendix D for the proof.
AL only satisfies monotonicity in expectation; this is suf-

ficient for our purposes, if we perform our comparisons be-
tween mechanisms and apply the bounds to AL’s expected,
rather than one-time, performance.

As we will see in Section 7, in practice, AL and AE achieve
very similar accuracies. The Laplace mechanism may be a
bit more intuitive of the two, as instead of recommending
the highest utility node it recommends the node with the
highest noisy utility. It is natural to ask whether the two
are isomorphic in our setting, which turns out not to be
the case, as we show in Appendix E by deriving a closed
form expression for the probability of each node being rec-
ommended by the Laplace mechanism as a function of its
utility when n = 2.

Finally, both algorithms we considered so far assume the
knowledge of the entire utility vector. This assumption can-
not always be made in social networks for various reasons,
such as prohibitively expensive storage of n2 utilities for
graphs of several hundred million nodes. In Appendix F,
we explore a simple algorithm that assumes no knowledge
of the utility vector; it only assumes that sampling from the
utility vector can be done efficiently.

7. EXPERIMENTS
In this section we present experimental results on two real-

world graphs and for two particular utility functions. We
compute accuracies achieved by the Laplace and Exponen-
tial mechanisms, and compare them with the theoretical up-
per bound on accuracy (Corollary 1) that any ε-differentially
private algorithm can hope to achieve. Our experiments
suggest three takeaways: (i) For most nodes, our bounds
suggest that there is an inevitable harsh trade-off between
privacy and accuracy when making social recommendations,
yielding poor accuracy for most nodes under reasonable pri-
vacy parameter ε; (ii) The more natural Laplace mechanism
performs as well as the Exponential mechanism; and (iii) For
a large fraction of nodes, the accuracy achieved by Laplace
and Exponential mechanisms is close to the best possible
accuracy suggested by our theoretical bound.

7.1 Experimental Setup
We use two publicly available social networks – Wikipedia

vote network (GWV ) and Twitter connections network (GT ).
While the edges in these graphs are not private, we believe
that these graphs exhibit the structure and properties typi-
cal of other private social networks.

The Wikipedia vote network (GWV ) [13] is available from
Stanford Network Analysis Package7. Some Wikipedia users
are administrators, who have access to additional technical
features. Users are elected to be administrators via a public
vote of other users and administrators. GWV consists of all
users participating in the elections (either casting a vote or
being voted on), since inception of Wikipedia until January

6In this distribution, the pdf at y is ε
2∆f

exp(−|y|ε/∆f)
7
http://snap.stanford.edu/data/wiki-Vote.html

2008. We convert GWV into an undirected network, where
each node represents a user and an edge from node i to node
j represents that user i voted on user j or user j voted on
user i. GWV consists of 7,115 nodes and 100,762 edges.

The second data set we use (GT ) is a sample of the Twitter
connections network, obtained from [25]. GWV is directed,
as the ”follow” relationship on Twitter is not symmetrical;
consists of 96, 403 nodes, 489, 986 edges, and has the maxi-
mum degree of 13, 181.

Similar to Section 5 we use two particular utility func-
tions: the number of common neighbors and weighted paths
(with various values of γ), motivated both by literature [14]
and evidence of their practical use by many companies [11],
including Facebook8 and Twitter9. For the directed Twit-
ter network, we count the common neighbors and paths by
following edges out of target node r, although other inter-
pretations are also possible.

We select the target nodes for whom to solicit recommen-
dations uniformly at random (10% of nodes in GWV and
1% of nodes in GT ). For each target node r, we compute
the utility of recommending to it each of the other nodes
in the network (except those r is already connected to), ac-
cording to the two utility functions10. Then, fixing a desired
privacy guarantee, ε, given the computed utility vector ~ur,
and assuming we will make one recommendation for r, we
compute the expected accuracy of ε-private recommendation
for r. For the Exponential mechanism, the expected accu-
racy follows from the definition of AE(ε) directly; for the
Laplace mechanism, we compute the accuracy by running
1, 000 independent trials of AL(ε), and averaging the utilities
obtained in those trials. Finally, we use Corollary 1 to com-
pute the theoretical upper bound on accuracy we derived
achievable by any ε privacy-preserving recommendation al-
gorithm. Note that in our experiments, we can compute
exactly the value of t to use in Corollary 1 for a particular
~ur, which turns out to be: t = urmax + 1 + I(urmax==dr) for
common neighbors and t = burmaxc+ 2 for weighted paths.

7.2 Results
Exponential vs Laplace mechanism: We verified in

all experiments that the Laplace mechanism achieves nearly
identical accuracy as the Exponential mechanism, which
confirms hypothesis of Section 6 that the differences between
accuracies of two mechanisms are negligible in practice.

Now we experimentally illustrate the best accuracy one
can hope to achieve using an ε privacy-preserving recom-
mendation algorithm given by Corollary 1. We compare this
theoretical bound to the accuracy of the Exponential mech-
anism (which is nearly identical to that of Laplace mecha-
nism, and the expected accuracy of which can be computed
more efficiently). In the following Figures 1(a), 1(b), 2(a),
and 2(b), we plot accuracy (1 − δ) on the x-axis, and the
fraction of target nodes that receive recommendations of ac-
curacy ≤ (1− δ) on the y-axis (similar to CDF plots).
Common neighbors utility function: Figures 1(a)

and 1(b) show the accuracies achieved on GWV and GT ,

8
http://www.insidefacebook.com/2008/03/26/

facebook-starts-suggesting-people-you-may-know
9
http://techcrunch.com/2010/07/30/twitter-who-to-follow/

10We approximate the weighted paths utility by considering
paths of length up to 3. We omit from further considera-
tion a negligible number of the nodes that have no non-zero
utility recommendations available to them.
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Figure 1: Accuracy of algorithms using # of common neighbors utility function for two privacy settings.
X-axis is the accuracy (1− δ) and y-axis is the % of nodes receiving recommendations with accuracy ≤ 1− δ

resp., under the common neighbors utility function. As
shown in Figure 1(a), for some nodes in GWV , the Exponen-
tial mechanism performs quite well, achieving accuracy of
more than 0.9. However, the number of such nodes is fairly
small - for ε = 0.5, the Exponential mechanism achieves less
than 0.1 accuracy for 60% of the nodes. When ε = 1, it
achieves less than 0.6 accuracy for 60% of the nodes and
less than 0.1 accuracy for 45% of the nodes. The theoreti-
cal bound proves that any privacy preserving algorithm on
GWV will have accuracy less than 0.4 for at least 50% of the
nodes, if ε = 0.5 and for at least 30% of the nodes, if ε = 1.

The performance worsens drastically for nodes in GT (Fig-
ure 1(b)). For ε = 1, 98% of nodes will receive recommenda-
tions of accuracy less than 0.01, if the Exponential mecha-
nism is used. Moreover, the poor performance is not specific
to the Exponential mechanism. As can be seen from the
theoretical bound, 95% of the nodes will necessarily receive
less than 0.03-accurate recommendations, no matter what
privacy-preserving algorithm is used. Compared to the set-
ting of ε = 1, the performance improves only marginally
even for a much more lenient privacy setting of ε = 3 (corre-
sponding to one graph being e3 ≈ 20 times more likely than
another): if the Exponential mechanism is used, more than
95% of the nodes still receive an accuracy of less than 0.1;
and according to the theoretical bound, 79% of the nodes
will necessarily receive less than 0.3-accurate recommenda-
tions, no matter what the algorithm.

This matches the intuition that by making the privacy re-
quirement more lenient, one can hope to make better quality
recommendations for more nodes; however, this also pin-
points the fact that for an overwhelming majority of nodes,
the Exponential mechanism and any other privacy preserv-
ing mechanism can not achieve good accuracy, even under
lenient privacy settings.
Weighted paths utility function. We show experi-

mental results with the weighted paths utility function on
GWV and GT in Figures 2(a) and 2(b), respectively. As
expected based on discussion following proof of Theorem 3,
we get a weaker theoretical bound for a higher parameter
value of γ. Moreover, for higher γ, the utility function has a
higher sensitivity, and hence worse accuracy is achieved by
the Exponential and Laplace mechanisms.

The main takeaway is that even for a lenient ε = 1, the

theoretical and practical performances are both very poor
(and worse in the case of GT ). For example, in GWV , when
using the Exponential mechanism (even with γ = 0.0005),
more than 60% of the nodes receive accuracy less than 0.3.
Similarly, in GT , using the Exponential mechanism, more
than 98% of nodes receive recommendations with accuracy
less than 0.01. Even for a much more lenient (and, likely,
unreasonable) setting of desired privacy of ε = 3 (whose
corresponding plot we omit due to space constraints), the
Exponential mechanism still gives more than 98% of the
nodes the same ridiculously low accuracy of less than 0.01.

Our theoretical bounds are very stringent and for a large
fraction of target nodes, limits the best accuracy any privacy-
preserving algorithm can hope to achieve quite severely. Even
for the most lenient privacy setting of ε = 3, at most 52% of
the nodes in GT can hope for an accuracy greater than 0.5 if
γ = 0.05, 0.005, or 0.0005, and at most 24% of the nodes can
hope for an accuracy greater than 0.9. These results show
that even to ensure an unreasonable privacy guarantee, the
utility accuracy is severely compromised.

Our findings throw into serious doubt the feasibility of
developing graph link-analysis based social recommendation
algorithms that are both accurate and privacy-preserving for
many real-world settings.

The least connected nodes. Finally, in practice, it
is the least connected nodes that are likely to benefit most
from receiving high quality recommendations. However, our
experiments suggest that the low degree nodes are also the
most vulnerable to receiving low accuracy recommendations
due to needs of privacy-preservation: see Figure 2(c) for an
illustration of how accuracy depends on node degree.

8. EXTENSIONS AND FUTURE WORK
Several interesting questions remain unexplored in this

work. While we have considered some particular common
utility functions in this paper, it would be nice to consider
others as well. Also, most works on making recommenda-
tions deal with static data. Social networks clearly change
over time (and rather rapidly). This raises several issues re-
lated to changing sensitivity and privacy impacts of dynamic
data. Dealing with such temporal graphs and understanding
their trade-offs would be very interesting, although there is
no agreement on privacy definitions for dynamic graphs.
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Figure 2: (Left, middle) Accuracy of algorithms using weighted paths utility function. X-axis is the accuracy
(1− δ) and the y-axis is the % of nodes receiving recommendations with accuracy ≤ 1− δ (Right) Node degree
versus accuracy of recommendation (Wiki vote network, # common neighbors utility, ε = 0.5).

Another interesting setting to consider is the case when
only certain edges are sensitive. For example, in particu-
lar settings, only people-product connections may be sen-
sitive but people-people connections are not, or users are
allowed to specify which edges are sensitive. We believe our
lower bound techniques could be suitably modified to con-
sider only sensitive edges.

Finally, it would be interesting to extend our results to
weaker notions of privacy than differential privacy (e.g. k-
anonymity and relaxation of adversary’s background knowl-
edge to just the general statistics of the graph [16]).
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APPENDIX
A. EXTENSIONS TO THE MODEL

Non-monotone algorithms. Our results can be gen-
eralized to algorithms that do not satisfy the monotonicity
property, assuming that they only use the utilities of nodes
(and node names do not matter). We omit the exact lem-
mas analogous to Lemmas 1 and 2 but remark that the
statements and our qualitative conclusions will remain es-
sentially unchanged, with the exception of the meaning of
variable t. Currently, we have t as the number of edge ad-
ditions or removals necessary to make the node with the
smallest probability of being recommended into the node
with the highest utility. We then argue about the probabil-
ity with which the highest utility node is recommended by
using monotonicity. Without the monotonicity property, t
would correspond to the number of edge alterations neces-
sary to exchange the node with the smallest probability of
being recommended and the node with the highest utility.
We can then use just the exchangeability axiom to argue
about the probability of recommendation. Notice that this
requires a slightly higher value of t, and consequently results
in a slightly weaker lower bound.

Multiple recommendations. We show that even when
trying to make a single social recommendation, the results
are mostly negative - i.e. there is a fundamental limit on the
accuracy of privacy-preserving recommendations. Our re-
sults would imply stronger negative results for making mul-
tiple recommendations.

Node identity privacy. Our results can be generalized
to preserving the privacy of node identities as well. Differen-
tial privacy in that case would be concerned with the ratio of
the likelihoods of any recommendation on two graphs that
differ in only the neighborhood of exactly one node in the
graph. Unlike in the edge privacy case, where we are al-
lowed to modify only one edge, in the node privacy case we
can completely modify one node (i.e. rewire all the edges
incident on it) [10]. It can be easily seen that in our lower
bound proof, one can exchange a least useful node vmin into
the most useful node vmax in t = 2 such steps – rewire the
edges of vmin to look like vmax and vice versa. Thus for

node identity privacy, we need ε ≥ logn−o(logn)
2

for constant
accuracy.

B. PROOFS FOR GENERAL BOUND

Claim 1. Suppose the algorithm achieves accuracy of (1−
δ) on a graph G. Then there exists a node x in V rlo(G), such
that its probability being recommended is at most δ

c(n−k)
, e.g.

pGx ≤ δ
c(n−k)

.

Proof. In order to achieve (1− δ) accuracy, at least c−δ
c

of the probability weight has to go to nodes in the high
utility group. Denote by p+ and p− the total probability
that goes to high and low utility nodes, respectively, and
observe that p+umax+(1−c)umaxp

− ≥
∑
i uipi ≥ (1−δ)umax

and p+ + p− ≤ 1, hence, p+ > c−δ
c
, p− ≤ δ

c
.

Proof of Lemma 1

Proof. Using the preceding Claim, let x be the node
in G1 that is recommended with utility of at most δ

c(n−k)

by the privacy-preserving (1 − δ)-accurate algorithm. And
let G2 be the graph obtained by addition of t edges to G1

chosen so as to turn x into the node of highest utility. By

differential privacy, we have p
G2
x

p
G1
x

≤ eεt.

In order to achieve (1 − δ) accuracy on G2, at least c−δ
c

of the probability weight has to go to nodes in the high
utility group, and hence by monotonicity, pG2

x > c−δ
c(k+1)

.

Combining the previous three inequalities, we obtain:

(c−δ)(n−k)
(k+1)δ

=
c−δ
c(k+1)
δ

c(n−k)

< p
G2
x

p
G1
x

≤ eεt,

hence ε ≥ 1
t

(
ln( c−δ

δ
) + ln(n−k

k+1
)
)
, as desired.

Proof of Lemma 2
Claim 2. If c =

(
1− 1

logn

)
, then k = O(β logn) where

β is the parameter of the concentration axiom.
Proof. Now consider the case when c =

(
1− 1

logn

)
.

Therefore, k is the number of nodes that have utility at
least umax

logn
. Let the total utility mass be U =

∑
i ui. Since

by concentration, the β highest utility nodes add up to a
total utility mass of Ω(1)∗U , we have umax ≥ Ω(U

β
). There-

fore, k, the number of nodes with utility at least umax
logn

is at

most U logn
umax

which is at most O(β logn).

Proof. We now prove the Lemma using Lemma 1 and
Claim 2. Substituting these in the expression, if we need 1−

c(n−k)
n−k+(k+1)eεt

to be Ω(1), then require (k+1)eεt to be Ω(n−
k). (Notice that if (k+1)eεt = o(n−k), then c(n−k)

n−k+(k+1)eεt
≥

c− o(1), which is 1− o(1).).
Therefore, if we want an algorithm to obtain constant

approximation in utility, i.e. (1 − δ) = Ω(1), then we need
the following (assuming β to be small): (O(β logn))eεt =
Ω((n−O(β logn)), or (for small enough β), eεt = Ω( n

β logn
).

Simplifying,

ε ≥ logn− log β − log logn

t
, hence ε ≥ logn− o(logn)

t

Proof of Theorem 1 (Any utility function)

Proof. Recall that dmax denotes the maximum degree in
the graph. Using the exchangeability axiom, we can show
that t ≤ 4dmax in any graph. Consider the highest utility
node and the lowest utility node, say x and y respectively.
These nodes can be interchanged by deleting all of x’s cur-
rent edges, adding edges from x to y’s neighbors, and doing
the same for y. This requires at most 4dmax changes. By
applying the upper bound on t in Lemma 2 we obtain the
desired result.

C. PROOFS FOR COMMON NEIGHBORS
AND WEIGHTED PATH UTILITY

Proof of Theorem 2 (Common Neighbors)

Proof. It is sufficient to prove the following upper bound
on t.

Claim 3. For common neighbors based utility functions,
when recommendations for r are being made, we have t ≤
dr + 2, where dr is the degree of node r.

Proof. Observe that if the utility function for recom-
mendation is # of common neighbors, then one can make
any zero utility node, say x, for source node r into a max
utility node by adding dr edges to all of r’s neighbors and
additionally adding two more edges (one each from r and x)
to some node with small utility. This is because the highest
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utility node has at most dr common neighbors with r (one of
which could potentially be x). Further, adding these edges
cannot increase the number of common neighbors for any
other node beyond dr.

Proof of Theorem 3 (Weighted Paths)

Proof. The number of paths of length l between two
nodes is at most dl−1

max. Let x be the highest utility node
(with utility ux) and let y be the node we wish to make the
highest utility node after adding certain edges. If we are
making recommendations for node r, then the maximum
number of common neighbors with r is at most dr.

We know that ux ≤ dr +
∑inf
l=3 γ

l−2dl−1
max. In fact, one can

tighten the second term as well.
We rewire the graph as follows. Any (c−1)dr nodes (other

than y and the source node r) are picked; here c > 1 is to
be determined later. Both r and y are connected to these
(c− 1)dr nodes. Additionally, y is connected to all of r’s dr
neighbors. Therefore, we now get the following: uy ≥ cdr

Now we wish to bound by above the utility of any other
node in the network in this rewired graph. Notice that every
other node still has at most dr paths of length 2 with the
source. Further, there are only two nodes in the graph that
have degree more than dmax + 1, and they have degree at
most (c+1)dmax. Therefore, the number of paths of length l
for l ≥ 3 for any node is at most ((c+1)dmax)2 ·(dmax+1)l−3.
This can be further tightened to ((c+ 1)dmax)2 · (dmax)l−3.
We thus get the following for any x in the rewired graph:
ux ≤ dr + (c+ 1)2∑∞

l=3 γ
l−2dl−1

max.
Now consider the case where γ < 1

dmax
. We get

ux ≤ dr +
(c+1)2γd2

max
1−γdmax

. We now want uy ≥ ux. This reduces

to (c− 1) ≥ (c+1)2γdmax

1−γdmax
.

Now if γ = o( 1
dmax

) then it is sufficient to have (c− 1) =

Ω(γdmax) which can be achieved even with c = 1 + o(1).
Now notice that we only added dr + 2(c− 1)dr edges to the
graph. This completes the proof of the theorem.

Discussion of a relationship between the common
neighbors and weighted paths utility functions.
Since common neighbors is an extreme case of weighted
paths (as γ → 0), we are able to obtain the same lower
bound (up to o(1) terms) when γ is small, i.e., γ ≈ o( 1

dmax
).

Can one obtain (perhaps weaker) lower bounds when, say,
γ = Θ( 1

dmax
)? Notice that the proof only needs (c − 1) ≥

(c+1)2γdmax

1−γdmax
. We then get a lower bound of ε ≥ 1

α
( 1−o(1)

2c−1
),

where dr = α logn. Setting γdmax = s, for some constant

s, we can find the smallest c that satisfies (c− 1) ≥ (c+1)2s
1−s .

Notice that this gives a nontrivial lower bound (i.e. a lower
bound tighter than the generic one presented in the previous
section), as long as s is a sufficiently small constant.

D. PRIVACY OF LAPLACE AND
EXPONENTIAL MECHANISMS

Proof of Theorem 4

Proof. The proof that AE(ε) guarantees ε differential
privacy follows from McSherry et al [19].

The proof that AL(ε) guarantees ε differential privacy fol-
lows from the privacy of Laplace mechanism when publish-
ing histograms [8]; each node can be treated as a histogram

bin and u′i is the noisy count for the value in that bin. Since
AL(ε) is effectively doing post-processing by releasing only
the name of the bin with the highest noisy count, the algo-
rithm remains private.

E. COMPARISON OF LAPLACE AND EX-
PONENTIAL MECHANISMS

Although we have observed in Section 7 that the Expo-
nential and Laplace mechanisms perform comparably and
know anecdotally that the two are used interchangeably in
practice, the two mechanisms are not equivalent.

We compute the probability of each node being recom-
mended by each of the mechanisms when n = 2, using the
help of the following Lemma:

Lemma 3. Let u1 and u2 be two non-negative real num-
bers and let X1 and X2 be two random variables drawn in-
dependently from the Laplace distribution with scale b = 1

ε
and location 0. Assume wlog that u1 ≥ u2. Then

Pr[u1 +X1 > u2 +X2] = 1− 1

2
e−ε(u1−u2) − ε(u1 − u2)

4eε(u1−u2)

To the best of our knowledge, this is the first explicit
closed form expression for this probability (the work of [23]
gives a formula that does not apply to our setting).

Proof. Let φX(u) denote the characteristic function of
the Laplace distribution, it is known that φX(u) = 1

1+b2u2 .
Moreover, it is known that if X1 and X2 are independently
distributed random variables, then

φX1+X2(u) = φX1(u)φX2(u) =
1

(1 + b2u2)2

Using the inversion formula, we can compute the pdf of X =
X1 +X2 as follows:

fX(x) = F ′X(x) =
1

2π

∫ ∞
−∞

e−iuxφX(u)du

For x > 0, the pdf of X1 + X2 is fX(x) = 1
4b

(1 + x
b
)e−

x
b

(adapting formula 859.011 of [6]) and the cdf is FX(x) =
1− 1

4
εe−εx( 2

ε
+ x).

Hence Pr[u1 + X1 > u2 + X2] = Pr[X2 − X1 < u1 −
u2] = 1− 1

4
εe−ε(u1−u2)( 2

ε
+ (u1 − u2)) = 1− 1

2
e−ε(u1−u2) −

ε(u1−u2)

4eε(u1−u2)

It follows from Lemma 3 and the definition of the mech-
anisms in Section 6 that when n = 2, and the node utilities
are u1 and u2 (assuming u1 ≥ u2 wlog), the Laplace mech-
anism will recommend node 1 with probability

1− 1
2
e−ε(u1−u2)− ε(u1−u2)

4eε(u1−u2) , and the exponential mechanism

will recommend node 1 with probability eεu1

eεu1+eεu2 . The
reader can verify that the two are not equivalent through
value substitution.

F. SAMPLING AND LINEAR SMOOTHING
FOR UNKNOWN UTILITY VECTORS

Both the differentially private algorithms we considered
in Section 6 assume the knowledge of the entire utility vec-
tor, an assumption that cannot always be made in social
networks for various reasons. Firstly, computing, as well as
storing the utility of n2 pairs may be prohibitively expensive
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when dealing with graphs of several hundred million nodes.
Secondly, even if one could compute and store them, these
graphs change at staggering rates, and therefore, utility vec-
tors are also constantly changing.

We now propose a simple algorithm that assumes no knowl-
edge of the utility vector; it only assumes that sampling
from the utility vector can be done efficiently. We show how
to modify any given efficient recommendation algorithm A,
which is µ-accurate but not provably private, into an algo-
rithm AS(x) that guarantees differential privacy, while still
preserving, to some extent, the accuracy of A.

Definition 7. Given an algorithm A = (p1, p2, . . . , pn),
which is µ-accurate, algorithm AS(x) recommends node i
with probability 1−x

n
+ xpi, where 0 ≤ x ≤ 1 is a parameter.

Intuitively, AS(x) corresponds to flipping a biased coin, and,
depending on the outcome, either sampling a recommenda-
tion using A or making one uniformly at random.

Theorem 5. AS(x) guarantees ln(1 + nx
1−x )-differential

privacy and xµ accuracy.

Proof. Let p′′i = 1−x
n

+ xpi. First, observe that∑n
i=1 p

′′
i = 1, and p′′i ≥ 0, hence AS(x) is a valid algo-

rithm. The utility of AS(x) is U(AS(x)) =
∑n
k=1 ukp

′′
k =∑n

k=1( 1−x
n

)uk +
∑n
k=1 xpkuk ≥ xµumax, where we use the

facts that
∑
k uk ≥ 0 and

∑
pkuk ≥ µumax by assumption

on A’s accuracy. Hence, U(AS(x)) has accuracy ≥ xµ.
For the privacy guarantee, note that 1−x

n
≤ p′′i ≤ 1−x

n
+x,

since 0 ≤ pi ≤ 1. These upper and lower bounds on p′′i hold
for any graph and utility function. Therefore, the change
in the probability of recommending i for any two graphs G
and G′ that differ in exactly one edge is at most:

pi(G)

pi(G′)
≤
x+ 1−x

n
1−x
n

= 1 +
nx

1− x .

Therefore, AS is ln(1 + nx
1−x )-differentially private, as de-

sired.

Note that to guarantee 2ε-differentially privacy for AS(x),
we need to set the parameter x so that ln(1+ nx

1−x ) = 2c lnn

(rewriting ε = c lnn), namely x = n2c−1
n2c−1+n

.
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