
Implementing Performance Competitive Logical Recovery

David Lomet
Microsoft Research

Redmond, WA
lomet@microsoft.com

Kostas Tzoumas
Aalborg University

Denmark
kostas@cs.aau.dk

Michael Zwilling
Microsoft Corporation

Redmond, WA
mikez@microsoft.com

ABSTRACT
New hardware platforms, e.g. cloud, multi-core, etc., have led to
a reconsideration of database system architecture. Our Deuteron-
omy project separates transactional functionality from data man-
agement functionality, enabling a flexible response to exploiting
new platforms. This separation requires, however, that recovery
is described logically. In this paper, we extend current recovery
methods to work in this logical setting. While this is straightfor-
ward in principle, performance is an issue. We show how ARIES
style recovery optimizations can work for logical recovery where
page information is not captured on the log. In side-by-side per-
formance experiments using a common log, we compare logical
recovery with a state-of-the art ARIES style recovery implementa-
tion and show that logical redo performance can be competitive.

1. INTRODUCTION

1.1 Motivation
We believe that providing transactions to accommodate new plat-

forms, e.g. cloud or multi-core, can be realized via a different way
of architecting database systems. In particular, we want to construct
database systems as a collection of modules with well-defined in-
terfaces. This may permit vendors to assemble specialized database
systems or alternatively to provide a general database system com-
posed of or extended by multiple parts. This is not a new goal. A
composable database system has been explored [3], as have exten-
sible database systems [7].
While the limited impact of prior efforts suggests caution, the

emergence of new platforms makes this a good time to reconsider
database architecture. Deuteronomy proposes to decompose a data-
base system storage engine into transactional component (TC) and
data component (DC). Earlier papers have described the interface
between TC and DC [10,12] and locking without location informa-
tion to provide concurrency control [13]. Here we focus on recov-
ery without the use of location information, and in particular, we
demonstrate that this “logical” recovery has the ability to rapidly
recover from a system crash.
Even without re-architecting a database system, logical recov-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 37th International Conference on Very Large Data Bases,
August 29th - September 3rd 2011, Seattle, Washington.
Proceedings of the VLDB Endowment, Vol. 4, No. 7
Copyright 2011 VLDB Endowment 2150-8097/11/04... $ 10.00.

ery can be useful to maintain replicas at sites without a physically
isomorphic environment. That is, the data can be replicated in a
database using a different kind of stable storage, e.g. a disk with
different page size, or flash memory with different block size. Be-
cause the log records shipped to the replica are logical, they can be
applied to disparate physical system configurations.

1.2 Making Recovery Logical
Traditional ARIES style recovery [15] consists of two passes:

the redo and the undo pass, in addition to an initial “analysis” pass
that generates data structures that enable recovery performance to
be optimized. The (transaction) undo pass is done in a logical way
in ARIES to facilitate concurrency and deal with data movement.
However, the redo pass is “physiological”. While the redo op-
eration on data in a page is expressed logically, each log record
names exactly the one page affected by the operation. Such phys-
ical information cannot be present in a logical log record. While
a Deuteronomy operation also updates a single page, it does not
know what page. Similarly, a replica with a different hardware en-
vironment cannot exploit physical information to update its replica.
Both these settings require logical recovery.
Logical redo recovery identifies records being updated using their

logical attributes, e.g. table name and record key. Typically, DBMSs
use the table name to locate a B-tree that is then searched using the
key to find the record. Thus, for logical redo recovery, the page
affected by a logged redo operation has to be discovered during re-
covery using the B-tree index. With current state of the art recovery
methods like ARIES or like SQL Server’s multi-level recovery with
system transactions [4, 11], the B-tree index used for data place-
ment is not accessed during redo recovery, but rather only during
(logical) undo. Thus, SQL Server recovers the B-tree index after
redo recovery and only before its logical undo recovery. The index
is only guaranteed to be well-formed by the start of transactional
undo recovery. For multi-level recovery, there is an extra system
transaction undo pass after physiological (ARIES) redo and before
the user level transaction undo pass to ensure that B-tree indexes
are well formed.
Thus the recovery paradigm currently used needs to be changed

for logical recovery. Logical redo recovery (undo is already logi-
cal) requires that any index used for data placement be well-formed
before redo recovery can begin. This index can only be recovered
at the data server, since only it knows about data placement and in-
dexing. Thus, data server (Deuteronomy’s data component or DC1)
recovery must take place first, prior to the transactional mechanism
(Deuteronomy’s transactional component or TC) resending its op-
erations to the data server for transaction level redo and undo.

1We will use DC generically to denote a data server and TC to
denote a transactional mechanism.

430

1.3 Recovery Performance
Logical recovery performance is an important consideration. Re-

covery needs to identify the records updated by operations. These
records are identified via table name and key, and not with a page
identifier (PID). During redo recovery, the re-submitted operation
must re-traverse the table’s B-tree in order to find the page on which
to redo the operation. Then, the page LSN (pLSN) is compared to
the log record LSN to determine whether the operation needs to be
re-executed (the idempotence test). Contrast this with traditional
“physiological” recovery [6, 15]. Here, the log record contains the
PID. Hence, only the last steps of comparing the pLSN to the log
record LSN and redoing the operation is required. Thus, logical
recovery needs extra processing to re-traverse the B-tree on every
redo operation.
Extra index traversal is not the biggest problem faced by logical

redo. ARIES style recovery has optimizations that greatly reduce
the redo time [15]. The dirty page table (DPT), an approximation
of the database (dirty) cache at the time of the crash, is used to
prune the set of log records needing redo. Any page not in the DPT
does not need to be read into the database cache as such a page does
not need redo. In addition ARIES defines a recovery LSN (rLSN)
as the earliest operation that dirtied a page in the DPT. A logged
operation with an LSN < rLSN for a page in the DPT does not
need redo. This can be discovered before reading the page into the
database cache. Finally, the DPT helps in pre-fetching pages into
the cache prior to operations needing them, reducing latency.
Without PIDs on the log for updated pages, a DPT cannot be

created. In that case, all pages found during the logical redo index
search need to be fetched into the database cache. Further, this
fetching can only be done on demand, i.e., without using pre-fetch,
which cannot be performed in the absence of page information.
So how can TC logical recovery be competitive with physiologi-

cal recovery, where the PIDs are known from log records? It needs
help from the DC, the component that knows the pages updated
and when they are flushed. But if the DC were to log updates, we
defeat the purpose for separating TC and DC, which is to partition
functionality. However, having the DC log physical information
that only it knows to reduce its recovery time is both sensible and
is essential to minimizing down time.

1.4 Contributions and Outline
In Section 2, we compare ARIES style optimized physiologi-

cal recovery using a DPT to unoptimized pure logical recovery.
The basic logical recovery algorithm is very simple, but its perfor-
mance suffers greatly in comparison with optimized ARIES. Un-
like ARIES, it does not exploit a DPT which would permit it to
avoid extra fetches for pages not needing recovery.
In Section 3, we describe how SQL Server builds a DPT, which

is an interesting alternative to ARIES in that the DPT does not need
to be captured during normal operation via checkpointing. Our first
contribution, in Section 4 is to show how to provide a DPT for log-
ical recovery. Our second contribution is to show how prefetching
can also be made to work with logical recovery from the same in-
formation used to construct the DPT.
Recovery performance has rarely been quantified by experiments,

and only once to our knowledge [17] in a side-by-side comparison,
and that was in a main memory setting for online games. Our third
contribution, in Section 5, shows how to control conditions to pro-
vide a valid side-by-side experimental comparison of logical recov-
ery with physiological recovery, where both use exactly the same
log. Our experiments are based on our logical recovery prototype
derived from SQL Server 2008. The results demonstrate that logi-
cal recovery can have comparable performance with physiological

recovery with a modest amount of DC logging. Section 6 presents
some conclusions and related work.
The body of the paper is augmented by appendices. In Ap-

pendix B, we present a simple performance analysis that provides
an explanation for our experimental results. Appendix C shows the
impact of checkpoint interval on recovery performance, while Ap-
pendix D explores trade-offs between normal execution overhead
and recovery performance in construction of the DPT.

2. COMPARING RECOVERY METHODS

2.1 Why Focus on Redo
Redo performance is by far the most important part of recovery

performance, except perhaps for very rare cases when long running
transactions need to be undone. In our experiments, the analysis
pass accounts for less than 2% of recovery time, both for logical
and physiological recovery. Thus we focus on redo performance.
But we want to explain how redo recovery fits into the complete
recovery picture, so that the reader will know what we are omitting
and why.
ARIES recovery includes physiological redo and logical undo

passes, these passes also performing recovery for the B-tree struc-
ture modification operations (SMOs) [15]. SQL Server increases
concurrency for B-tree SMOs by using system transactions, and
providing their undo recovery in a separate pass after physiologi-
cal redo and before logical undo so that logical undo continues to
see a well formed B-tree [4]. Logical recovery needs to move B-
tree SMO redo and undo ahead of transactional redo as redo is also
logical and needs a well-formed B-tree [12].
There is little performance difference between our logical recov-

ery and prior physiological recovery except for redo. The frequency
of SMOs is a property of the B-tree, not of the recovery method,
and is very low compared with data updates. All recovery variants
provide B-tree SMO recovery using similar log records. Hence the
time spent in recovery for these operations is, to a first approxi-
mation, the same for all methods. The only difference in methods
is the time at which these SMO recovery operations are executed.
Further, all variants also perform logical undo as the last pass of
recovery, and hence this performance is constant in all methods.
Thus we focus on the performance of the redo pass. It is the largest
part of recovery time with other aspects of recovery being both very
similar and relatively minor factors.

2.2 Physiological Redo Basics
ARIES redo recovery is described as “repeating history” [15].

This may be misleading. The redo log is scanned in “history order”
during redo, but not all operations are replayed. Rather, each redo
log operation is tested as to whether its effects are already in stable
storage. Only if not is the redo log operation re-executed. Thus, op-
erations are re-submitted in log order and subjected to a redo test,
as described in [14]. The redo test is an idempotence test. It en-
ables operations to be submitted multiple times for “at least once”
execution, tested to ensure “at most once” execution, resulting in
“exactly once” execution.
In physiological recovery [6], the redo portion of a log record

identifies the page changed by an update operation, the operation
itself, and its argument. ARIES log records also contain a logical
undo operation. The undo operation needs the potential to be “log-
ically” executed, e.g., by re-traversing a B-tree, because the record
needing undo may have been moved to another page by the time
undo recovery occurs. This cannot happen during redo and hence
redo recovery always knows the page, via the log record PID, for
which redo is to be considered.

431

To determine whether re-execution of a physiological operation
is needed, a page log sequence number (pLSN) is stored on each
page denoting the latest operation that updated the page. If a redo
operation’s LSN ≤ pLSN of the page identified by its PID, then
redo is not needed. Otherwise, the operation is re-executed, updat-
ing the page.
Even physiological redo recovery would be expensive were we

to fetch into the database cache every page mentioned by a redo
log record to apply a redo test. However, we can optimize the redo
test, identifying log records for which the redo test can be known
to fail and hence with no redo required, via the use of an ARIES
style DPT. Two facts can be exploited to optimize the redo test.
1. If a page is not dirty at the time of a crash, then no redo
log record operation for the page needs redo. The DPT is
a conservative approximation of the set of pages dirty at the
time of a crash, i.e., it guarantees that if a page is dirty at the
time of crash, its PID is in the DPT.

2. Redo log operations for a page with LSNs less than the rLSN,
the LSN of the operation that first dirtied the page in cache
do not need redo. A conservative rLSN is included with DPT
entries, conservative in that it is not greater than the LSN of
the operation that dirtied the page.

SQL Server provides both these optimizations. The DPT is con-
structed during the recovery analysis pass, which precedes the redo
pass. Enabling its construction during recovery requires some extra
logging and runtime overhead during normal execution. During the
redo pass following analysis, redo log records are submitted in log
order. Each record is tested by a redo test to determine whether its
operation needs redo. A naive redo test simply tests the pLSN on
the page identified by the redo log record’s PID. The ARIES redo
algorithm described in Algorithm 1 performs the optimized redo
test by checking for the page’s entry in the DPT and its rLSNs.

Algorithm 1 ARIES redo
1: procedure ARIES-REDO-PASS(startLSN)
2: for ∀ logRec with logRec.LSN ≥ startLSN do
3: currLSN = logRec.LSN
4: e = DPT.FINDENTRY(logRec.PID)
5: if (e = null ∨
6: currLSN < e.rLSN) then
7: //Bypass current record and continue to next record
8: continue
9: //Request the page p from the buffer manager
10: p = BPOOL.GET(PID)
11: if currLSN ≤ p.pLSN then
12: //Bypass current record and continue to next record
13: continue
14: else
15: REDOOPERATION(p, logRec) //Redo the operation

The optimizations of the redo test (lines 5 and 6) are significant.
Line 5 (test for null DPT entry) avoids reading in pages we never
need. Line 6 (test of rLSN) delays the need to access the page,
as we do not yet need it. This permits us to continue with redo
recovery while the page is brought into memory.

2.3 Naive Logical Recovery
When we place transactional functionality in a TC and data man-

agement functionality in a DC, the TC does transactional recovery.
It does not know how records map to pages at the DC, which is re-
sponsible for doing this mapping and managing the database cache.
Because of this separation (information hiding), PIDs for pages be-
ing updated are not included in the TC’s redo log records. Indeed,
to support replicas, there may be several DCs, each storing records
in a different manner, and on different pages.

During logical redo recovery (Algorithm 2), the TC submits redo
operations to the DC for it to re-execute or not depending upon
whether the operation’s effects have already been captured in stable
storage before the crash. Upon receiving the redo request, the DC
searches for the record, e.g. in the table’s B-tree index, based on
the log record provided key. It then reads the leaf (data) page iden-
tified in the index search into its cache if it is not already present.
The DC compares the LSN of the log operation with the pLSN
of this page to decide whether to redo the operation or not (line
11 of Algorithm 2). With this unoptimized strategy, every page up-
dated since the checkpoint determined redo scan start point must be
brought into cache in order to perform the redo test. Some pages
may be brought in more than once if memory pressure forces the
cache manager to drop pages that are needed again later. This is
logically correct but can greatly slow down recovery.

Algorithm 2 Basic logical redo
1: procedure TC-BASIC-LOGICAL-REDO-PASS(startLSN)
2: for ∀ logRec with logRec.LSN ≥ startLSN do
3: DC-BASIC-LOGICAL-REDO-OPERATION(logRec)
4:
5: procedure DC-BASIC-LOGICAL-REDO-OPERATION(logRec)
6: currLSN = logRec.LSN
7: //Traverse the index to find the PID referred to by logRec
8: PID = BTREE.FIND(logRec.key)
9: //Request the page p from the buffer manager
10: p = BPOOL.GET(PID)
11: if currLSN ≤ p.pLSN then
12: //Operation does not need to be redone
13: return
14: else
15: //Redo the operation
16: REDOOPERATION(p, logRec)

Our hypothesis is that by constructing a DPT for logical recov-
ery, we can optimize the redo test and the rebuilding the dirty page
cache, making logical redo competitive with physiological redo.

3. PHYSIOLOGICAL REDOWITH DPT
The DPT is an approximation of the dirty part of the buffer pool

at the time of crash. As shown in Section 2.2, it is used to avoid the
redo of operations whose results are already captured in stable stor-
age. A DPT consists of entries of the form (PID, rLSN, lastLSN).
PID is the page identifier of the page. rLSN is the recovery LSN,
an approximation of the LSN of the first operation that dirtied the
page. lastLSN is the LSN of the last operation on the page. The
lastLSN is used to help construct the DPT but does not, itself, play
a direct role in redo recovery.
It is not possible to construct a completely accurate DPT as knowl-

edge of the buffer pool at the time of the crash is too costly to main-
tain accurately. Instead, recovery methods construct a conservative
estimate that is “safe”, i.e., one that contains at least the necessary
dirty pages at the time of the crash. Pages in the DPT but not in
need of redo are either not accessed or the pLSN redo test indicates
redo is not needed. These pages are unnecessarily brought into the
cache. DPT safety also requires the rLSN of each dirty page not
be greater than the LSN of the first redo operation that dirtied the
page. When the rLSN is too small, unnecessary rLSN test failures
may occur, but correctness is ensured by the pLSN test for the page
after it is brought into the cache. The tradeoff in DPT construction
is between normal operation overhead and redo time. An accurate
DPT minimizes redo time but needs more effort during normal op-
eration, while a more conservative DPT requires less during normal
execution but increases recovery time.

432

3.1 ARIES Checkpointing
ARIES captures the DPT during runtime. Whenever a page is

updated, it is marked as “dirty” in the database cache, and given an
rLSN equal to the LSN of the update. When a dirty page is written
to stable storage, it is marked as “not dirty”. During checkpoint
a DPT is constructed including “dirty” pages in the cache, and is
written as part of a checkpoint “record”. The DPT is initialized dur-
ing recovery with the DPT captured in the last checkpoint record.
During the analysis pass, starting from the last checkpoint, every
log record that references a page not in the DPT creates a new DPT
entry with rLSN equal to the LSN of that log record.

3.2 SQL Server Checkpointing
SQL Server follows an approach that requires less runtime over-

head and logging. The DPT is neither constructed nor saved during
normal execution. SQL Server uses a penultimate checkpointing
scheme. When a checkpoint request is issued, SQL Server writes
a “begin checkpoint” (bCkpt) log record. It then starts a process
that flushes dirty pages (buffers) from the cache. The result is that
at the completion of the checkpoint, all pages updated by log op-
erations that precede the bCkpt log record are known to have their
results in the stable database, and hence they do not need redo. SQL
Server distinguishes pages dirtied before the bCkpt log record from
pages dirtied after bCkpt. It places a bit on each page buffer that
is flipped when bCkpt is written. Pages dirtied (a subset of those
updated) during the checkpoint thus have a different bit value from
those dirtied before, and are not flushed. When this process fin-
ishes, SQL Server writes an “end checkpoint” log record (eCkpt).
During recovery, this means that only pages updated since the

penultimate checkpoint (the last bCkpt record with an accompa-
nying eCkpt record) can be dirty and recovery can begin with an
empty DPT as of this point. No updates logged earlier than this
bCkpt are responsible for pages dirty in the cache when the system
crashed. The analysis pass starts from this bCkpt log record and
adds PIDs to the DPT from log records written after the bCkpt log
record. Thus the redo scan start point is at this last bCkpt log record
and earlier log records are ignored.
The analysis pass adds to the DPT every update log record PID,

when first encountered in the log scan. The first mention of a page
sets the rLSN of the page’s entry in the DPT, and every subsequent
mention of the page updates its lastLSN. This results in an unneces-
sarily large DPT, since no knowledge about page flushes has been
exploited. Indeed, that is the case for ARIES as well. In order
to prune the DPT during analysis, page flushes are monitored and
logged in batches during normal operation.

3.3 Tracking Page Flushes
When a page is flushed during normal operation, a callback to

an IO completion adds the PID of the page to an array of “flushed”
PIDs that is maintained by SQL Server during normal operation.
In addition, if this is the first PID to be captured in the array, the
end of the stable log is captured as the first-write LSN (FW-LSN).
Periodically, a so-called Buffer Write log record (BW-log record)
logs this array, and then empties it. Thus, the BW-log record con-
tains the PIDs of pages flushed since the previous BW-log record,
as well as the captured FW-LSN:

BW-logRec = (WrittenSet, FW-LSN).

Not every flush might be captured, which may result in a more
conservative DPT and consequently increased redo time, but this
does not affect correctness. In particular, any flushes following the
last BW-log record written to stable storage before a system crash
are not captured.

During the analysis pass, BW-log records are used to prune the
DPT. Every PID in an update log record, if not already present,
is added to the DPT. When a BW-log record is encountered, SQL
Server removes from the DPT under construction pages with PIDs
contained in the record’s WrittenSet whose lastLSN ≤ FW-LSN.
These pages were flushed after their last update, so all their updates
have been captured in stable storage. In addition, remaining page
entries whose rLSNs are smaller than the FW-LSN now have their
rLSNs set to FW-LSN since these pages were flushed in a state that
included all updates earlier than FW-LSN. Thus, the LSN of the
operation that dirtied any remaining page (i.e., its rLSN) must have
a lower bound of FW-LSN. The DPT is also updated during redo,
when information about the pLSNs of the pages becomes available.
Algorithm 3 shows how SQL Server constructs the DPT during the
analysis pass.

Algorithm 3 SQL Server DPT construction during analysis
1: procedure SQL-SERVER-ANALYSIS-PASS(bCkptLSN)
2: DPT = null
3: for ∀ logRec with logRec.LSN > bCkptLSN do
4: currLSN = logRec.LSN
5: if logRec is an update log record then
6: e = DPT.FINDENTRY(PID)
7: if e = null then
8: DPT.ADDENTRY(logRec.PID, currLSN)
9: else
10: e.lastLSN = currLSN
11: else if logRec is a BW-logRec then
12: for ∀ PID in BW-logRec.WrittenSet do
13: e = DPT.FINDENTRY(PID)
14: if e %= null then
15: if e.lastLSN ≤ BW-logRec.FW-LSN then
16: DPT.REMOVEENTRY(pid)
17: else if e.rLSN< BW-logRec.FW-LSN then
18: e.rLSN = BW-logRec.FW-LSN

4. LOGICAL REDOWITH DPT
To optimize its redo test, logical recovery also needs a DPT, like

ARIES and SQL Server. In our setting, this is done by the DC
writing relevant information to its log. As described in [12], the
DC logs B-tree SMOs in any event to make the B-tree well-formed
prior to TC resubmitting its redo log records. This is essential be-
cause logical operations require that storage structures, e.g. a B-
tree, be re-traversed to find the page on which the operation is to be
applied since logical log records do not contain PIDs.
The DPT construction algorithms require information about pages

updated and pages flushed in order to build the DPT and to assign
rLSNs to its pages. Only the DC knows that information. Hence,
unless it passes that information to the TC (which violates the good
programming practice of information hiding), it is the DC that must
remember that information across system crashes. As with SMOs,
it can remember the information by logging it.
Our division of labor has the TC locking and logging logically

while the DC handles data access and cache management. This
avoids redundant costs. The DC logs the PIDs of pages made dirty
in a batched manner, and as with SQL Server, it logs the pages
flushed. This is the information needed to determine the pages in
the DPT and their rLSNs. Page PIDs are in physiological redo log
records, but not in logical redo log records. So having the DC log
the PIDs of dirty pages logs no extra information, it only changes
who logs it. And it is the DC that exploits both the dirty set and the
flushed set to improve its recovery performance by optimizing the
rebuilding of its cache.

433

4.1 ∆-log records
As indicated above, the DC needs to monitor pages made dirty

as well as pages made clean during normal execution. It does this
in a way similar to SQL Server’s technique for flushed pages. In
this section, we describe a ∆-log record, written during normal
execution, that contains the information that we need to optimize
recovery. How this information is used to construct our DPT during
recovery is described in the following section 4.2.
The TC and the DC coordinate during normal execution to pre-

pare for recovery by means of two control operations that are in
addition to data operations that the TC sends to the DC. These op-
erations, which affect DPT construction, are:
EOSL: The TC regularly sends the DC an LSN (called eLSN)

marking its “end of stable log”. The TC guarantees that
any operation with LSN ≤ eLSN is on the stable log. The
DC uses this information for cache management (it can flush
pages to stable storage that are dirtied only by operations
with LSN ≤ eLSN), and to prepare for optimized redo re-
covery, as explained below. EOSL is the operation used to
enforce the write-ahead log protocol.

RSSP: The TC controls its “redo scan start point”, the point on
its log at which it starts sending operations to the DC dur-
ing recovery, by sending the DC an LSN (called rsspLSN).
When the DC replies to this operation, it must have flushed
to stable storage all pages dirtied by any operation with an
LSN ≤ rsspLSN, ensuring that such operations do not need
redo. Thus RSSP is the operation by which the TC performs
checkpointing.

More about these operations, including how the TC implements
them, is described in [10, 12].
We write the ∆-log record containing DirtySet and WrittenSet

PID arrays, FW-LSN, FirstDirty, and TC-LSN to the DC log during
normal execution. The∆-log record format is thus the following:

∆-logRec = (DirtySet, WrittenSet, FW-LSN, FirstDirty, TC-LSN).

When an update for a page occurs, its PID is appended to Dirty-
Set. When the IO completes and is ack’d for a page flush, the
flushed page PID is appended to WrittenSet. The FW-LSN (the TC
“end of stable log” at the time of the first write) is recorded, simi-
lar to SQL Server. We also record a value called FirstDirty, which
is the index in DirtySet of the PID for the first dirtied page after
the first flush (the first updated page after the FW-LSN is written).
Finally, the TC-LSN is the value of eLSN from the most recent
EOSL operation, marking the TC’s “end of stable log” at the time
the∆-log record is written.
When a ∆-log record is written, we reset its fields so that the

monitoring can start from scratch for the interval to the next ∆-log
record. Note that unlike SQL Server’s BW-log records, recovery
correctness requires that all dirtied pages be captured in DirtySet.
If a dirty page is not captured in a ∆-log record, the DPT during
redo may not contain a dirty page and redo of an operation may
be falsely avoided. Figure 1 gives an overview of the elements in-
volved with logical redo recovery and its optimization. Part (A) of
the figure shows the normal operation work to prepare for recovery,
including ∆-log records.

4.2 Logical DPT Construction
TC and DC synchronize their recovery preparation. The TC in-

forms the DC as to when it is checkpointing its log, and what the
LSN of the bCkpt record is. The TC will start its redo scan at
that log record, ignoring log records earlier than that, once the DC
has confirmed that it has flushed all the relevant pages. At that
point, the TC writes the eCkpt record marking the checkpoint as

Figure 1: Schematic showing the operation of logical recovery
with the DPT optimization. The figure includes normal opera-
tion, DC analysis pass, and TC redo pass sections.

complete. The DC knows that pages updated earlier than the bCkpt
record have been made clean. Thus, the DC can start with an empty
DPT at this point. The DC learns the LSN of the bCkpt record as
the rsspLSN sent to it by the TC’s RSSP, and it records this value
on its log so that it knows which part of its (the DC’s log) needs to
be scanned during redo recovery.
Before the TC redo pass begins, a DC redo pass constructs the

DPT using the∆-log records only. DC recovery takes place before
the TC redo recovery to make sure that B-trees are well-formed
and to permit the DC to optimize TC redo recovery by constructing
the DPT. Thus, DC recovery includes the optimization task that in
ARIES is done by the analysis pass. Since the DC log is short
(e.g. no TC redo operations), this DC redo pass processes a much
smaller log than that needed for the analysis pass with integrated
recovery. After DC recovery, B-trees are well-formed and the DPT
has been built, with pages in the DPT having each been assigned
an rLSN. Further, we have identified the TC-LSN of the last∆-log
record, and have recorded that information.
The DC rebuilds the DPT starting at the first ∆-log record with

a TC-LSN greater than the last rsspLSN that the DC recorded on its
log. For each∆-log record encountered during the DC redo/analysis
pass, all the PIDs in the dirty set are added to the DPT. We distin-
guish the PIDs that were dirtied before the first write (FW-LSN),
i.e., those whose index in the DirtySet is less than FirstDirty, and
those that were dirtied after this first write. For the ones dirtied ear-
lier, their rLSN is set to the TC-LSN of the previous ∆-log record
(for the first ∆-log record encountered after the RSSP, we use rss-
pLSN). For the latter, their rLSN is set to the FW-LSN contained in
the∆-log record. If a PID was dirtied both before and after the first
write occurred, the later update will change lastLSN to FW-LSN

434

for the updated page in the DPT. This process and the distinctions
it makes is the reason for recording the FirstDirty index.
Then the flushed set of the ∆-log record is used to prune the

DPT. Using the flushed set, we prune DPT entries that refer to
pages last updated before the FW-LSN (the eLSN at the time of
the first write). These pages were either added from a previous ∆-
log record or they were dirtied in the current interval, but before
the first write occurred (and hence in both cases were dirtied be-
fore the FW-LSN). All of these entries have a lastLSN less than
the FW-LSN. Part (B) of Figure 1 illustrates the work done during
the DC redo/analysis pass to optimize for TC logical recovery, and
Algorithm 4 shows detailed pseudocode.

Algorithm 4 DPT construction in logical recovery
1: procedure DC-ANALYSIS-PASS(bCkptLSN)
2: DPT= null
3: prev∆LSN = bCkptLSN
4: for ∀∆-logRec with ∆-logRec.TC-LSN > bCkptLSN do
5: DC-DPT-UPDATE(∆-logRec, prev∆LSN)
6: prev∆LSN =∆-logRec.TC-LSN
7:
8: procedure DC-DPT-UPDATE(∆-logRec, prev∆LSN)
9: i = 0

10: for ∀ PID in∆-logRec.DirtySet do
11: if i < ∆-logRec.FirstDirty then
12: DPT.ADDENTRY(PID, prev∆LSN)
13: else
14: DPT.ADDENTRY(PID,∆-logRec.FW-LSN)
15: i = i+ 1

16: for ∀ PID in∆-logRec.WrittenSet do
17: e = DPT.FINDENTRY(PID)
18: if e %= null then
19: if e.lastLSN < ∆-logRec.FW-LSN then
20: DPT.REMOVEENTRY(PID)
21: else if e.rLSN< ∆-logRec.FW-LSN then
22: e.rLSN =∆-logRec.FW-LSN

4.3 Logical Redo Using the DPT
Once the DPT has been constructed by the DC, the TC redo pass

begins. The TC submits logical redo operations to the DC. These
are the same operations as submitted during normal execution. As
in the basic logical redo (Algorithm 2), the key values in the log
records are used by the DC to traverse a B-tree and identify the
PIDs of updated pages. Unlike basic logical redo, the DC can now
perform the redo test using the DPT it has constructed. However, it
cannot do this for every log record. It works in two modes, based
on whether the LSN of the TC operation is (1) less than or equal to
or (2) greater than the TC-LSN of the last∆-log record.
The PIDs of pages updated after the last ∆-log record (termed

the “tail of the log”) are not captured in the DPT. They are not
available to the DC when it constructs the DPT. This information
is in a DC buffer at the time of the crash, but has not been written
to a ∆-log record before the crash. For the tail of the log, we fall
back on the basic logical redo algorithm, bringing every updated
page into memory as needed and on demand. While this seems
dramatically worse than SQL Server recovery, it is not. In SQL
Server, records dirtied after the last BW-log record may also have
an entry in the DPT unnecessarily. The set of pages needing to be
read into the database cache is the same in both cases. But there is
an important difference. SQL Server knows the PIDs for the dirty
pages early and can, perhaps, pre-fetch them, something that is not
possible for the DC since it does not know these PIDs during DC
recovery. It only identifies these PIDs when it searches its B-tree
for the logical operations during TC redo recovery. Part (C) of

Figure 1 illustrates the work done by the DC during the TC redo
pass and Algorithm 5 provides detailed pseudocode.

Algorithm 5 DPT-assisted logical redo
1: procedure DC-LOGICAL-REDO-OPERATION(logRec)
2: currLSN = logRec.LSN
3: //Traverse the index to find the PID referred to by logRec
4: PID = BTREE.FIND(logRec.key)
5: if currLSN < last∆LSN then
6: e = DPT.FINDENTRY(PID)
7: if e = null ∨ currLSN < e.rLSN then
8: return
9: //Request the page p from the buffer manager
10: p = BPOOL.GET(PID)
11: if currLSN ≤ p.pLSN then
12: return
13: else
14: REDOOPERATION(p, logRec)

Constructing the DPT limits the pages that need to be fetched
during redo. However, when the early steps of the optimized redo
test fail (i.e., the page involved is in the DPT and the log record
LSN is greater than the rLSN for the page in the DPT), redo needs
to wait for the page to be fetched before it can perform the pLSN
test and perhaps execute the operation on the page. We cannot
eliminate the “need to wait”, but we can reduce the waits that we
encounter by prefetching pages. We describe page pre-fetching de-
tails in Appendix A. While this does not have as dramatic an effect
on redo performance as the DPT, it does result in a noticeable im-
provement as shown in our experiments of the next section.

4.4 Page Prefetch
Redo can issue a page prefetch request for a page before it en-

counters the log record that references this page. Thus, the page
may already be available in the database buffer and redo avoids
a stall. Further, by redo requesting pages in a batch, the buffer
manager can group contiguous pages and read them in a block, ex-
ploiting locality of access. The DPT can assist in this. Thus, page
prefetching can both reduce the number of stalls and the total num-
ber of IOs. In logical recovery, it is attractive to prefetch the internal
index pages (above the leaf level) as well, since those will need to
be accessed for every log record encountered. We describe index
page prefetching in logical recovery in Section A.1, and data page
prefetching for both logical and traditional recovery in Section A.2.

5. PERFORMANCE STUDY

5.1 Our Prototype
We implemented a logical recovery prototype derived from SQL

Server 2008. Our goal was to compare logical recovery perfor-
mance with the performance of physiological ARIES style recov-
ery. For that reason, we wanted to be able to run our experiments
in as controlled a way as possible. The result, as described below,
is that our logical recovery experiments execute recovery using the
same log with the same checkpointing as done for SQL Server ex-
ecuting physiological recovery.
We used a modified SQL Server database engine for normal exe-

cution. Because the recovery log must serve for both logical and
physiological recovery, it must contain information that enables
both forms of recovery. So, although logical log records do not use
PIDs, we do not remove PIDs from the SQL Server log records,
but ignore them during logical recovery. To remove them would
break SQL Server recovery. Further, we log the auxiliary informa-
tion needed by both recovery strategies. Thus, our normal execu-

435

tion modifications consist of providing ∆-log records for logical
recovery as well as BW log-records for SQL Server recovery. This
auxiliary information is a very small part of the log and does not
seriously perturb either normal execution or recovery performance.
The major part of our effort was to implement logical redo re-

covery so that we could compare its performance with the SQL
physiological redo. SQL Server uses log record PIDs to identify
the changed pages. For logical redo, we discover the PID of the
changed page by searching the B-tree index using the key from the
log record. Optimizing redo is done in log passes prior to redo.
The “DC redo” pass, which prepares the DC for optimized log-
ical redo by building the DPT, scans the integrated log from the
last checkpoint and is executed instead of the corresponding SQL
Server analysis pass. This pass uses the ∆-log records to build the
“logical” DPT and ignores normal operation log records.

5.2 Experimental Setup
Our prototype implementation provides a common set of “crashes”

and recovery logs to do side by side redo performance tests. In our
experiments, we compare the following methods.
Log0: Logical redo of Algorithm 2.
Log1: Logical redo of Algorithm 4, with DPT, without prefetch.
Log2: Logical redo of Algorithm 4, with DPT, with page prefetch.
SQL1: SQL Server redo, with DPT, without prefetch.
SQL2: SQL Server recovery, with DPT, with prefetch.
All results reported are for a single-table database of two at-

tributes, “key” and “data”. The table size is approximately 3.5GB
(436,000 pages, 108 rows). A clustered index of 832 pages (ap-
proximately 7MB) is created on the key. The B-tree has three in-
ternal index levels. In all cases, the index could be main memory
resident, a common situation for B-trees, whose fanout usually pro-
duces an index less than 1% of the size of the data. The workloads
are update-only, and consist of small transactions (10 updates per
transaction) that update the data attribute in a record identified by
an equality search on the key attribute. Unless otherwise stated, a
workload runs for double the time needed to fill the cache before we
conduct our experiments so that the cache is in steady state when
we do our recovery tests.
We vary the database cache from 64MB (approximately 2% of

database size), to 2048MB (approximately 60%). For each cache
size, we run an update workload until the cache is in equilibrium.
Specifically, we crash the server when 10 checkpoints have been
taken, 40000 updates have been seen since the last checkpoint, and
100 updates have been seen since the last ∆/BW-log record. This
causes the portion of the log that will be redone to contain approxi-
mately 40000 log records, and the tail of the log to contain approx-
imately 100 log records in all cases. The crash happens shortly
before a checkpoint is taken, which is the worst case for redo re-
covery. ∆-log records are written exactly before BW-log records
in order to ensure a fair comparison with SQL Server recovery.
In Appendix C, we examine and report on results when we vary

the checkpoint interval. In the next section, we report on the impact
of database cache size.

5.3 Some Results
Figure 2(a) shows the redo time of all the methods in millisec-

onds as database cache size is varied. Note that the performance of
the methods, with the exception of Log0, is negatively affected by a
larger cache size. Recall that the number of pages that Log0 will re-
quest (Equation 1) is equal to the length of the redo log since check-
point (approximately 40000 log records in our case). A larger cache

size can only help Log0, providing more room for these pages.
With a DPT, the number of pages requested is approximately

equal to the number of DPT entries, as our analysis in Appendix B
captures. Larger cache size causes the DPT to grow, and hence
the redo time. However, this growth is sub-linear (the x axis in
Figure 2(a) is in log scale). At every checkpoint, flush activity will
cause buffers to be cleaned, giving more room for dirty pages in the
cache. Since the checkpoint interval is the same for all the cache
sizes, a smaller cache tends to be more “dirty” at the time of the
crash. Figure 2(b) shows the DPT size as a percentage of the cache
size. The DPT size varies from 30% to 10% of the database cache
size. The largest cache sizes do not fill sufficiently to require early
flushing in the checkpoint interval and the DPT continues to grow
with unflushed pages. The DPT is not very effective for this case.
Optimized logical recovery performance is on a par with SQL

Server’s recovery performance. Log1 redo time is practically the
same as the SQL1 redo time. Log2 redo time is close to SQL2
redo time, except for the largest cache size, where it is 15% slower
than SQL2 redo time. Consider for example the 512MB cache size,
which is a bit more than 10% of the size of the database (a realistic
value in many systems). The DPT dropped the logical redo time by
65% (from Log0 to Log1). Prefetching pages (from Log1 to Log2)
dropped redo time a further 20%. So, our two optimizations (DPT
and page prefetching) are very important for logical redo perfor-
mance. We examine them more closely in turn.
First, the DPT can reduce the IOs due to data page stalls from

8% (for the 2048MB cache), up to 93% (for the 64MB cache). Our
DPT construction scheme is very efficient. Log1 issues exactly
the same data page requests as SQL1. The performance difference
between them is due to the index pages needed by Log1. However,
the wait time for index pages is modest, only 16% of redo time for
the 64MB cache, falling to 2% of redo time for the 2048MB cache.
This confirms our premise that rebuilding the database cache is the
most important factor for logical recovery performance.
The overhead of constructing the DPT is the extra DC ∆-log

records. Figure 2(c) shows the number of ∆-log records, as well
as SQL Server’s BW-log records seen in its analysis pass. There
are more ∆-log records than BW-log records because some ∆-log
records that contain only dirty pages need to be written as the cache
fills during each checkpoint interval. The flush activity at each
checkpoint cleans the cache and permits dirty page flushes to be
deferred temporarily following the checkpoint. For cache sizes up
to 1024MB, the number of∆-log records is no more than 1.5× the
number of BW-log records. We believe this is acceptable overhead
to get nearly identical performance between Log1 and SQL1.
Page prefetching (described more completely in Appendix A)

further reduces stalls by issuing IOs asynchronously before pages
are needed. Prefetching reduces stalls for both logical and SQL
Server recovery by two orders of magnitude. Running time reduc-
tion is smaller because some stalls are longer as we wait for a block
of pages to be cached. With prefetching, redo performance is more
variable and cannot be captured with a simple cost model. In Log2
and SQL2, data page stalls dominate if prefetching proceeds too
slowly. Log page stalls dominate if prefetching fills up the cache
too quickly. This is reflected in our experiments by the high vari-
ance of Log2 and SQL2 redo time. Further, when the size of the
DPT is large, more pages need to be fetched, and hence prefetch-
ing is more valuable. Thus, the benefits of prefetching are much
more visible in the larger cache sizes (see Figure 2(b)). Both SQL
and our prefetching schemes manage to reduce the effect of the
database cache size on redo performance. Our simple prefetching
scheme achieves practically the same performance as SQL Server
(always less than 15% slower).

436

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 64 128 256 512 1024 2048

R
e

d
o

 t
im

e
 (

m
se

cs
)

Cache size (MB)

Log0
Log1
Sql1
Log2
Sql2

(a) Redo recovery time (msecs).

 0

 5

 10

 15

 20

 25

 30

 35

 64 128 256 512 1024 2048

D
ir
ty

 p
a

rt
 o

f
th

e
 c

a
ch

e

Cache size (MB)
(b) Dirty percent of cache (%).

 0

 50

 100

 150

 200

 64 128 256 512 1024 2048

N
u
m

b
e
r

o
f
lo

g
 r

e
co

rd
s

se
e
n
 b

y
a
n
a
ly

si
s

p
a
ss

Cache size (MB)

Δ log records
BW log records

(c) ∆- and BW- records written.

Figure 2: Redo statistics for varying cache sizes.

6. DISCUSSION

6.1 Related Work
We know of no earlier work on logical recovery. Somewhat re-

lated is recovery for client-server architectures, EXODUS [5] and
ARIES/CSA [16]. A client maintains its buffer pool, the server is
responsible for recovery. These papers also used a DPT, relying
on the same intuition, i.e., that limiting the pages fetched during
recovery is the critical factor for recovery performance.
There has been very little work done on recovery performance

and most is twenty years ago or more [1, 2]. The March, 1985 is-
sue of the Data Engineering Bulletin [8] contains a set of papers
discussing recovery and its performance. Only the recent work
in [17] did a side-by-side comparison of recovery techniques. Most
were focused on the impact of recovery on normal execution per-
formance, not on the performance of recovery itself in bringing a
database back online. Reference [9] presents a slightly more recent
simulation study of ARIES recovery performance that identifies re-
building the database cache as the principal cost of redo recovery.

6.2 Conclusion
When one separates transactions from data access and knowl-

edge of data placement, recovery needs to be expressed logically.
Log records cannot contain PIDs. With a naive approach, state-of-
the-art recovery optimizations cannot be used. In this paper, we
have addressed the performance concerns regarding logical recov-
ery. We have shown that with modest actions by the DC, in par-
ticular recording pages dirtied by updates to enable the construc-
tion of a DPT, these optimizations are possible. In a side-by-side
comparison, our experiments demonstrate that logical recovery can
achieve performance comparable to physiological recovery. We
implemented one point of a spectrum of possibilities to establish
this. Other points in the spectrum are discussed in Appendix D.

ACKNOWLEDGEMENTS
Mike Zwilling invented SQL’s technique for dirty page table and
recovery LSNs. We benefitted greatly by conversations with Robin
Dhamankar and Cristian Diaconu of the SQL team.

7. REFERENCES
[1] R. Agrawal and D. J. DeWitt. Integrated concurrency control and

recovery mechanisms: Design and performance evaluation. ACM
TODS, 10(4):529–564, 1985

[2] R. Agrawal and M. J. Carey. The performance of concurrency control
and recovery algorithms for transaction-oriented database systems.
IEEE Database Eng. Bull., 8(2):58–67, 1985.

[3] D. S. Batory, J. R. Barnett, J. F. Garza, K. P. Smith, K. Tsukuda,
B. C. Twichell, and T. E. Wise. GENESIS: An extensible database
management system. IEEE TSE, 14(11):1711–1730, 1988.

[4] K. Delaney. Inside Microsoft SQL Server 2005: The storage engine.
Microsoft Press, 2007.

[5] M. J. Franklin, M. J. Zwilling, C. K. Tan, M. J. Carey, and D. J.
DeWitt. Crash recovery in client-server EXODUS. In SIGMOD,
pp. 165–174, 1992.

[6] J. Gray and A. Reuter. Transaction Processing: Concepts and
Techniques Morgan Kaufmann, 1993

[7] L. M. Haas, W. Chang, G. M. Lohman, J. McPherson, P. F. Wilms,
G. Lapis, B. G. Lindsay, H. Pirahesh, M. J. Carey, and E. J. Shekita.
Starburst mid-flight: As the dust clears. IEEE TKDE, 2(1):143–160,
1990.

[8] IEEE TCDE. Bulletin of the TC on Data Engineering. IEEE
Computer Society, 1985
http://sites.computer.org/debull/85JUN-CD.pdf

[9] A. Jhingran and P.Khedkar. Analysis of recovery in a database system
using a write-ahead log protocol. In SIGMOD, pp. 175–184, 1992.

[10] J. Levandoski, D. Lomet, M. Mokbel, and K. Zhao. Deuteronomy:
Transaction Support for Cloud Data. In CIDR, 2011.

[11] D. B. Lomet. MLR: A recovery method for multi-level systems. In
SIGMOD, pp. 185–194, 1992.

[12] D. B. Lomet, A. Fekete, G. Weikum, and M. J. Zwilling. Unbundling
transaction services in the cloud. In CIDR, 2009.

[13] D. B. Lomet and M. F. Mokbel. Locking key ranges with unbundled
transaction services. PVLDB, 2(1):265–276, 2009.

[14] D. B. Lomet and M. R. Tuttle. A theory of redo recovery. In
SIGMOD, pp. 397–406, 2003.

[15] C. Mohan, D. J. Haderle, B. G. Lindsay, H. Pirahesh, and P. M.
Schwarz. ARIES: A transaction recovery method supporting
fine-granularity locking and partial rollbacks using write-ahead
logging. ACM TODS, 17(1):94–162, 1992.

[16] C. Mohan and I. Narang. ARIES/CSA: A Method for Database
Recovery in Client-Server Architectures. In SIGMOD, pp. 55–66,
1994.

[17] M. Vaz Salles, T. Cao, B. Sowell, A. Demers, J. Gehrke, C. Koch,
W. White: An Evaluation of Checkpoint Recovery for Massively
Multiplayer Online Games. PVLDB 2(1): 1258-1269 (2009)

437

APPENDIX
A. PAGE PREFETCH
Prefetching pages avoids stalling waiting for updated pages to

be read into the cache during recovery. SQL Server exploits this in
its redo recovery. In addition, SQL Server can read blocks of eight
contiguous pages with a single IO. We want logical recovery to be
able to exploit prefetch as well.

A.1 Prefetching Index Pages
Because logical recovery log records have no page information,

all updates need to traverse the B-tree index to discover the page on
which an update is to be applied. Hence, index pages are needed
by the DC during recovery, even if they have never been updated.
The simplest way to acquire the needed index pages is to load

them “on demand”. The B-tree root will be loaded immediately,
and then the path to the page on which the first redo operation is di-
rected will be loaded. Subsequent operations will load the missing
parts of their paths, and over time, searches will mostly hit pages
that are already in the DC cache. However, initially, while the in-
dex pages are being loaded into the DC cache, redo will proceed
very slowly as each new redo log record will need to wait for one
or more index pages to be loaded before we even know what page
is to be updated. Hence, even our optimized redo test needs to wait
for index pages before the test can be applied.
There are several ways these index pages might be pre-loaded

into the DC cache. For example, we can write DC log records
that contain index page IDs, and use those to prefetch index pages
during TC redo. However, at least in the common case, the number
of internal index pages is very small compared to the number of
data pages that need redo. Hence, we choose for the DC to simply
load all index pages into memory at the beginning of DC recovery.

A.2 Prefetching Data Pages
Prefetching data pages has a large impact on redo performance.

The number of data pages that need to be brought in is typically
much greater than the number of log or index pages, and the time
waiting for these pages accounts for most of the redo time. Two
strategies to prefetch data pages in the SQL Server setting where
update log records have PIDs are log-driven and DPT-driven.
In the log-driven case, a read-ahead mechanism requests a cer-

tain number of log pages that follow the current log record. The
PIDs contained in these log records are checked. If a PID is in
the DPT, and the rLSN of the DPT entry is less than the LSN of
the log record we are currently examining, then a prefetch for the
corresponding page is issued. A disadvantage of this strategy is
that a prefetch request for the same page might be issued multiple
times if the same page appears in nearby log records. This is the
prefetching scheme implemented in SQL Server.
DPT-driven prefetching does not depend on the log. After the

DPT has been constructed, pages in the DPT are prefetched in
the order of their rLSNs. This approach has the advantage of not
depending on the log prefetching mechanism. Rather, data page
prefetching proceeds independently. However, if there is a large
gap between the first and last reference of a certain page, the page
may be flushed in the meantime. In that case, redo will need to
perform a synchronous IO to bring the page back. More impor-
tantly, synchronizing DPT-based prefetching with the log scan can
be hard. If prefetching proceeds too quickly, pages may get flushed
before the redo scan requests them. If it proceeds too slowly, redo
may need to wait for the pages to be brought in.
We chose to loosely follow the SQL Server method to minimize

changes. The ∆-log records contain all the dirty pages in update

order. During the DC analysis, we construct a list of PIDs (termed
the prefetch list–PF-list) which is roughly the concatenation of the
DirtySet’s of ∆-log records. In particular, a PID of a DirtySet is
added in the PF-list if it is not already contained in the DPT. The
PF-list serves as our approximation to the log. We then execute
“log-driven” read-ahead using the PF-list instead of the log.

B. PERFORMANCE ANALYSIS
Our tests confirm that redo recovery performance is mostly gated

by I/O latency for data pages. Since redo starts with a clean data-
base cache, redo performance depends on: (i) how many data pages
are requested from the buffer pool (the DPT reduces the number of
pages needed); and (ii) how often and how long redo waits for the
pages (rLSNs and prefetching reduce waits). Log pages are fewer
and are fetched sequentially and all methods process the same log.
Finally, logical recovery needs to fetch index pages, a burden it
does not share with physiological recovery, and this burden is in-
cluded in our results. Having the index in cache at the end of redo
improves both logical undo and normal performance after redo, an
advantage for logical redo that we do not measure in our results.
Several factors impact the recovery task. First is the size of the

database cache. This effect is not obvious. While a larger cache
gives more room for redo to cache pages (hence fewer page swaps),
during normal execution it increases the size of the DPT at recov-
ery, and hence the number of pages that need to be fetched during
recovery. We explore the effect of the database cache in Section 5.3.
Second, the distribution of the workload affects redo performance

in an obvious way. The better the page locality of the workload,
the fewer unique pages appear in update log records, and hence the
smaller the DPT size. We use a uniform workload in our experi-
ments, which represents the worst case for redo recovery.
Finally, the checkpoint interval affects redo time. A larger check-

point interval implies a longer redo log and more redo log records
to process. However, if the cache is in equlibrium at the time of the
crash, the number of dirty pages and thus the DPT size may not be
greatly affected by a larger checkpoint interval. We use the default
SQL Server checkpoint interval in our workloads. In addition, we
experimented with a larger checkpoint interval, and the results are
as expected. We present these results in Appendix C.
When page prefetching is off (i.e., for the methods Log0, Log1,

and SQL1), all IO is synchronous, and redo performance can be ap-
proximated with a simple IO model. For Log0, every page updated
in the redo log since the last checkpoint will need to be fetched
(“No. of log records”), in addition to the index and log pages. As-
suming that every log record contains a different PID, and ignoring
page swaps,

COST(Log0) # No. log records + log pages + index pages. (1)

For SQL1, the number of data pages that need to be brought to
memory is approximately equal to the size of the constructed DPT:

COST(SQL1) # DPT size+ log pages. (2)

Finally, for Log1, the number of data pages fetched is the size of
the DPT plus the number of log records in the tail of the log. Recall
that for the tail of the log recovery needs to fall back to the basic
logical redo algorithm:

COST(Log1) #DPT size+ No. log records in log tail+
log pages + index pages. (3)

The performance difference between Log1 and SQL1 is the burden
imposed by the index pages, and more importantly, the quality of
our DPT construction scheme.

438

Thus, the primary workload we execute (pure updates, uniformly
distributed) maximizes the number of pages dirtied, and hence the
number of dirty pages in the cache and therefore the size of the
DPT. This is a worst case recovery scenario, even more so because
we do not include reads in our workload. Reads dilute the cache
“update density”, meaning that fewer pages are dirty at any time.

C. CHECKPOINT INTERVAL
The length of the checkpoint interval also impacts recovery time

in our logical recovery. We varied the checkpoint interval from
the default in SQL Server (ci1) to ci2 = 5ci1 and ci3 = 10ci1,
resulting in a 5× and 10× larger redone log respectively. Figure 3
shows the redo time for both the default and the enlarged intervals
(in logarithmic scale). The redo time of Log0 grows linearly with
checkpoint interval size. This is expected; since Log0 does not
use a DPT, the number of pages that will be brought to memory is
approximately equal to the number of log records (see Equation 1).
The redo times of Log1 and SQL1 are affected, but not linearly.

When the checkpoint interval is 5 times larger, Log1 and SQL1
times approximately double. Two factors contribute to enlarged
redo time. First, the number of log pages that need to be read is
5 times larger. Second and most importantly, the dirty part of the
cache (and thus the DPT) is larger, because the checkpoint flushing
activity occurs more rarely.
Log2 and SQL2 are affected only modestly by the enlarged check-

point interval. Their redo times are 1.2 times larger than Log1 and
SQL1 respectively when the checkpoint interval grows from ci1 to
ci2. With the enlarged checkpoint interval, there are 5 times more
log records (and thus 5 times more calls to the data page prefetch-
ing routine), but only twice as many pages to be prefetched (the
size of the DPT). Thus, the benefits of prefetching are more visible
in this case. The same effect can be observed when the checkpoint
interval grows from ci2 to ci3. The effect of the checkpoint interval
is the same for both our logical, and SQL Server recovery.

105

106

107

1 5 10

R
ed

o
tim

e
(m

se
cs

)

checkpoint interval / default checkpoint interval

Log0
Log1

SQL1
Log2

SQL2

Figure 3: Redo time (msecs, logarithmic scale) when varying
the checkpoint interval from the SQL Server default (ci1) to
ci2 = 5ci1 and ci3 = 10ci1.

D. SOME ALTERNATIVES
The DPT construction algorithm described in Section 4.2 is not

the only one that can be followed by logical recovery. It is merely
one point in a spectrum of choices, representing a particular trade-
off between the amount of DC logging and the accuracy of the final
DPT. Our point on this spectrum is toward the low logging end
to keep overhead during normal operation low. Indeed, we log
roughly as much as SQL Server does for integrated recovery. At
the same time, the constructed DPT has roughly the same accuracy
as the DPT constructed by SQL Server. Alternative choices we
explored are discussed in Section D.

D.1 “Perfect” DPT
The DC can construct an almost perfect DPT (excluding the log

tail), if it captures every update to a page together with the update’s
LSN. This requires adding an array of LSNs to be kept at runtime,
and added to the ∆-log record, call it the DirtyLSNs array. This
means that ∆-log records will be written more frequently, or that
they will occupy more space. At the time of the DC analysis pass,
the DC has enough information to construct exactly the same DPT
as SQL Server. In theory, this means that logical recovery will
have exactly the same performance as traditional recovery (exclud-
ing the overhead of traversing the B-tree, and handling the tail of
the log). Although this choice is attractive, it requires additional
logging compared to SQL Server recovery.

D.2 Reduced Logging
At the other end of the spectrum, we can exclude the FW-LSN

and FirstDirty fields from the ∆-log record. In this case, all the
pages in the dirty array, when added to the DPT during analysis,
must have an rLSN set to the TC-LSN of the previous∆-log record.
The flushed set of a∆-log record can be used to prune pages from
the DPT that were added when prior∆-log records were processed,
but not from the current ∆-log record. We chose to add the two
fields to our∆-log record because the logging cost is minimal, and
this information improves recovery performance somewhat.
When monitoring dirty and flushed pages, we might strive to

avoid duplicates. For example, if a page is dirtied and then cleaned,
we may want to remove its PID from the dirty PID array. However,
this would require deletes in the dirty PID array, which are order
N operations. We decided to avoid that to reduce overhead during
normal operation.

439

