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ABSTRACT
Index tuning, i.e., selecting the indexes appropriate for a workload,
is a crucial problem in database system tuning. In this paper, we
solve index tuning for large problem instances that are common in
practice, e.g., thousands of queries in the workload, thousands of
candidate indexes and several hard and soft constraints. Our work
is the first to reveal that the index tuning problem has a well struc-
tured space of solutions, and this space can be explored efficiently
with well known techniques from linear optimization. Experimen-
tal results demonstrate that our approach outperforms state-of-the-
art commercial and research techniques by a significant margin (up
to an order of magnitude).

1. INTRODUCTION
The problem of index tuning can be loosely defined as follows:

Given a workload, a set of candidate indices, and a set of con-
straints (e.g., a storage budget, a time budget for index construc-
tion, or constraints on the characteristics of indexes), select a sub-
set of the candidates that optimize workload evaluation and satisfy
the constraints. Index tuning is crucial in database system tuning,
since indexes are supported in all major database systems and, if
selected carefully, can enable orders of magnitude improvement in
workload performance. Naturally, all commercial systems provide
automated index tuning methods that assist administrators in this
challenging and important task [20, 1].

In this paper, we solve the index tuning problem for large in-
put specifications that are common in real-world systems, e.g., a
workload with thousands of statements, thousands of candidate in-
dices, and several soft and hard constraints. Existing index tuning
techniques [4, 14, 3] cannot handle such specifications efficiently
and hence force administrators to limit the scope of index tuning,
e.g., by using a smaller workload, fewer candidate indexes or fewer
constraints, or by tuning less frequently. This scale-down increases
the work of the administrator and negatively affects the quality of
tuning–clearly, a lose-lose situation.

The inefficiency of existing techniques stems from several fac-
tors that reflect the challenges behind index tuning. First, the space
of possible solutions grows exponentially with the number of can-
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didate indices. This is an inherent property of the problem [7],
since indexes interact in terms of their benefit and hence a greedy
selection of indexes does not lead to a good solution. Moreover,
automated techniques have to rely on what-if optimization in order
to assess accurately the benefit of an index-set on a specific query.
A large input workload, combined with the large solution space,
implies a very high number of what-if optimization calls, thus in-
creasing the cost of index tuning dramatically.

Recent methods for fast what-if optimization [15, 5] have been a
major development in the area, as they can reduce significantly the
cost of index tuning. However, these methods only speed up a sin-
gle component of the process. The fundamental issue remains that
the solution space lacks “structure”, i.e., it is necessary to explore
an exponential number of index-sets, without much knowledge on
the relationship between solutions.

Our work takes a radically different approach to index tuning.
The starting point is the aforementioned methods for fast what-if
optimization. Instead of treating them like a black box, as is the
norm in previous works, we analyze their computation and prove
a key theoretical result: Any index tuning technique that employs
fast what-if optimization essentially solves a compact binary inte-
ger program (BIP), whose number of variables grows linearly with
the size of the input specification. In effect, we can perform index
tuning by employing fast, off-the-shelf BIP solvers, thus taking ad-
vantage of more than 60 years of research and development in the
field of linear optimization. Ours is the first work to uncover this
deep link between index tuning and linear optimization and to show
that the solution space is well structured. A previous study [14]
considered a similar connection at a much higher level, without ex-
ploring the structure of the solution space.

The technical contributions of our work are as follows:

• We prove that index tuning with fast what-if optimization is equiv-
alent to a compact BIP (§3). The derivation of the BIP requires
only few what-if optimization calls (to initialize the method for
fast what-if optimization). Once derived, the BIP can be solved
efficiently with existing methods from linear programming with-
out any what-if optimization calls.

• We develop a novel index tuning technique, termed CoPhy, that
builds on our BIP-based formulation of the index tuning problem
(§4). CoPhy is a simple, portable technique that employs an off-
the-shelf BIP solver to perform index tuning. Moreover, it lever-
ages well known techniques from linear programming in order to
support soft constraints, early termination with quality bounds,
and fast re-tuning for small changes to the input specification.

• We demonstrate CoPhy’s effectiveness experimentally (§5). Co-
Phy consistently outperforms state-of-the-art commercial and re-
search index tuning techniques [3,20,14], both in solution quality
and in total execution time.
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2. THE INDEX TUNING PROBLEM
We are given a relational database with n tables T1, . . . , Tn. A

configuration X is a set of indices defined over the database tables.
We do not place any limitations on the indices regarding their type
or the type or count of attributes that they cover, except that each
index is defined on exactly one table (e.g., no join indices).

We are also given a (representative) workload W that comprises
SELECT and UPDATE statements over the database. Given a SE-
LECT statement q in W , we use cost(q,X) to denote the cost
of the optimal plan to evaluate q assuming that only the indices
in X are available. In existing database systems, cost(q,X) can
be computed efficiently by invoking the what-if optimizer. The
latter performs a normal optimization of q, “faking” the statistics
for the hypothetical indices in X . Following common practice,
we model an update statement q in W as a query shell qr that
selects the tuples to be updated, and an update shell qu that per-
forms the update on the selected tuples and also updates any af-
fected indices. We assume that each affected index a has an in-
dependent maintenance cost, denoted as ucost(a, q), which can
be estimated again through the what-if optimizer. Hence, the to-
tal cost of an update statement can be expressed as cost(q,X) =
cost(qr, X)+

∑
a∈X ucost(a, q)+ cq , where the last term is sim-

ply the cost to update the base tuples. In what follows, we use Wr

to refer to the SELECT statements and query shells in W , and Wu

to refer to the update statements in W .
Let S = S1 ∪ · · · ∪ Sn be a set of candidate indices, where

each Si contains candidate indices for table Ti, 1 ≤ i ≤ n. Set
Si can be derived with automated methods (by analyzing W ) or
manually curated by the administrator. The goal of index tuning is
to find the configuration from S that minimizes the total evaluation
cost for the representative workload W and also satisfies a set of
constraints C (more on that later).

Index Tuning Problem Given a workload W (with a weight fq
per q ∈ W ), a set of candidate indices S, and a set of constraints
C, find X∗ such that X∗ = argmin{

∑
q∈W fqcost(q,X) |X ⊆

S}, and X∗ satisfies the constraints in C.

The weight fq can represent the frequency of the statement, or
some hand-tuned importance metric specified by the DBA.

The set of constraints C states the required properties for the
chosen configuration X∗. A common constraint is that the total
storage space for X∗ does not exceed some budget M . A different
constraint may be that the total update cost of the selected indices
does not exceed some threshold. Yet another constraint may be
that X∗ should contain at most one clustered index per table. In
our work, we allow C to comprise constraints expressed in the rich
language proposed by Bruno and Chaudhuri [4]. We also allow for
“soft” constraints that may be violated by X∗, in the same spirit
as [4]. We discuss constraints in more detail in §3.2.

To simplify our notation, we henceforth assume that each state-
ment in W references a specific table Ti at most once1. (The ex-
tension to the general case is straightforward but the notation gets
very complicated.) Under this assumption, a configuration A ⊆ S
is called atomic [10] if A contains at most one index from each Si.
We represent A as an n-vector, where the element A[i] is an index
from Si or the special symbol I∅ if no index from Si is selected.
We use atom(X) to denote the set of atomic configurations in X .

Index Advisors. An index advisor is an algorithm that solves
an instance of the index tuning problem. At a high level, the in-
dex advisor generates a state space of configurations based on S,
and then invokes a search strategy to find the optimal state. The
industrial-strength index advisors typically requires thousands of

1We consider each tuple variable on Ti as a separate reference.
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Figure 1: The left part shows a template plan for a sample
join query. The grey ovals denote concrete physical operators,
whereas the white ovals denote the holes of the template. Hole
i corresponds to the access of table Ti based on a sorted or-
der. On the right part, the template plan is instantiated to a
specific physical plan using concrete access methods from an
atomic configuration A. The configuration A has the following
contents: A[1] = a, an index with key T1.x; A[2] = I∅; and,
A[3] = b, an index with composite key (T2.x, T2.w).

what-if calls, as it needs to evaluate cost(q,X) for every q ∈ W
and many different choices of X ⊆ S.

Two recent studies have proposed the INUM [15] and C-PQO [5]
methods to significantly speedup what-if optimization for the in-
put workload W . Both methods implement a what-if optimization
interface that wraps the existing what-if optimizer. We describe
INUM in more detail because we have more experience at hand,
but the same principles apply for C-PQO. Given a workload W ,
INUM preprocesses each SELECT statement and query shell q by
making a few carefully selected what-if optimization calls. Using
the information gathered from these calls, INUM creates a set of
template plans for q, denoted as TPlans(q), that essentially en-
code the space of optimal plans for q according to the what-if op-
timizer. A template plan p ∈ TPlans(q) is a physical plan for q
except that all access methods (i.e., the leaf nodes of the plan) are
substituted with “slots”. Figure 2 shows an example for a simple
query. Given an atomic configuration A, there is a unique physical
plan that is instantiated from p by “plugging” the slots with access
methods from A. We use icost(p,A) to denote the cost of this
unique plan. Note that icost(p,A) may be infinite if A does not
have suitable access methods for all slots in p.

Given a configuration X , INUM approximates cost(q,X) as
the minimum of icost(p,A) for all p ∈ TPlans(q) and A ∈
atom(X). As shown in the original study [15], this is an accu-
rate approximation for the purpose of index tuning, and is orders-
of-magnitude faster to compute compared to a what-if optimiza-
tion. Note that searching through the atomic configurations elim-
inate plans that benefit from index intersections. In the context of
index tuing, however, anecdotal evidence suggests that index in-
tersections do not improve the solution quality [5], therefore we
ignore their effect in the rest of the paper.

Overall, an index advisor can use INUM or C-PQO to approxi-
mate cost(q,X) efficiently and accurately. This approach results in
minimal to no loss in the quality of the solution while reducing total
execution time of the advisor by several orders of magnitude [5,15].
It is natural to assume that this type of fast what-if optimization will
become standard for index advisors, and thus we henceforth con-
sider the index tuning problem when INUM or C-PQO are used to
approximate cost(q,X).

3. INDEX TUNING ≡ BINARY INTEGER
PROGRAM

The main result of our work can be summarized as follows: If
cost(q,X) is computed using INUM or C-PQO, then index tun-
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ing becomes a binary integer program (BIP). The implication is
that we can solve the index tuning problem efficiently, robustly,
and in a principled fashion, using off-the-shelf, mature BIP solvers.
This idea forms the foundation of the CoPhy index advisor that we
present in the next section.

The result hinges on a specific property of cost(q,X) that we
term linear composability. We define this property below, and then
show that it holds when cost(q,X) is computed by INUM or C-
PQO, in the absence of index intersections.

DEFINITION 1. Function cost is linearly composable for a SE-
LECT statement q if there exists an integer Kq and constants βqk

and γqkia for k ∈ [1,Kq], i ∈ [1, n], a ∈ Si ∪ I∅, such that:

cost(q,X) = min{βqk +
∑

i∈[1,n],a=A[i]

γqkia, k ∈ [1,Kq], A ∈ atom(X)},

for any configuration X .
Function cost is linearly composable for an UPDATE statement

q if it is linearly composable for its query shell qr .

LEMMA 1. In the absence of index intersections, cost is lin-
early composable if it is computed by INUM or C-PQO.

The complete proof appears in the appendix, but we briefly dis-
cuss the case of INUM to build some intuition. For INUM, Kq =
|TPlans(q)| and each k corresponds to a distinct template plan p.
In turn, the expression βqk +

∑
γqkia corresponds to icost(p,A),

where βqk is the execution cost of the internal operators in p (termed
the internal plan cost in [15]), and γqkia is the total cost of access-
ing the table at slot i using the access method A[i].

Linear composability provides a formal characterization for tech-
niques like INUM or C-PQO that pre-process q through the what-if
optimizer in order to compute cost(q,X) efficiently for any X .
The significance of the property is that it casts the selection of the
optimal plan for a given X as a minimization over a set of linear
expressions. Does this imply that the query optimizer employs a
linear cost model? The answer is no. The non-linearity of the opti-
mizer’s cost model (which has been shown experimentally [16]) is
encoded in the constants βqk and γqkia which are query-specific.
In other words, linear composability does not limit the application
of our techniques in real-world systems.

We develop our main result in the following sub-sections. To
facilitate presentation, we first consider the case where C = ∅,
i.e., no constraints are specified, and then extend to the general
definition of the index tuning problem.

3.1 Base Case: No Constraints
We begin with the formal statement of the main result, and then

discuss its implications.

THEOREM 1. Let (W,S,C) denote an instance of the index
tuning problem. If C = ∅ and cost is linearly composable for
every q ∈ W , then solving the index tuning problem is equivalent
to solving the following Binary Integer Program (BIP):

Minimize:
∑

q∈Wr
k∈[1,Kq ]

fqβqkyqk +
∑

q∈Wr
k∈[1,Kq ]
i∈[1,n]

a∈Si∪{I∅}

fqγqkiaxqkia +
∑

q∈Wu
a∈S

fqzaucost(a, q),

For:

xqkia ∈ {0, 1}, yqk ∈ {0, 1}, za ∈ {0, 1}

Subject to:

∑

k∈[1,Kq ]

yqk = 1,
∑

a∈S+
i

xqkia = yqk, za ≥ xqkia

The solution to the index tuning problem is computed as X∗ =
{a | a ∈ S ∧ za = 1}.

The proof is quite lengthy and appears in the appendix (§B). In-
tuitively, each variable za controls the selection of index a in the
final configuration X∗, while variables yqk and xqkia control the
choice for k and A that yield the minimal value for cost(q,X∗) un-
der linear composability (see Definition 1). The constraints ensure
that only one k is selected and that A is a member of atom(X∗).
Clearly, there is a connection between the linear composability of
cost and the final BIP, but, as shown in our proof, the derivation is
not obvious.

The theorem has profound implications on the complexity of in-
dex tuning in practice.

1 Any index advisor that employs a linearly composable query cost
function (such as the one computed by INUM or CPQ-O) will ba-
sically solve a BIP. Essentially, a linearly composable cost func-
tion exposes a significant amount of structure in the index tuning
problem, which is absent if the what-if optimizer is treated as a
black box. As we discuss in §3.2, we can extend the BIP with
additional linear constraints to encode a non-empty C, and hence
the theorem extends to the general case.

2 We can use off-the-shelf BIP solvers to perform index tuning. The
advantages are numerous and significant: we leverage the exten-
sive research and development done in the field of linear pro-
gramming for the past sixty years; we simplify the development
of the index advisor; and, we obtain dramatic improvements in
scalability and efficiency. Note that the number of variables in
the BIP grows linearly with the number of relations n, the num-
ber of candidate indices in S, and the total number of template
plans (which typically grows linearly with the size of the work-
load [15]). Off-the-shelf solvers routinely handle hundreds of
thousands of variables, which means that they are very well suited
to solve the index tuning problem efficiently.

3 By relying on fast, mature BIP solvers, we enable an interactive
paradigm for index tuning. A BIP solver can return a solution
within minutes (sometimes, within seconds!) even for a large
number of variables, thus allowing the administrator to perform
several tuning sessions. Moreover, BIP solvers provide contin-
uous feedback on the distance between the currently computed
solution and the final solution. The administrator can choose to
terminate the tuning session early if the current solution is within
an acceptable distance, e.g., within 5% of the final solution, thus
reducing further the total time to perform index tuning.

Does the theorem change the complexity of index tuning? The
answer is negative. In principle, solving a BIP is NP-Hard and
this matches the complexity bound of index tuning [7]. However,
off-the-shelf solvers perform much better for real-world problem
instances, which is verified in our experimental study.

Our final observation is that the original INUM and C-PQO work
focused on the efficiency of what-if optimization, and missed this
important connection between the index tuning problem and BIP.
The proof of the theorem reuses some of the machinery introduced
in [15], but the underlying analysis is one of the novelties of our
work.
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Figure 2: The architecture of CoPhy.

3.2 Adding Constraints
We extend Theorem 1 to the case where C *= ∅, i.e., when the

optimal configuration must satisfy constraints specified by the da-
tabase administrator.

Any constraint that can be written in linear form can be incorpo-
rated in the BIP of Theorem 1 without further changes. Most prac-
tical constraints actually fall in this category, and hence Theorem 1
remains relevant for a large number of real-world scenarios. For in-
stance, in the appendix we discuss how to derive linear constraints
for all the use cases on constrained physical design tuning from the
study of Bruno and Chaudhuri [4], including but not limited to con-
straints on individual indexes, on the selected combination, and on
the choice of clustered indexes. In fact, every constraint expressed
in the language of that study can be converted to a linear constraint
that can be added to our BIP, except for non-linear aggregate func-
tions and constraints encoded in UDFs.

To illustrate the gist of our approach, we describe here how to
handle the typical constraint of a storage budget. The constraint
can be stated as

∑
a∈X∗ size(a) ≤ M , where size(a) denotes the

estimated size of index a, and M is the storage budget. Using the
variable za that tracks the selection of an index in the final configu-
ration, the storage constraint can be encoded as

∑
a∈S zasize(a) ≤

M . This new constraint is simply added to the BIP of Theorem 1
without further modifications.

The easy incorporation of additional constraints exemplifies the
power of our approach. In particular, it is instructive to make a
qualitative comparison to the index advisor developed by Bruno
and Chaudhuri [4], which employs a significant amount of machin-
ery on top of an existing index tuning technique in order to handle
the same class of constraints. On the other hand, our approach re-
lies on off-the-shelf software to provide similar functionality, and
brings features (e.g., feedback on quality of solution, very fast so-
lutions) that are not possible with other techniques.

Currently, our method does not support constraints that cannot
be written in a linear form. It may be possible in certain cases to
relax the optimization problem in order to incorporate such con-
straints at the cost of generating an inferior solution, but we have
not identified thus far the need for such constraints in practice.

Finally, we note that it is possible to designate some constraints
as soft, which leads to the generation of several solution along a
Pareto-optimal curve. We discuss this issue in the next section,
since soft constraints are handled outside of the BIP solver.

4. COPHY
This section introduces the CoPhy index advisor. CoPhy’s foun-

dation is the BIP-based formulation of the index tuning problem
that we presented earlier. In addition, CoPhy includes a module
for candidate-index generation, supports soft constraints, exports
an interface for interactive tuning, and allows the DBA to termi-
nate the tuning process early, based on feedback on the quality of
the current solution.

Figure 2 shows the high-level design of CoPhy. In what follows,
we summarize the functionality of each component.

INUM takes W as the input and invokes the DBMS’s what-if opti-
mizer to determine TPlans(q) for each query q in W . INUM sits
outside the DBMS, and uses commonly available APIs to commu-
nicate with the DBMS optimizer.

CGen takes as input W , examines each query to generate a large
number of candidate indices based on the referenced columns, and
then forms the candidate set S as the union of the per query sets.
The DBA may also specify a set of interesting indices SDBA which
are added to S. The per query candidates are generated using more
or less well known heuristics from the literature. In contrast to
existing index advisors, CGen does not apply any complex pruning
heuristics, and hence the final set S may be quite large.

BIPGen takes S as input, and the template plans, and builds the
BIP using Theorem 1.

Solver takes C and the BIP as inputs, and merges them into another
BIP using the methods discussed in §3.2. The expanded BIP is then
handed to an off-the-shelf BIP solver to generate the solution X∗.
Set C contains hard constraints (Chard) that must be satisfied by
X∗, and soft constraints (Csoft) that conceptually must be satisfied
to the extent possible. The Solver also implements the novel fea-
tures of CoPhy mentioned earlier, namely, interactive tuning and
early termination.

Overall, CoPhy employs off-the-shelf software and generic com-
ponents and is thus easy to port across several systems. INUM is
the only component that interfaces with the DBMS and requires
system-specific customization, but it too is easily portable since it
relies on two services that are common in modern systems: a what-
if optimizer, and the ability to force specific physical plans through
hints. Our own implementation experience corroborates these ob-
servations: our CoPhy prototype is implemented in 2K lines of Java
code and supports two very different commercial DBMSs.

The remainder of the section describes the details of the Solver
component, which is at the heart of CoPhy. We first describe the
computation of a solution X∗, and then discuss the novel features
of early termination and interactive tuning.

Function Solver(B, Chard)
Input: A BIP B describing the tuning problem instance, and a set of

hard constraints Chard.
Output: A recommended index set X∗

if BIPSolver.isNotFeasible(B + Chard) then1
raise InfeasibleException ; // Problem is infeasible2

BR = relax(B) ; // Apply Lagrangian Relaxation3
X∗ = BIPSolver.solve(BR + Chard) ; // Solve the problem4
return X∗;5

Figure 3: Solver pseudo-code for C = Chard.

4.1 Solver
We describe the main ideas assuming that no soft constraints are

specified (Csoft = ∅) and then discuss the general case.
Algorithm 3 shows the Solver pseudo-code assuming that C =

Chard. The Solver takes as input a BIP B, formulated according
to Theorem 1, and the set of constraints, and outputs an index set
X∗ that minimizes cost(X∗,W ) and satisfies all the constraints.
Internally, the Solver employs an off-the-shelf BIP solver, denoted
as BIPSolver, which is used to generate the final solution. This in-
ternal component is treated as a black box that can be swapped with
a better implementation, and hence the Solver (and CoPhy in gen-
eral) can benefit from advances in the area of linear optimization
solvers immediately.
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The first step in the pseudo-code (line 1) invokes BIPSolver to
check the feasibility of the input BIP B, i.e., whether any con-
straints in Chard cannot be satisfied. This check is supported by all
off-the-shelf solvers and is done very efficiently. If it fails, CoPhy
essentially terminates and reports to the DBA the identified con-
straints. The DBA has the option of removing the reported con-
straints or converting them to soft constraints.

The next step (line 3) employs the well known technique of La-
grangian Relaxation [11] to transform B to an equivalent BIP BR.
The purpose of this transformation is to avoid corner cases in B
that would increase the execution time of BIPSolver. The details
are beyond the scope of the presentation, but the key trick is to
move the constraint

∑
a∈Si∪{I∅}

xpia = yp inside the objective
function. Note that this transformation is independent of any other
constraints in C. Once the relaxed BIP is built, BIPSolver is in-
voked to generate a solution (line 4).

Handling Soft Constraints. We describe the incorporation of soft
constraints with a simple example. Suppose that the DBA speci-
fies a soft constraint on the storage budget,

∑
a∈X∗ size(a) ≤ M .

The idea is that a solution X∗ can exceed the storage budget M as
long it yields a reduced workload cost compared to any other other
solution that has a lower total storage. Hence, instead of generating
a single solution as in the case of solely hard constraints, the index
advisor generates a a set of solutions that are Pareto-optimal with
respect to total workload cost and total index storage. The set of so-
lutions captures the trade-off between storage space and workload
cost for storage sizes above M .

To generate the Pareto-optimal points efficiently, we take advan-
tage again of the BIP formulation and employ well known tech-
niques from linear optimization [2]. More concretely, we first
transform B in a new BIP B′ that has the objective function
λcost(X,W ) + (1 − λ)(size(X) − M), where λ is a parameter
with values in [0, 1]. Then, we can retrieve all the Pareto-optimal
solutions by solving B′ for different values of λ. (Solving B′ is
done using the algorithm in Figure 3.) CoPhy employs the Chord
algorithm [9] to identify a few values of λ that yield a representa-
tive subset of the Pareto-optimal set, with provable approximation
bounds. This approach quickly generates the solutions that repre-
sent best the trade-offs encoded by the soft constraints.

The previous methodology can be trivially extended to several
soft constraints. The only difference is the generation of B′, where
we introduce several terms in the objective function, one for each
soft constraint and with a separate λ parameter. Solving B′ and
choosing the values for the λ parameters is done as previously. The
details appear in the appendix.

4.2 CoPhy’s Novel Features
CoPhy supports two novel features, namely early termination

and interactive tuning, that improve significantly the usability of
the index advisor. These features essentially come for “free” once
the BIP is generated, by taking advantage of existing functionality
inside the BIP solver.

Support for Early Termination. A typical BIP solver first iden-
tifies an initial solution that satisfies all the constraints and then
gradually improves it in order to minimize the objective function.
At any point in time, the solver can report an upper bound on the
distance between the current solution and the final solution. CoPhy
employs this feature to support early termination. Basically, the
DBA can examine this bound and decide to terminate the tuning
process early if the current solution has acceptable quality. More-
over, the solver can be tuned to return the current solution if it is
within a threshold (say, 5%) of the optimal, in order to reduce the
overall tuning time without hurting quality.

Interactive Tuning. Index tuning is generally an exploratory task,
where the DBA may wish to examine recommendations for differ-
ent choices of W , S, or C. This exploration tends to be incremen-
tal, i.e., the DBA applies small changes to the parameters of the
tuning problem before re-invoking the index advisor. CoPhy takes
advantage of the BIP formulation in order to make this incremental
exploration very efficient. Specifically, instead of formulating an
entirely new BIP, CoPhy informs the solver of the delta to the orig-
inal BIP that correspond to the DBA’s changes. The internal solver
can then reuse the computation done for solving the original BIP
in order to compute an updated solution very efficiently. This de-
creases significantly the response time of the advisor, thus enabling
a highly interactive interface for index tuning.

5. EXPERIMENTAL EVALUATION
In this section, we present an experimental study of CoPhy using

a prototype implementation written in Java v1.6. The implemen-
tation comprises 2K LOC, which includes INUM and the CoPhy-
specific code. We employ CPLEX v12.1 as the external, off-the-
shelf BIP solver. The prototype is interfaced with two popular com-
mercial database systems, referred to as System-A and System-B
respectively. The two ports, referred to as CoPhyA and CoPhyB
respectively, have minimal implementation differences, as CoPhy
relies on standard APIs to connect to the underlying DBMS. Un-
less otherwise noted, we report on results using CoPhyA.

We conducted several experiments in order to evaluate the per-
formance of CoPhy and to answer the following questions:

• How well does CoPhy perform compared to state-of-the-art com-
mercial index advisors? (§5.2)

• How well does CoPhy perform compared to ILP, the state-of-the-
art BIP-based index tuning technique? (§5.3)

• What is the effectiveness of CoPhy’s novel features, namely, feed-
back on quality of solution, incremental retuning, and handling of
soft constraints. (§5.4)

In what follows, we first describe the experimental methodology
and then present the results of the experiments outlined above.

5.1 Methodology
Competitor Techniques. We compare CoPhy against the follow-
ing techniques.

ILP [14] This technique employs an alternative formulation of in-
dex tuning as a BIP, and is hence an interesting comparison point
for CoPhy. At a high level, ILP first invokes the what-if optimizer
to obtain the cost of each query for a set of candidate atomic con-
figurations, and then constructs a BIP with a distinct variable per
candidate configuration. Since the number of such candidate con-
figurations can be large, the researchers introduced pruning tech-
niques to keep the problem size under control [13]. (Contrast this
with CoPhy which uses a variable per index, thus avoiding prun-
ing entirely.) To ensure a fair comparison, we implement ILP in
Java using the same solver as CoPhy, and we also interface it with
INUM so that it can benefit from fast what-if optimizations.

Commercial Index Advisors We compare CoPhy against the state-
of-the-art index advisors that come with the two commercial da-
tabase systems. We refer to these advisors as Tool-A and Tool-B
respectively. To the best of our knowledge, Tool-A employs the
techniques described in [3], and Tool-B employs the techniques
in [20]. Also, Tool-B employs a workload compression mechanism
in order to cope with large workloads.
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Data Skew (z) Workload perf (X∗
A,W )

perf (Y ∗
A,W )

perf (X∗
B ,W )

perf (Y ∗
B ,W )

0 W hom
1000 2.10 1.03

0 W het
1000 2.29 1.64

2 W hom
1000 1.37 1.02

2 W het
1000 Tool-A timed out. 1.58

Table 1: Comparing the effectiveness of CoPhy with the com-
mercial advisors. X∗

s is the configuration chosen by CoPhy on
system s. Y ∗

s is the configuration chosen by the index advisor.

Data and Queries We employ a 1GB TPC-H database generated
by the tpcdskew tool [8]. We generate two versions with skew z =
0 (uniform data) and z = 2 (highly skewed data).

We study two synthetic workloads with different characteristics.
The first workload, denoted as W hom , contains random queries
generated by the TPC-H query generator on fifteen of the TPC-
H query templates. (The remaining seven templates are not sup-
ported by the SQL parser of our prototype.) The second workload,
denoted as W het , is based on a benchmark for index tuning [17]
and comprises SPJ queries with group-by and aggregation2. Both
workloads are sufficiently complex to yield a large set of candidate
indices. Workload W het employs many more query templates than
W hom and hence represents a heterogeneous workload for which
index tuning is more challenging.

We denote a workload of x queries as W hom
x and W het

x for the
homogenous and heterogenous workloads respectively, and exper-
iment with x = 250, 500, 1000. Intuitively, we expect the cost of
an index tuning technique to increase with the workload size. At
the same time, the homogeneous workloads have only fifteen dis-
tinct query types, and hence favor techniques that employ workload
compression, e.g., Tool-B.

Evaluation Metrics. We test the various techniques on instances
of the index tuning problem that employ the data and workloads de-
scribed previously and a hard constraint on the total space budget.
The latter is expressed as a fraction M of the size of the data.

We measure the effectiveness of a technique through the per-
formance of its recommended configuration X∗. Specifically, we
report the relative reduction in query processing cost compared to a
baseline configuration X0 that contains only the clustered primary
key indexes: perf (X∗,W ) = 1−cost(X∗∪X0,W )/cost(X0,W ),
where cost(X0,W ) and cost(X∗ ∪ X0,W ) are computed by in-
voking the what-if optimizer of the corresponding DBMS directly.
This methodology ensures that the performance of X∗ is measured
according to the ground-truth of the optimizer’s cost model, regard-
less of any approximations used by the index tuning algorithm. We
also report the running time of the technique to generate X∗.

Default Experimental Setup. Unless otherwise noted, we employ
the following defaults for our experiments: W = W hom

1000, M = 1,
z = 0. The CPLEX solver is tuned to return the first solution that
is within 5% of the optimal (we examine this issue in more detail
in §5.4). All experiments are executed on a system with a 2.4GHz
processor and 2GB of RAM.

5.2 Comparison with Commercial Tools
The first set of experiments evaluates CoPhy against the com-

mercial index advisors Tool-A and Tool-B. In the interest of space,
we summarize a few representative experiments in Table 1 where
we vary the complexity of the workload and the data skew. For
each system, the table shows the ratio between the improvement
perf (X∗,W ) for CoPhy and the improvement for the index ad-
2We use the C2 query suite with the most complex query templates.
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Figure 4: Comparing the execution times of CoPhy with the
commercial tools.

visor. Hence, a ratio > 1 indicates that CoPhy yields a better
index configuration on the specific system. The detailed results,
along with additional experiments for the space budget constraint,
are given in the appendix (§C).

Overall, we observe that CoPhy consistently outperforms the
commercial index advisors, often by a significant margin. Com-
pared to Tool-A, CoPhy is better by a margin that ranges from 37%
to more than a factor of two. The detailed results indicate that Tool-
A has trouble dealing with the high number of queries, whereas
CoPhy’s BIP-based approach scales gracefully to large workloads.

The comparison to Tool-B shows higher variance and yields in-
teresting insights on the merits of our approach. Specifically, CoPhy
offers similar performance for the homogeneous workload W hom

1000,
but it becomes significantly better for the heterogeneous workload
W het

1000. Tool-B performs workload compression by sampling, which
works well for the homogeneous workload but not so with the more
difficult heterogeneous workload. On the other hand, CoPhy ex-
hibits stable performance “out of the box” in all the experiments.

For both systems, the gap between CoPhy and the commercial
tool is reduced when the data is highly skewed (z = 2). The reason
is that certain indices become very beneficial, which makes it easier
to find a good configuration. Still, CoPhy continues to perform
significantly better compared to the commercial tools.

In terms of the execution time of the three techniques, our de-
tailed experiments reveal that this metric is mostly affected by the
size of the workload. Figure 4 shows the execution times as we
vary this parameter for z = 0 and the homogeneous workload. Co-
Phy is consistently fast for all workload sizes, and the fastest of
the three techniques for 500 and 1000 queries. Specifically, Co-
Phy is at least one order of magnitude faster than Tool-A, and is
2x faster than Tool-B for these two workloads. CoPhy’s efficiency
and stability (w.r.t. the workload variations) is again a result of the
BIP-based formulation and the scalability of modern BIP solvers.
On the other hand, the commercial index advisors solve the same
problem using much less information on the structure of the solu-
tion space, which increases significantly their execution times.

Discussion The results demonstrate that CoPhy operates efficiently
and yields index recommendations of high quality. A notable fea-
ture of CoPhy is that its performance remains stable, whereas Tool-
A and Tool-B exhibit high sensitivity to different characteristics of
the input workload. Essentially, CoPhy alleviates the DBA from
the tedious task of selecting a compact representative workload,
and eliminates the need for workload compression techniques.

It is also instructive to examine the number of candidate indices
examined by the three algorithms. We traced the execution of Tool-
A and Tool-B and determined that they used 170 and 45 candidates
respectively for the homogeneous workload. These candidate-sets
are at least one order of magnitude smaller compared to the 1933
indices examined by CoPhy. Again, the power of off-the-shelf BIP
solvers allows us to scale-up the index tuning problem. Pruning the
candidate-set S becomes less of a concern.

Finally, it is important to stress the simplicity and features of
CoPhy: it is implemented in 2K LOC, it is portable across two very
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Figure 5: Execution time of CoPhy and ILP.

different systems, it supports soft constraints, and it provides the
novel features of early termination and fast retuning (see also §5.4).
In contrast, the commercial index advisors are complex software
modules, with system-specific code and elaborate search strategies,
and do not support the aforementioned features.

5.3 Comparison with ILP
We continue with a comparison between CoPhy and ILP. As

mentioned earlier, ILP employs an alternative formulation of in-
dex tuning as a BIP. The crucial difference is that ILP assigns a
variable per atomic configuration, whereas CoPhy employs a vari-
able per index. Since the number of atomic configurations grows
with

∏n
1 |Si|, ILP has to prune substantially the space of atomic

configurations before invoking the BIP solver. On the other hand,
CoPhy builds a much more compact BIP and delegates any pruning
to the BIP solver.

Figure 5 shows the performance of CoPhy and ILP as we vary
the size of S (the index candidate set). We consider four possible
cases for S: SALL that comprises the 1933 candidates generated
by CoPhy; two subsets S500 and S1000 that comprise 500 and 1000
indexes respectively from SALL; and SL that expands SALL with
random indices for a total of 10K indices. The latter is meant to
test the performance of the algorithm for large index sets. We only
show total execution time, as the perf metric is very similar for the
two techniques (actually, CoPhy is slightly better by 4-10%).

Clearly, CoPhy is dramatically faster compared to ILP, with a
consistent difference of one order of magnitude. To gain more intu-
ition, we break down the execution time of each technique in three
components: INUM’s time - the time taken to build the INUM’s
cached plans; Building time - the time taken to build the BIP; and
finally, Solving time - the time taken by the solver to actually find
the solutions. As shown, ILP’s execution time is dominated by the
building time, in which ILP performs the pruning of atomic con-
figurations. In comparison, CoPhy employs a more principled BIP
formulation that does not require any pruning, and which also re-
sults in a more compact optimization program. As a result, CoPhy
spends less time building and solving the BIP, thus scaling up to
large sets of candidate indexes.

The experiments for varying workload and storage budget reveal
very similar trends, and the results can be found in the appendix.

5.4 CoPhy-Specific Features
The last set of experiments examine the unique features of the

CoPhy index advisor. In the interest of space, we report on the
most interesting results and defer any details to the appendix.

Solution Quality Feedback At any point in time, CoPhy can bound
the distance between the currently computed solution and the fi-
nal solution. Figure 6(a) visualizes this bound over time, for three

instances of the index tuning problem corresponding to different
workloads. As shown, the bound drops fast during the initial it-
erations over the BIP solver, but then decreases very slowly until
the final solution is identified. Using this feedback, the DBA may
decide to terminate the tuning session early without compromising
significantly the quality of the returned solution. As an example,
for W hom

1000, the DBA can stop the tuning after 4 minutes to obtain
a valid solution (satisfying all the constraints) that is at most 5%
away from the final solution. Obtaining the final solution requires
more than 10 minutes for this workload.

It is interesting to note that ILP has a similar feedback capabil-
ity, since it too relies on a BIP solver. However, the feedback can
be generated only after the problem is built, which takes about 30
minutes for W hom

1000, and even then it will map to the pruned search
space of atomic configurations, thus having less intuitive meaning
for the DBA.

Interactive Tuning We demonstrate next the ability of CoPhy to
support interactive tuning. We set up the experiment as follows.
First, we run CoPhy on W hom

1000 and S1000 to obtain an initial recom-
mendation. Subsequently, we augment S with randomly selected
indices from SALL − S1000 and request a revised recommenda-
tion. This experiment models an interactive scenario where the
DBA manually tweaks S in order to fine-tune the recommendation.

Figure 6(b) shows the time to obtain the initial and the revised
recommendation for a different number of added indices. The re-
sults demonstrate that the solver takes about an order of magnitude
less time to solve the BIP for the new candidate indices. Under the
hood, the BIP solver is able to reuse some of the initial computa-
tion in order to solve the augmented problem. The solving time in-
creases with the number of introduced indices, as expected, but still
stays at 55 seconds when 100 new candidates are introduced. Con-
sidering the size of the workload, the response time is reasonable in
order to support an interactive paradigm. Moreover, a profiling of
our prototype showed that CoPhy spends about 30 seconds in pre-
processing the BIP, an overhead that we may be able to eliminate
by re-engineering the BIPGen component.

Soft Constraints We examine the effectiveness of CoPhy to handle
soft constraints. In particular, we substitute the hard constraint on
the space budget with a soft constraint

∑
a∈X∗ size(a) = 0, in

order to examine the trade-off between the storage budget and the
performance of the recommended indices.

Figure 6(c) shows the time to generate five representative points
of the Pareto-optimal curve. The points correspond to different val-
ues of parameter λ (§4.1) that provide a provably good approxima-
tion of the overall curve [9]. CoPhy has to solve the BIP from
scratch for the first point, but it can reuse a significant part of the
initial computation to compute the subsequent points. This results
in a 4x speed-up compared to a naive re-computation for each point.

The short computation times for subsequent points also enable
an interactive exploration of the Pareto-optimal curve based on the
DBA’s preferences. Returning to the previous experiment, the DBA
may select a range of space budgets or a range of quality values
where she is interested in exploring the trade-off in more detail.
CoPhy can compute efficiently the Pareto-optimal points within the
selected ranges and thus provide timely feedback to the DBA. This
is yet one more example of how CoPhy can support an interactive
paradigm for index tuning.

6. RELATED WORK
Proposed physical design solutions depend heavily on the plan

selection mechanism used in the query optimizers. Early research
models the query optimizer mathematically [12], and then suggests
the design features. Since early optimizers typically use simple
cost models [18], it is relatively straightforward to model the entire
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Figure 6: CoPhy’s interactive features.

optimization process and select appropriate design features accu-
rately. Modern optimizers, however, use more elaborate cost mod-
els which render most previous cost formulations obsolete. Recent
work decouples the optimizer design from the problem formulation
by modeling the optimizer as the black box and reusing past opti-
mization results [15]. Modeling the optimizer as a black box forces
the physical designer to compute the cost of every possible index
combination, which is a very expensive process, as such combi-
nations can be exponential in number. We use the same caching
approach to model the optimizer, but exploit the internal details of
the cache. Our approach allows us to identify useful index combi-
nations without actually enumerating them.

Existing commercial techniques use greedy pruning algorithms
to suggest the physical design [20, 1], and use the optimizer di-
rectly, thereby reducing their efficiency and predictability. Caprara
et al. were the first to propose a BIP approach to the index-selection
problem, by modeling it as an extension of the facility-location
problem (FLP) [6], enabling it to exhaustively search the features,
instead of greedily searching them. Their formulation, however, as-
sumes that a query can use only a single index. Papadomanolakis et
al. extended the formulation to account for queries using more than
one indexes and also model index update costs [14]. Zohreh et al.
extend the FLP formulation to use views and then provide heuris-
tics to find optimal physical design in OLAP setting [19]. Their al-
gorithm is tuned towards materializing data-cube views and small
number of indexes on them. Our approach scales to an index set
two orders of magnitude larger than reported in their work. Since
these techniques use FLP formulation, they use heuristic pruning to
reduce the problem size to a practical level, a limitation we avoid
by proposing a new problem formulation.

7. CONCLUSION
In this paper we present CoPhy, a practical and scalable index

advisor that is based on a novel BIP-based formulation of the index
tuning problem. Our experimental results indicate that CoPhy out-
performs existing techniques by a significant margin and enables
a more interactive approach to index tuning. As part of our future
work, we would like to extend CoPhy to handle other design fea-
tures such as views and partitions, as well as sequence information
for the input workload.
Acknowledgements Polyzotis’ work was supported in part by the
National Science Foundation under Grant No. IIS-1018914.
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APPENDIX
A. PROOF OF LEMMA 1

We first prove linear composability for INUM. The property fol-
lows directly from Equation 1 in [15]. Essentially, the constant Kq

is equal to|TPlans(q)| and it represents the size of the template
cache in INUM for query q. Hence, k corresponds to a specific
choice of a template plan p ∈ TPlans(q). Constant βqk denotes
the cost of the template’s join and aggregation operations (referred
to as internal plan cost). Each constant γqkia denotes the cost of
implementing the access at slot i of the template using some index
a. For a given index a ∈ Si ∪ {I∅}, the definition of γqkia is as
follows:

γqkia =






0, if Ti is not referenced in q

∞, if a is incompatible with the
sorted access on slot i

cost of scan of Ti, if a = ∅

cost of index scan of a, otherwise

Note that γqkia becomes infinite if a is incompatible with the sorted
access requirements of slot i. Essentially, this means that a is in-
compatible with the corresponding p, therefore encoding the inter-
esting order validity required by INUM. Returning to the example
of Figure 2, an index on attribute T1.y cannot instantiate the access
method for slot 1, since the latter requires its output to be sorted on
T1.x.

Now, we sketch the proof for linear composability of C-PQO [5].
C-PQO builds a memo data structure per query q ∈ W that encodes
all possible plans for different atomic configurations. The memo
is essentially an AND-OR graph, where the OR nodes encode the
choices that lead to the different optimal plans. Given an atomic
configuration A, the memo is traversed to identify the OR-choices
with minimum cost under A.

Given a query q, we enumerate the possible OR-choices in the
memo and treat each choice as a “template” in INUM’s terminol-
ogy. From that point, the proof is similar as with INUM.

B. PROOF OF THEOREM 1
We introduce some necessary notation. Given an index config-

uration X , we use ITcost(X) to denote the value of the objective
function for the index tuning problem. Similarly, let v denote a
valid (i.e., constraint-satisfying) assignment to the variables of the
BIP. We use BIPcost(v) to denote the value of the objective func-
tion under the specific assignment. We also use v(yqk) to denote
the value of the variable in the assignment, and define v(xqkia) and
v(za) similarly.

We observe that the objective function of the index tuning prob-
lem has a fixed component

∑
q∈Wu

cq that represents the cost to
update the base tuples and it does not depend on the choice of X .
Hence, we ignore this component in what follows.

The proof of the theorem works in two steps. First, we show
that every configuration X is mapped to an assignment vX such
that ITcost(X) = BIPcost(vX). This property guarantees that
the solution space of the BIP contains all possible solutions for the
index tuning problem. Subsequently, we prove that the optimal as-
signment v can be mapped to the configuration X∗ = {a | a ∈
S ∧ v∗(za) = 1} such that ITcost(X∗) = BIPcost(v∗). Com-
bined with the inclusion property of the search space, this property
guarantees that X∗ is indeed the optimal solution to the index tun-
ing problem. This concludes the proof of the theorem.

We prove the aforementioned properties in the following two
lemmata. In both proofs, we make use of the fact that cost is lin-
early composable for every q ∈ W .

LEMMA 2. For any X ⊆ S, there is an assignment vX such
that such that ITcost(X) = BIPcost(vX).

PROOF. We can rewrite ITcost(X) as follows:

ITcost(X) =
∑

q∈Wr

fqcost(q,X) +
∑

q∈Wu
a∈X

fqucost(a, q)

For any q ∈ Wr , linear composability guarantees that cost(q,X) =
βqk +

∑
i∈[1,n],a=Y [i] γqkia for some choice of k = kq ∈ [1,Kq]

and Y = Yq ∈ atom(X). We define assignment vX as follows:
vX(yqk) = 1 if k = kq; vX(xqkia) = 1 if k = kq and a = Yq[i];
vX(za) = 1 if a ∈ X . In all other cases, the corresponding vari-
able is set to 0. It is straightforward to verify that vX satisfies the
constraints of the BIP. Moreover, if we expand the BIP objective
function for this specific assignment, we get the following sequence
of equalities:

BIPcost(vX)

=
∑

q∈Wr
k=kq

fqβqk +
∑

q∈Wr
k=kq
i∈[1,n]
a=Yq [i]

fqγqkia +
∑

q∈Wu
a∈X

fqucost(a, q)

=
∑

q∈Wr
k=kq

fq



βqk +
∑

i∈[1,n]
a=Yq [i]

γqkia



+
∑

q∈Wu
a∈X

fqucost(a, q)

The expanded expression for ITcost(X) that we wrote above is
equal to the last expression, which completes the proof of the lemma.

LEMMA 3. Let v∗ denote the solution to the BIP of Theorem 1.
Then, ITcost(X∗) = BIPcost(v∗) for X∗ = {a | a ∈ S ∧
v∗(za) = 1}.

PROOF. The assignment must satisfy the constraints of the BIP,
which implies that v∗(yqk) = 1 for exactly one choice of k per
q. Let k∗

q denote this choice, and let Y ∗
q denote the atomic con-

figuration that corresponds to v∗(xqkia) = 1 for k = k∗
q . Then,

by eliminating the variables with value 0 and by applying standard
algebraic manipulations, we can express BIPcost(v∗) as follows:

BIPcost(v∗) =

∑

q∈Wr
k=k∗

q

fq




βqk +

∑

i∈[1,n]
a=Y ∗

q [i]

γqkia




+

∑

q∈Wu
a∈X∗

fqucost(a, q)

First, we show that the lemma holds if k∗
q and Y ∗

q correspond to
the choices of k and Y respectively that minimize cost(q,X∗)
under linear composability (Definition 1). Under this assumption,
the sum within parentheses in the previous expression is precisely
cost(q,X∗). The final equality to ITcost(X∗) is trivial to show.

To conclude the proof of the lemma, we show that this is the only
case for cost(q,X∗), i.e., its minimum is achieved for k = k∗

q and
Y = Y ∗

q . We prove this claim by contradiction. Suppose that
there exists a different choice k = κq ∈ [1,Kq] and Y = Ψq ∈
atom(X∗) such that:

βqκ +
∑

i∈[1,n],a=Ψq [i]

γqκia < βqk∗
q
+

∑

i∈[1,n],a=Y ∗
q [i]

γqk∗
q ia. (1)
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Figure 7: Quality of solution.

We define the following assignment v′: v′(za) = v∗(za); v′(yqk) =
1 if k = κq; v′(xqkia) = 1 if k = κq and a = Ψq[i]. In all other
cases, the corresponding variable is 0. We can verify that this as-
signment satisfies the constraints of the BIP and is therefore a valid
solution. By rewriting BIPcost(v′) to eliminate variables of value
0, and then applying the inequality in Equation 1 for each q ∈ Wr ,
we have the following sequence of inequalities:

BIPcost(v′) =

∑

q∈Wr
k=κq

fq



βqk +
∑

i∈[1,n]
a=Ψq [i]

γqkia



+
∑

q∈Wu
a∈X∗

fqucost(q, a) <

∑

q∈Wr
k=k∗

q

fq




βqk +

∑

i∈[1,n]
a=Y ∗

q [i]

γqkia




+

∑

q∈Wu
a∈X∗

fqucost(q, a)

= BIPcost(v∗)

This contradicts our assumption that v∗ forms an optimal assign-
ment.

C. ADDITIONAL EXPERIMENTS
This section provides more details on experimental results de-

scribed in §5 comparison between CoPhy and the commercial tools,
then comparison with ILP.

C.1 Comparison with Commercial Tools
Effect of Workload Size Figure 7 shows the solution quality for
each algorithm for the three workloads W hom

250 , W hom
500 and W hom

1000.
The results show that CoPhy generates consistently solutions of
high quality and its performance is basically immune to the size
of the workload. Tool-B exhibits similar trends, whereas Tool-A’s
performance degrades very quickly for large workloads. CoPhy
also generates the recommendations of highest quality across all
techniques, outperforming Tool-A by an order of magnitude and
Tool-B by a small margin.

Effect of Space Budget In this experiment we vary the space bud-
get from 0.5 to 2 and observe the ratio of the solution qualities for
the tools and CoPhy on W hom

1000. Figure 8 shows that, CoPhy again
provides better quality solutions compared to Tool-A and Tool-B
for all space budgets.

Effect of Workload Diversity. Figure 9 shows the performance of
CoPhy and Tool-B for workloads W het

250, W het
500 and W het

1000. We ob-
serve that CoPhy outperforms Tool-B by a significant margin in all
cases. In this case, Tool-B does not benefit as much from its work-
load compression technique, which is based on random sampling.
Hence, its performance drops significantly compared to Figure 7.
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Figure 8: Speedups for various space budgets.
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Figure 9: Speedups on System-B with a diverse workload.

CoPhy also exhibits a drop in performance compared to the homo-
geneous workload, but overall it generates solutions of high quality.

Effect of Data Skew. We have already reported on the experi-
ments with z = 0 and z = 2. For z = 1 and W = W hom

1000,
Tool-Asuggests indexes that provide 67% speedup, compared to
92% for the indexes suggested by CoPhyA. We observe a similar
trend in Tool-B: its indices provide 96.9% speedup while CoPhyB
provides 98.1%.

C.2 Comparison with ILP
Figure 10 shows that CoPhy outperforms ILP by at least a factor

of 5 for all workload sizes. Ignoring the INUM cache population
time (common to both the techniques), CoPhy is typically an order
of magnitude faster than ILP. ILP’s execution time is dominated by
the process of pruning the atomic configurations, and CoPhy scales
by letting the solver systematically search and prune the atomic
configurations.

D. BUILDING THE PARETO-CURVE
We use the Chord algorithm [9], to incrementally build the sky-

line, while minimizing the number of solver invocations. The al-
gorithm builds an approximation of the skyline as a set of plane
segments. The main intuition behind the algorithm is: given two
%λ values, %λa and %λb, and their corresponding objective values %fa,
and %fb; the distance of the plane defined by ( %fa, %fb) and the skyline
is maximum at λs = slope( %fa, %fb).

The algorithm starts with invoking the solver j = 0, . . . ,m
times by setting λj = 1,λk = 0, ifk *= j. It then finds the pareto-
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Figure 10: Comparison of execution times for various workload
sizes.

optimal point %fs at λs, and computes the distance of the point from
the plane defined by the initial invocation. If the distance is less
than an acceptable value ε, then the algorithm terminates. If not,
the algorithm recurses on the plane segments ( %fa, %fs) and (%fs, %fb).
The set of plane segments returned by the algorithm is always at
most ε way from the skyline. Since each iteration of the algorithm
changes only the objective, the solver reuses computations from the
first invocation to speed up the subsequent optimizations. Thus, the
skyline is built interactively and efficiently.

E. MORE REAL-WORLD CONSTRAINTS
Section 3.2 discussed incorporating the storage constraint in the

BIP. In this section, we extend the BIP to incorporate all real-world
constraints reported by Bruno et al. [4]. We group the reported
constraints into four categories: index constraints, query cost con-
straints, generators, and describe their translations into the BIP. We
also discuss the scenario when the constraint cannot be translated
to the BIP.

E.1 Index Constraints
This type of constraints specify conditions on the indexes in

X∗, such as conditions on their size, contained columns, or their
column-width. If the DBA constraint applies to a subset Sc ⊂ S of
the candidate indexes, and each index is associated with wa coeffi-
cient, the following linear BIP constraint can be used:

∑

a∈Sc

zawa <=> V (2)

The operator <=> represents the comparison operator the DBA
wants to enforce on the indexes w.r.t. the constant V . For the size
constraint discussed in Section 3.2, Sc = S, wa = size(a), and
V = M with ≤ as the comparison operator. The constraint is
linear, therefore can be easily accommodated into the BIP.

In another instance, the DBA can specify that at most 2 indexes
containing more than 5 columns should be selected on the table
Ti. Here the set Sc contains the indexes on Ti with more than
5 columns, wa = 1, and V = 2. Using these assignments, the
following constraint is added to the the BIP:

∑

a∈Sc

za < 2 (3)

E.2 Query Cost Constraints
The DBA can specify any constraint on the query costs. For

example, she may want to make sure that X∗ speeds up all queries
in the workload by at least 25% compared to the initial index set
X0. We translate such DBA constraints to BIP constraints of the
following form:

cost(q,X∗) ≤ 0.75 cost(q,X0) (4)

Since the cost function is linear, the constraint also remain linear.

E.3 Generators
Generators allow the DBA to specify constraints for each query,

index, or table, without specifically mentioning them. It is equiva-
lent to for-loops in regular programming languages. For example,
if the DBA wants to restrict the final query cost, she specifies the
following constraint:

FOR q IN W
ASSERT cost(q,X∗) ≤ 0.75 cost(q,X0)

The syntax of the constraint is self-explanatory. This DBA con-
straint is translated by adding constraints shown in Eq. 4 for each
query in W . The generator can optionally contain Filters to limit
the scope of the constraints.

For instance, an important implicit constraint on the index tun-
ing problem is: every table in the database can support at most
one clustered index. Here the filter prunes out the non-clustered
indexes, and the generator iterates over all tables in the database.
If the clustered(Si) represents the set of clustered indexes on Ti,
then the clustered index constraint can be translated to the follow-
ing linear BIP constraint:

1 ≤ i ≤ n,
∑

a∈clustered(Si)

za ≤ 1 (5)

E.4 Aggregation and Nested Constraints
Aggregation operations such as SUM, COUNT, MIN, MAX can

be accommodated using techniques similar to the index size con-
straint in §3.2. Similarly, nested constraints are straightforward ex-
tensions of the generators. They can be translated into the BIP by
determining each instance of the constraint and then converting it
into the corresponding BIP constraint (very similar to the loop un-
rolling technique used in compilers).

E.5 Non-linear Constraints
Though not seen in practice, the DBA may specify constraints

which are non-linear. Such constraints can be in the form of com-
plex user defined functions (UDF), therefore are black-boxes that
need to be probed for various index combinations. There are two
approaches to address these constraints: First, if the UDF constraint
can be approximated by a set of linear constraints, then the ap-
proximation can be directly plugged into the BIP. Second, the BIP-
Solver’s search algorithm can be augmented to reject optimal so-
lutions unless they satisfy the UDF constraint. The latter approach
will lose some efficiency compared to a pure linear BIP, but will
be faster than the ad-hoc optimization algorithms as it restricts the
space of the solutions using non-UDF constraints.

Summary: This section demonstrates the generality of the BIP
formulation, by translating numerous complex constraints. All re-
ported real-world constraints are linear in nature, allowing efficient
solutions to the BIP. In presence of complex black-box constraints
the BIP takes advantage of the linear constraints, and exhaustively
searches the black-box constraint to suggest valid solutions.
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