
Query Expansion Based on Clustered Results

Ziyang Liu Sivaramakrishnan Natarajan Yi Chen
Arizona State University

{ziyang.liu,snatara5,yi}@asu.edu

ABSTRACT
Query expansion is a functionality of search engines that suggests
a set of related queries for a user-issued keyword query. Typical
corpus-driven keyword query expansion approaches return popular
words in the results as expanded queries. Using these approaches,
the expanded queries may correspond to a subset of possible query
semantics, and thus miss relevant results. To handle ambiguous
queries and exploratory queries, whose result relevance is difficult
to judge, we propose a new framework for keyword query expan-
sion: we start with clustering the results according to user specified
granularity, and then generate expanded queries, such that one ex-
panded query is generated for each cluster whose result set should
ideally be the corresponding cluster. We formalize this problem and
show its APX-hardness. Then we propose two efficient algorithms
named iterative single-keyword refinement and partial elimination
based convergence, respectively, which effectively generate a set of
expanded queries from clustered results that provides a classifica-
tion of the original query results. We believe our study of generat-
ing an optimal query based on the ground truth of the query results
not only has applications in query expansion, but has significance
for studying keyword search quality in general.

1. INTRODUCTION
While keyword search empowers ordinary users to search vast

amount of data, delivering relevant results for keyword queries is
challenging. Query expansion, or query refinement, is the process
of reformulating a seed query to improve retrieval performance.
Web search engines typically make query suggestion based on sim-
ilar and popular queries in the query log [9, 2]. To handle a boot-
strap situation where the query log is not available, there are works
on query result summarization [24, 7, 5, 22, 15, 21], where popu-
lar words in the results are identified and suggested to the user for
query refinement. The popularity of words are typically measured
by factors such as term frequency, inverse document frequency,
ranking of the results in which they appear, etc.

However, existing query expansion techniques based on result
summarization using popular words can not effectively handle am-
biguous queries which have multiple possible interpretations of their

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 37th International Conference on Very Large Data Bases,
August 29th September 3rd 2011, Seattle, Washington.
Proceedings of the VLDB Endowment, Vol. 4, No. 6
Copyright 2011 VLDB Endowment 21508097/11/03... $ 10.00.

meanings, or exploratory queries [4] where the user does not have a
specific search target, but would like to navigate the space of possi-
bly relevant answers and iteratively find the most relevant ones. The
expanded queries generated by such an approach may only cover a
subset of the possible query semantics, and fail to provide a classifi-
cation of the results. The problem becomes especially severe when
the expanded queries are generated by summarizing the top-K re-
sults, which is typically the case for efficiency reasons. One type
of results may have higher ranks than other types and will suppress
other result types to be reflected in the expanded queries. For in-
stance, when searching “apple” on Google there is only one result
about apple fruit in the top 30 results, whereas the rest are about
Apple Inc. Since keywords about apple fruit have a small presence
in these results, they are unlikely to be considered as popular words.
Expanded queries generated according to popular words will bear
the ranking bias and fail to cover the query semantics of searching
apple fruit.

To handle ambiguous and exploratory queries, ideally query ex-
pansion should provide a classification of different interpretations
of the original query, and thus guide the user to refine the query in
order to get more results of the desirable type. For query “apple”,
intuitively, “Apple Inc.” and “apple fruit” would be desirable, even
though “fruit” is not a popular word in the set of top ranked re-
sults. Note that for this ambiguous query, either interpretation can
be relevant to the user, although one interpretation is ranked much
higher.

To generate expanded queries that provide a classification of the
query results, we propose to first cluster the results into k clusters1

using one of the existing clustering methods, where k is an upper
bound specified by the user. In the above example of generating ex-
panded queries for “apple” according to the top 30 results, although
there is only one result about apple fruit, since it is significantly dif-
ferent from others, it should comprise a cluster itself, and thus can
be covered by an expanded query.

Given a set of clusters of query results, the challenge is how to
generate an expanded query for each cluster, whose set of results
is as close to the cluster as possible. We assume that a result of a
query is obtained by finding the data unit that contains all the query
keywords. If we consider a cluster of results as the ground truth,
our goal is then to generate a query whose set of results achieve
both a high precision and a high recall. This is a difficult problem
as the expanded queries should not only be selective to eliminate
as many results in other clusters as possible (maximizing the preci-
sion), but also be general to retrieve as many results in this cluster
as possible (maximizing the recall). One intuitive approach would
apply existing works on cluster labeling / summarization [6, 19] to

1We can either cluster the set of all query results or a set of top
ranked results.

350

find the popular words in each cluster, and then use these words
as the query for the cluster. However, the set of results retrieved
by such a query would unlikely be similar to the original cluster.
For example, consider 5 keywords, each appearing in 80% of the
results in a cluster, but they do not co-exist in any result. A clus-
ter labeling approach may output these 5 keywords as the label of
the cluster. Nevertheless, using these 5 keywords as an expanded
query will yield no result under AND semantics. This illustrates
a unique challenge in generating queries for clustered results: the
interaction of the keywords must be considered. Moreover, a po-
tentially large number of results, and a large number of distinct
keywords in the results add further challenges to the problem. Ex-
haustively searching for the optimal query for each cluster will be
prohibitively expensive in practice. We formally define the prob-
lem of generating an optimal set of queries given the ground truth
of each query’s results. We show that this problem is NP-hard, and
also APX-hard (i.e., it does not have a constant approximation).

To tackle the challenges, we propose two efficient algorithms.
The first algorithm, named iterative single-keyword refinement
(ISKR), iteratively refines a query in a greedy fashion by adding or
removing a keyword to improve the quality of the query. The tech-
nical challenge is to dynamically and efficiently select the promis-
ing keywords to add to/remove from the current query. The second
algorithm, named partial elimination based convergence (PEBC),
attempts to find the best tradeoff between precision and recall us-
ing a randomized procedure. Specifically, given a set of sample
queries and their F-measures, we find the two adjacent queries with
the highest average F-measure, and iteratively test more points be-
tween them in search of an improved F-measure. Since the space
of all possible queries is exponential to the data size, the technical
challenge is how to efficiently find effective sample queries. We
identify that this problem bears some similarity with the weighted
partial set cover problem, but with fundamental differences that de-
mand novel solutions. Compared to ISKR, PEBC in most cases
favors more on the efficiency compared with quality, as shown in
the experiments. Besides, when the results have ranking scores,
both algorithms take the ranking scores into consideration by pri-
oritizing the results with higher ranks when generating expanded
queries.

The contributions of this work include:
• We propose a new philosophy for query expansion which

aims at providing a classification of query results dynami-
cally based on query results. This is especially useful for
handling exploratory queries and ambiguous queries.

• We formally define the problem of generating optimal queries
given the ground truth of the query results. This problem is
APX-hard.

• To provide practical solutions to the query expansion prob-
lem, two algorithms which generate meaningful expanded
queries efficiently given a clustering of the original query re-
sults have been proposed and developed.

• The quality and efficiency of the proposed approach are ver-
ified by experimental studies on real data sets.

• We believe the studies of generating an optimal query based
on the ground truth query results not only has applications in
query expansion, but has significance for studying keyword
search quality in general.

The paper proceeds as follows. Section 2 introduces the prob-
lem definition. Two algorithms for generating expanded queries
are presented in Sections 3 and 4, respectively, whose effectiveness
and efficiency are empirically evaluated in Section 5. Section 7
concludes the paper with discussion of future works.

2. PROBLEM DEFINITION
In this paper, we consider keyword queries on either text doc-

uments or structured data. A text document is modeled as a set
of words, and a structured document is modeled as a set of fea-
tures defined as (entity:attribute:value) triplets [13], such as prod-
uct:name:iPad.

Each result is a text document or a fragment of a structured doc-
ument that contains all the keywords in the query.

The goal of this work is to generate a set of expanded queries that
provides a classification of possible interpretations of the original
user query. The input that we take includes a user query, and a set
of clustered query results where the results are optionally ranked.
Note that result clustering can be done using any existing cluster-
ing method (such as k-means), which is not the focus of this work.
The output is one expanded query for each cluster of results, which
maximally retrieves the results in the cluster, and minimally re-
trieves the results not in the cluster.

We now formally define the optimization goal. Considering the
cluster as the ground truth, the quality of an expanded query can
be measured using precision, recall and F-measure. Precision mea-
sures the correctness of the retrieved results, recall measures the
completeness of the results, and F-measure is the harmonic mean
of them. Let C1, · · · , Ck denote the result clusters, qi denote the
query generated for cluster Ci (1 ≤ i ≤ k), R(qi) denote the set
of results of qi. The precision, recall and F-measure of qi are com-
puted as

precision(qi) =
R(qi) ∩ Ci

R(qi)
, recall(qi) =

R(qi) ∩ Ci

Ci

Fmeasure(qi) =
2× precision(qi)× recall(qi)

precision(qi) + recall(qi)

To handle the general case where results are ranked, we use a
weighted version of precision and recall. Let S(·) denote the total
ranking score of a set of results, then

precision(qi) =
S(R(qi) ∩ Ci)

S(R(qi))
, recall(qi) =

S(R(qi) ∩ Ci)

S(Ci)

The optimization goal is measured by the overall quality of the
set of expanded queries (one for each cluster). We use the har-
monic mean of their F-measures, whereas other aggregation func-
tions (e.g., algebraic mean) can also be used.

score(q1, · · · , qk) =
n

1
Fmeasure(q1)

+ · · ·+ 1
Fmeasure(qk)

(1)

To summarize, the problem of generating expanded queries based
on clustered results is defined as follows.

Definition 2.1: Given a set of clusters of query results, C1, · · · , Ck,
retrieved by a user query under AND semantics, the Query Expan-
sion with Clusters problem (QEC) is to find a set of queries, one
for each cluster, such that their score (Eq. 1) is maximized.

In fact, handling OR semantics is essentially the identical prob-
lem. More detailed discussion of OR semantics can be found in the
Appendix.

The QEC problem is APX-hard. The proof is presented in our
technical report [17].

In the next two sections we discuss the algorithms for query gen-
eration. Note that maximizing the overall score (Eq. 1) is equiva-
lent as maximizing the F-measure of each query, thus each query

351

can be generated independently. Specifically, the algorithms solve
the following problem.

Definition 2.2: Given a user query Q, a cluster C of results, and the
set of results U in all other clusters, as well as an optional ranking
score of each result, the problem is to generate a query q, whose
F-measure with C as the ground truth is maximized.

3. ITERATIVE SINGLEKEYWORD
REFINEMENT

The first algorithm we introduce is named Iterative Single-Keyword
Refinement (ISKR). Given the user query and a cluster of results,
the ISKR algorithm iteratively refines the input query until it can-
not further refine the query to improve the F-measure of the query
result (considering the cluster as the ground truth). Then, it outputs
the refined query as the expanded query for the cluster. Specifically,
it quantifies a value of each keyword appearing in the results, and
refine the query by choosing the keyword with the highest value
in each iteration. Several challenges need to be resolved for this
approach to work: (1) How should we quantify and compute the
value of a keyword? (2) As discussed in Section 1, keywords in-
teract with each other when adding them to be part of a query. Af-
ter the candidate query is refined, the value of a keyword may be
changed. How should we identify the keywords whose values are
affected and update the values of these keywords? (3) We start with
the original user query, and try to add new keywords in the order of
their values to this query to form an expanded query. Are there any
case that a previously added keyword should be removed in order to
improve the F-measure of the expanded query? (4) Since there can
be a potentially large number of results and a large number of dis-
tinct keywords in a result, it is time-consuming to find the best set
of keywords to add to the original query. How can we ensure effi-
ciency? Next we will present ISKR algorithm, whose pseudo code
can be found in the Appendix, that addresses these challenges.

Value of a Keyword. We first need to define the value based on
which we choose the best keyword to add to or remove from q at
each step. When adding a keyword to a query q, the F-measure
achieved by q may either increase or decrease. Thus naturally, the
value of a keyword should be measured by the delta F-measure of
query q after adding this keyword. But a disadvantage of this value
function is that the values of the keywords are hard to maintain.
The set of query results R(q) is dynamically determined, based on
the keywords that are already added to q. Since precision, recall,
and thus F-measure are defined based on R(q), the value of ev-
ery keyword needs to be dynamically computed, and updated after
every change to q.

To efficiently measure the values of keywords, we have the fol-
lowing observations. First, when adding a keyword k to q, the pos-
itive effect is that q may retrieve less results in U (thus improving
precision), and the negative effect is that q may retrieve less results
in C (thus decreasing recall). Thus the number of results elimi-
nated from U and C can be used to indicate whether it is good to
add keyword k to query q. Second, it is more efficient to main-
tain the number of results eliminated from U and C by adding a
keyword k than to maintain the delta F-measure of a keyword.

To see this, in the following, we use delta results of a keyword
k with respect to query q (or simply delta results, if k and q are
obvious) to denote the set of results retrieved by q, but not retrieved
after adding k to q. After adding k to q, let D denote the set of
delta results. Consider a keyword k′ which appears in all results
in D, i.e., it cannot eliminate any result in D. Note that the delta
results of k′ with respect to query q depends on how many results

of q can be eliminated by adding k′ to q. Since k′ cannot eliminate
any result in D anyway, the delta results of k′ with respect to q are
the same as the delta results of k′ with respect to q ∪ {k}. This
means that the delta results of k′ are not affected after adding k to
q.

With these observations, we measure the value of a keyword by
benefit and cost. benefit(k, q) is the total ranking score of the
results eliminated in U by adding k to q, and cost(k, q) is the total
score of the results eliminated in C by adding k to q. Thus

benefit(k, q) = S(R(q) ∩ U ∩ E(k))

cost(k, q) = S(R(q) ∩ C ∩ E(k))

where E(k) is the set of results that do not have keyword k
(hence will not be retrieved by any query that contains k).

We define the value of a keyword with respect to q as its benefit-
cost ratio, as commonly adopted in cost-benefit analysis:

value(k, q) =
benefit(k, q)

cost(k, q)
(2)

We consider value(k, q) as zero if both benefit(k, q) and cost(k, q)
are zero.
Identifying Keywords with Affected Values. When we add a key-
word to query q, the benefits and costs of other keywords may be
affected. As discussed before, the value of a keyword is affected if
and only if this keyword does not appear in at least one of the delta
results. For each such keyword, we re-compute its benefit, cost and
value using Eq. 2.

Example 3.1: We use this example to illustrate the ISKR algo-
rithm. Suppose the original query is “apple”. Consider a cluster
C with 8 results, R1, · · · , R8, and U , the set of results that is not
in C, with 10 results, R′

1, · · · , R′
10. We consider 4 keywords for

query expansion. The following table shows the keywords, and the
results in C and U that each keyword can eliminate.

ki E(ki) ∩ C E(ki) ∩ U
i = 1 job R1, · · · , R6 R′

1, · · · , R′
8

i = 2 store R1, · · · , R4 R′
1, · · · , R′

4, R′
9

i = 3 location R2, · · · , R5 R′
5, · · · , R′

8, R′
10

i = 4 fruit R1, · · · , R3 R′
2, · · · , R′

4

The initial benefit, cost and value of each keyword are:
keyword benefit cost value

job 8 6 1.33
store 5 4 1.25

location 5 4 1.25
fruit 3 3 1.00

Since keyword job has the largest value, we first add job into q;
so q = {apple, job}. Now q retrieves 2 results in C: R7 and R8,
and 2 results in U : R′

9 and R′
10.

Now we need to update the benefit, cost and value of each af-
fected keyword. For example, the benefit of store becomes 1, since
adding it to q can further eliminate one result in U : R′

9. The cost
of store becomes 0, since it does not eliminate any result in C, as
both results (R7 and R8) contain store. The updated benefit, cost,
and value of each keyword is shown in the following table (the row
for job shows the benefit, cost and value of removing job from the
current query, which will be discussed later).

keyword benefit cost value
job 6 8 0.75

store 1 0 ∞
location 1 0 ∞

fruit 0 0 0

352

Thus we add store to q. After updating the benefit, cost, and
value of the affected keywords, we further add keyword location to
q. At this time, the only remaining keyword, fruit, has a value of 0,
thus we do not further add keywords to the expanded query.

Necessity of Keyword Removal. Since keywords added to the
query may have complex interactions, it may be beneficial to re-
move a keyword from q that was added to q earlier, as shown in the
following example.

Example 3.2: Continuing Example 3.1. Note that keyword job
was added into q at the first step due to its highest value, but after
adding store and location to q, it becomes beneficial to remove job,
which increases the recall but does not affect the precision. Indeed,
the current q = {apple, job, store, location} retrieves 2 results in
C: R7, R8, and 0 result in U . If we now remove job from q, then q
will retrieve 1 more result in C: R6, but still retrieve 0 result in U .
Therefore, we should remove job from q at this point.

When removing a keyword k ∈ q from q, the benefit, cost and
value can be computed in a similar way. In contrast to keyword
addition, removing k from q increases the results retrieved by q
in both C and U , thus it may decrease the precision (measured by
cost) and increase the recall (measured by benefit). For the removal
case, the benefit and cost of k with respect to q are computed as

benefit(k, q) = S(C ∩D(k)), cost(k, q) = S(U ∩D(k))

where D(k) is the delta results after the removal of keyword k.
value(k, q) is still the benefit-cost ratio (Eq. 2).

Similar as adding a keyword, after removing a keyword, the val-
ues of other keywords may be affected. It is easy to see that the
affected keywords are also those that do not appear in at least one
of the delta results. For these keywords, we recompute their bene-
fits, costs and values.

The ISKR algorithm stops when the query cannot be further im-
proved by adding or removing a keyword, which is the case if the
value of the best keyword is less than 1. In the running example,
after updating the table, we find that no keyword has a value greater
than 1, thus we stop and output the current query, q = {apple, store,
location}.

4. PARTIAL ELIMINATION BASED CON
VERGENCE

The ISKR algorithm iteratively attempts to add/remove a key-
word to/from q, during which process the values of many keywords
may change and need to be updated, which incurs a potentially high
processing cost. In this section we propose a convergence based
algorithm for query expansion named Partial Elimination Based
Convergence (PEBC). It approaches the optimal solution in a fast
and adjustable progress. Considering F-measure as a function over
q, our goal is to find the value of q that achieves the maximal value
of F-measure. However, since the functional relationship between
F-measure and q is unknown, and the space of all possible queries
is exponential to the data size, finding the optimal value is very
challenging.

We propose algorithms that select several sample queries in the
search space, and iteratively test more queries between the promis-
ing sample queries toward an improved F-measure. Specifically,
given a set of queries and their F-measures, we find the two adja-
cent ones with the highest average F-measure, and test more points
between them in search of an improved F-measure. The iteration
continues until the expanded query is good enough, or enough it-

erations have been performed. The idea of this method is related
to interpolation in numerical analysis, however, we do not infer the
actual F-measure function from the sampled data points due to its
high complexity.

Two questions must be resolved. (1) What type of sample queries
we should use to converge to the optimal solution? (2) How can we
obtain such sample queries?
Type of sample queries. To answer the first question, we propose
to use a set of sample queries, each of which maximizes the num-
ber of results to be retrieved in C, given a percentage of results in
U to be eliminated. This is in the spirit of maximizing the recall
given a fixed precision.2 If we don’t have the ranking scores of
the results, we aim at eliminating x% of U ’s results; otherwise, we
aim at eliminating a set of U ’s results, such that their total ranking
score is x% of the total ranking score of all the results in U . In the
following, we use “x% of the results in U” to refer to both cases.

Example 4.1: Suppose we generate five queries, q1 to q5, to elim-
inate 0%, 25%, 50%, 75% and 100% of the results in U , respec-
tively, and maximize the number of results in C to be retrieved.
We compute the F-measures of these queries, and suppose they
are: 0.5, 0.6, 0.4, 0.8, 0.1, respectively. Note that the F-measures
of these queries may not have an obvious relationship. We take
the two adjacent queries whose average F-measure is the highest,
which are q3 and q4. We zoom in the interval between them, further
dividing them to several intervals, and repeat the process.

Generating Sample Queries. The key challenge of the PEBC al-
gorithm is: given a percentage x of results in U to be eliminated,
how can we generate query q that eliminates roughly x% of the re-
sults in U , and maximizes the number of retrieved results in C? We
refer to this problem as partial elimination.

This problem bears some similarity with the weighted partial set
cover problem, which aims at using a set of subsets with the lowest
total weight to cover at least x% of the elements in the universal
set. However, in contrast to the partial weighted set cover problem
which requires to cover at least x% of the elements, our goal is to
eliminate as close to x% of the elements as possible. This ensures
that we can test data points that have roughly uniform distances
between each other to better gauge the F-measure function. In the
next subsections, we discuss how to address this new challenge and
generate queries to achieve partial elimination.

4.1 Keyword Selection Based on Benefit/Cost
One intuitive method is to apply the greedy algorithm commonly

used in weighted set cover for keyword selection: each time, we
select the keyword with the largest benefit/cost ratio, until we have
approximately x% of the results in U eliminated. Benefit and cost
are defined in the same way as in ISKR: benefit is the total weight
of the un-eliminated results in U that a keyword can eliminate, and
cost is the total weight of the un-eliminated results in C that a key-
word can eliminate.

However, this method has an inherent problem that makes it in-
feasible: since the benefit/cost ratios of the keywords do not change
with varying x, the keywords are always selected in the same or-
der. Specifically, let the list of keywords selected when x = 100
be K = k1, · · · , kp. Now we want to select keywords to generate
a query for each point in a range of possible values of x. No matter
which point it is, the set of keywords selected will be a prefix of K.
Such a “fixed-order” selection of keywords makes it very difficult
to control the percentage of results being eliminated.
2Alternatively, we can choose sample queries that maximize the
number of results to be eliminated in U given a percentage of re-
sults in C to be retrieved.

353

Example 4.2: Consider a total of 10 results in U , R1, · · · , R10,
and 4 keywords: k1=job, k2=store, k3=location, k4=fruit. Suppose
the set of results eliminated in U by each keyword (benefit) and the
number of results eliminated in C by each keywords (cost) are:

benefit(k1) = 4({R1, R2, R3, R4}), cost(k1) = 2
benefit(k2) = 6({R5, R6, R7, R8, R9, R10}), cost(k2) = 6
benefit(k3) = 3({R3, R4, R8}), cost(k3) = 1
benefit(k4) = 4({R4, R5, R6, R7}), cost(k4) = 4
Also suppose that the set of results in C that is eliminated by a key-
word does not intersect with the set eliminated by another keyword.

In this approach, the keywords are always selected in the de-
creasing order of their benefit/cost ratio, that is: k3 → k1 → k2 →
k4 (recall that after a keyword is selected, the benefit/cost of other
keywords may change, as discussed in Section 3). Having the or-
der of keyword selection fixed, there is a slim chance to achieve the
goal of x% elimination. For instance, in order to eliminate 7 results
with the fixed order keyword selection, we will have to either use
{k3, k1} which eliminates 5 results, or {k3, k1, k2} eliminating all
10 results. This poses a lot of restriction. Note that in this example,
if we do not select keywords in this order, we can choose {k1, k4}
which eliminates exactly 7 results.

As we can see, always selecting keywords based on their ben-
efit/cost ratio makes it hard to eliminate a given percentage of the
results. Next we discuss the approaches that overcome this problem
using a randomized procedure.

4.2 Keyword Selection Based on a Selected
Subset of Results

Since selecting keywords in a fixed order is undesirable, we pro-
pose to introduce a randomized procedure. First, we randomly se-
lect a subset of x% of the results in U . Then, we select the key-
words, aiming at eliminating these randomly selected results. In
this way, since the set of results to be eliminated is randomly se-
lected, we will not select the keywords in a fixed order. If the ran-
domly selected set of results is “good”, we may be able to eliminate
exactly this set of results.

Given the randomly selected results, selecting a set of keywords
that eliminate these results with minimal cost is NP-hard, as the
weighted set cover problem is a special case of it. To see this, as-
sume that each keyword eliminates part of the selected set of results
in U , and their costs are independent (i.e., they eliminates distinct
sets of elements in C). Then, each keyword is equivalent to a sub-
set in the weighted set cover problem. To choose a set of keywords
that covers the randomly selected results, we can use some greedy
approaches, e.g., let S be the randomly selected set of results, at
each time we choose a keyword which covers the most number of
results in S with minimal cost. Other methods can also be used.

Example 4.3: Continuing Example 4.2, suppose that we want to
eliminate 7 results and the subset selected randomly is {R1, R2, R3,
R4, R5, R6, R7}. Given this set of results, we first update the ben-
efits and costs of the four keywords. Keyword k1 is not affected,
as all four results it eliminates are selected. For k2, we need to de-
crease its benefit by 3 because R8, R9 and R10 are not selected,
and increase its cost by 3. For k3, we decrease its benefit and in-
crease its cost by 1. k4 is not affected. In this case, we can select
{k1, k4} which exactly eliminates this set of results.

However, if the randomly chosen subset is {R1, R2, R3, R4, R8,
R9, R10}, then the best we can do is: either using k1 eliminating 4
of them, or using {k1, k2} eliminating all 10 results.

As we can see, this approach has two problems. First of all, given
a set of randomly selected results, selecting a set of keywords that

eliminate exactly this set of results with minimal cost is an NP-hard
problem. Second, as illustrated in the above example, the quality
of the algorithm highly depends on the selected subset, thus the
chance that it can get the optimal answer is still slim.

4.3 Keyword Selection Based on a Selected
Result

Both approaches discussed before put high restrictions on key-
word selection, and thus generally suffer a low quality. We pro-
pose another randomized procedure that has a much better chance
to eliminate as close to x% of the results in U as possible. Instead
of randomly selecting a subset of results, we randomly select one
result in U that is not eliminated yet, and then select a keyword
that (1) can eliminate the selected result, (2) has the highest benefit
cost ratio over all such keywords. In case of a tie, we choose the
keyword that eliminates fewer results to minimize the risk that we
eliminate too many results. If the percentage of the eliminated re-
sults is smaller than x%, we continue the procedure; otherwise we
stop and determine whether to include the last selected keyword
based on which percentage is closer to x%. Compared with the
approach presented in Section 4.2, this one has a better chance of
approaching the desired percentage, x%, because selecting one re-
sult correctly is much easier than selecting a set of results correctly,
as shown in Example 4.4.

Example 4.4: Continuing the example, to eliminate all 7 results,
we may get the correct solution if we first choose one of the follow-
ing five results: R1, R2, R5, R6 or R7. Suppose that we choose
R5, and choose k4 to eliminate it. After k4 is used, we have the set
{R4, R5, R6, R7} eliminated. Then we can get optimal solution
if the next randomly selected result is either R1 or R2. To elimi-
nate R1 or R2, we choose k1, which additionally eliminates results
{R1, R2, R3}, totaling 7 results eliminated. As we can see, the
approach has a much higher chance to achieve the optimal solution
(i.e. removing x% of results) than the ones discussed before.

The pseudo code of the PEBC algorithm is shown in Algorithm 2
(Appendix).

5. EXPERIMENTS
In this section we report a set of experimental evaluations on the

quality of the expanded queries generated by our approach, and the
efficiency and scalability of query generation.

5.1 Experimental Setup
We tested our approaches on two data sets: shopping and Wikipedia.

We used 20 queries, 10 for each data. We compared our approach
with four existing methods for query expansion: Data Clouds [15],
Cluster Summarization (CS) [6], Google, and a variation of ISKR
where the value of a keyword is considered as the change of F-
measure after adding/removing the keyword. The detailed exper-
imental setup and the description of comparison systems can be
found in the Appendix.

5.2 Quality of Query Expansion
The evaluation of the quality of expanded queries consists of a

user study and the measurement of scores of the expanded queries
(Eq. 1).

5.2.1 User Study
We performed a user study an Amazon Mechanical Turk and had

45 users participate in our survey for evaluating the query expan-
sion approaches. The user study consists of three parts.

354

0

1

2

3

4

5

ISKR PEBC CS Google DataClouds

Figure 1: Average Individual Query Score

0%

20%

40%

60%

80%

100%

ISKR PEBC TFICF Google DataClouds

(A) The expanded
query is highly related

to the search and
helpful.

(B) The expanded

query is related to the
search but there are
better ones.

(C) The expanded

query is not related to
the search.

Figure 2: Percentage of Users Choosing Options (A), (B) and
(C) for Individual Queries

Part 1: Individual Query Score. In order to test whether an
expanded query generated by each approach is helpful for the users,
we first asked the users to give a score for each expanded query in
the range of 1-5, which is referred to as individual query score.
The users were also asked to choose one of the options shown in
Figure 2 as the justification of the score.

The average score of all 20 queries given by all users for each
approach is shown in Figure 1, and the percentage of users choos-
ing each option in this part of the user study is shown in Figure 2.
As we can see, ISKR, PEBC and Google have higher average query
scores than Data Clouds and CS. Recall that data clouds returns the
top keywords in all results in terms of tf, idf and result rank, but
such a top keyword may often be too specific (e.g., “multicellular”
for QW7) or too general, which is not informative as an expanded
query. On the other hand, an expanded query generated by ISKR
and PEBC maximally retrieves a cluster of results, thus is likely to
have a better semantics. For example, for QW6 ISKR and PEBC
return “island” and “server”, which are more meaningful. There-
fore, most users chose option (A) for both ISKR and PEBC, while
data clouds got plenty of (B) and (C).

The CS approach chooses keywords based on TFICF, thus may
tend to pick keywords that have high occurrence (TF) in a few re-
sults in the cluster. These keywords do not retrieve many results
in the cluster, thus the users mostly found it less desirable. For ex-
ample, for QW6 “java”, it returns a query “Java, blog, Microsoft”,
which is too specific and only cover a small part of the results.

Google chooses keywords based on query log, thus it often re-
turns meaningful and popular keywords. For example, for QW6

“Java”, Google returns the expanded queries “Java, Tutorials”, “Java,
Games” etc., which are generally very popular with the users. How-
ever, for some queries Google may return keywords that do not oc-
cur in the results. For example, for QS1 “Canon, products”, Google
returns a query “Sony, products”. While this could be useful for
some users, our user rating has indicated that many the users prefer
the expanded queries to be results oriented.

There are a few queries that ISKR and/or PEBC do not generate
the most meaningful expanded queries. This is mainly because the
words that appear frequently in a cluster is not necessarily the best

0

1

2

3

4

5

ISKR PEBC CS Google DataClouds

Figure 3: Collective Query Score for Each Set of Expanded
Queries

0%

20%

40%

60%

80%

100%

ISKR PEBC CS Google DataClouds

(A) Not

comprehensive and

not diverse

(B) Either not

comprehensive or

not diverse

(C) Comprehensive

and diverse

Figure 4: Percentage of Users Choosing Options (A), (B), (C)
and (D) for Each Set of Expanded Queries

one semantically. It is especially likely for the Wikipedia data set,
as it consists of document-centric XML with sentences/paragraphs,
rather than succinct and informative features. Consider QW1 “San
Jose”, for which one of our expanded queries is “player”. Although
this keyword is related to the sports teams of San Jose, the users
suggested that returning team information (e.g., baseball, hockey,
etc.) gives better expanded queries.

Part 2: Collective Query Score. Next we test whether the set
of expanded queries for each user query provides a classification of
the original query result set. We asked the users to give a collective
score for all expanded queries of each user query, in the range of
1-5, and choose one of the options in Figure 4 as the justification
of the score.

For all 20 queries, the collective score of each user query for
each approach is shown in Figure 3, and the percentage of users
that chose each option is shown in Figure 4. As we can see, ISKR,
PEBC consistently received relatively high scores in collective scor-
ing. Since each expanded query of ISKR and PEBC maximally
covers the results in a cluster and minimally retrieves the results in
other clusters, they are usually comprehensive (i.e., covering vari-
ous aspects/meanings of the original query) and diverse (i.e., their
results have little overlap). This was appreciated by the users as
it is easy for the users to see all options and decide the expanded
query for retrieving the relevant results, and the users gave favor-
able scores for ISKR and PEBC.

On the other hand, since Data Clouds only returns the top key-
words in the results, the expanded queries may lack comprehen-
siveness and diversity. Consider QS1 “Canon, products”. Both
ISKR and PEBC returns three main products of Canon: camera,
printer and camcorder. However, data clouds returns camera, printer
and wp-dc26 (a camera-related product). As we can see, the ex-
panded queries of data clouds do not cover camcorder products,
failing to be comprehensive. Besides, the result of wp-dc26 is con-
tained in the result of camera, failing to be diverse. As a result, the
users mainly chose options (A) and (B) for data clouds.

For the CS approach, as discussed before, it tends to pick key-
words that have high occurrence in fewer results and do not cover
the entire cluster. Such queries are usually too specific and thus fail

355

to be comprehensive. For example, for QW1 “San Jose”, CS re-
turns “San Jose, sabercat, season, arena” and “San Jose, war, Cal-
ifornia, gold”. Since these expanded queries only retrieve a few
results in the corresponding clusters, the user found them not com-
prehensive. Note that the CS approach has a better score on shop-
ping data than the Wikipedia data. This is because in the shopping
data, results are somewhat similar in that they share many com-
mon keywords. Therefore, even though the CS approach does not
consider the relationship of keywords, the keywords it selects in
an expanded query likely co-occur in many results. On the other
hand, on the Wikipedia data, it may choose a set of keywords, such
that each of them has a high occurrence but they do not necessarily
co-occur. Such a query will not retrieve many results which low-
ers its recall. For example, for QW9 “mouse”, it returns a query
“mouse, technique, wheel, interface”. These keywords have high
occurrences but low co-occurrences.

Since Google chooses expanded queries based on query log, it
can also achieve comprehensiveness and diversity for some queries.
For example, for QW6 “Java”, Google returns the expanded queries
“Java, Tutorials”, “Java, Games” and “Java, test”, which the users
considered as comprehensive and diverse. However, sometimes the
expanded queries returned by Google may not be diverse. For
example, for QW8 “rockets”, all expanded queries returned by
Google are about space rockets, and none of them refers to the
Rockets NBA team.

There are also a few cases where users choose (A) or (B) for
ISKR and/or PEBC. Due to the limitation of the data, we may not
have the results that cover all meanings of a query in the results.
As an example, consider query QW1 “San Jose”, the top-30 results
are either about the city of San Jose in California, or about San Jose
sports teams. Since San Jose is also a major city in Costa Rica,
which is not covered by our expanded queries, some users selected
(A) or (B) for our approach. Besides, due to imperfect clustering,
sometimes it may be impossible to generate comprehensive and di-
verse expanded queries.

Part 3. To verify the intuition of our approach, we finally asked
the users a general question: What is your opinion about a good set
of expanded queries? According to the answers from the users, the
majority of users considered comprehensiveness and diversity as
important properties for a set of expanded queries, which coincides
with the philosophy of our proposed approaches.

5.2.2 Scores of Expanded Queries Using Eq. 1
As defined in Eq. 1, the score (goal function) of a set of expanded

queries is the harmonic mean of their F-measures. In this section
we test for each user query the score of expanded queries generated
by ISKR, PEBC, the F-measure approach and CS, as shown in Fig-
ure 5. Since the queries generated by Data Clouds and Google are
not based on clusters, this score is inapplicable.

As we can see, in general ISKR and PEBC achieve similar and
good scores. On the shopping data, both algorithms achieve perfect
score for many queries. This is because on the shopping data, prod-
ucts of different categories usually have different features. Thus for
queries whose results contain several different product categories
(e.g., QS1 “Canon, products” whose products contain camcorders,
printers, and cameras), each category forms a cluster, and it is usu-
ally possible to achieve a perfect precision and recall.

The scores of ISKR are generally a little better than those of
PEBC. The reason is that in each iteration of ISKR, we select the
best keywords to add to q or remove from q. Thus ISKR, although
not necessarily produces the optimal expanded queries, does achieve
some form of local optimality: it stops only if no single keyword
can give a better value if we add it to q or remove it from q. On

the other hand, PEBC relies on the assumption that, if two adja-
cent points have the highest average score, then the optimal query
should lie in between these two points. Since this assumption is
not always true, sometimes PEBC may not choose the best interval
to zoom in. However, if PEBC chooses the right interval at each
iteration, then it may achieve a better quality than ISKR as it will
converge to the optimal solution, as the case of QS4, QW10, etc.

The F-measure approach generally has the same or slightly better
quality than ISKR since delta F-measure is a more accurate mea-
sure of the value of a keyword. For some queries its scores are
lower, since both algorithms are heuristics-based and ISKR may
occasionally choose better keywords. However, as shown in Sec-
tion 5.3, the F-measure approach has a poor efficiency, while effi-
ciency is highly important for a search engine.

The CS approach usually has a poor score. This is because it
chooses a set of keywords with high TFICF values with respect to
a cluster, but these keywords may not occur in many results in the
cluster, thus causing a low recall. For example, for QW5 “eclipse”
it returns a query “eclipse, core, plugin, official”. Moreover, as dis-
cussed before, since the CS approach is designed to return cluster
labels rather than query results, it does not consider the interaction
of keywords. Therefore, it may return an expanded query whose
keywords have high occurrences, but low co-occurrences.

5.3 Efficiency and Scalability
In the efficiency test, we measure the running time of all five

methods. For all approaches except Data Clouds, the response time
that the user perceives (besides the query processing time) includes
both clustering and query expansion time. The average clustering
time on shopping and Wiki data sets are 0.02s and 0.35s, respec-
tively. For data clouds, we measure the time for finding the top-k
words from a ranked list of results.

The processing time of query expansion is shown in Figure 6.
In general, the ISKR algorithm takes more time to generate ex-
panded queries comparing with PEBC. Recall that ISKR allows
both adding or removing keywords to the current expanded query,
thus it may have a large number of iterations before getting to the
point that the query cannot be further improved. Besides, at each
iteration ISKR needs to maintain the values of keywords, and in
the worst case, the values of all keywords need to be updated. For
QS8 which has a large number of results (557) and a large number
of distinct keywords (464 in the largest cluster), it is significantly
slower than PEBC.

Both ISKR and PEBC are much more efficient than the F-measure
method. As discussed in Section 3, the F-measure method needs
to update the values (i.e., delta F-measure) of all keywords every
time a keyword is added to or removed from a query. On the other
hand, ISKR only needs to update the values of the keywords that
do not appear in all delta results, the number of which could be a
small percentage of all distinct keywords. For some queries the F-
measure method takes more than 30 seconds. The efficiency of the
CS approach is usually comparable with ISKR and PEBC, since
the TFICF of a keyword can be efficiently computed. Data clouds
is generally faster than both ISKR and PEBC, as it only needs to
compute the tf and idf for each keyword in the results.

The scalability test is presented in the The Appendix.

6. RELATED WORK
There are a number of different existing approaches on query

expansion, e.g., there are works based on query log [2, 9], general
or domain-specific ontology [3, 12, 10], user profile and collabora-
tively filtering [11], selecting popular words in the results [24, 7, 5,
22, 15, 21, 23], etc. Query expansion is also related to the topics of

356

0

0.2

0.4

0.6

0.8

1

QS1 QS2 QS3 QS4 QS5 QS6 QS7 QS8 QS9 QS10

S
co
re
 (
E
q
. 1
)

ISKR PEBC F-measure CS

0

0.2

0.4

0.6

0.8

1

QW1 QW2 QW3 QW3 QW5 QW6 QW7 QW8 QW9 QW10

S
co
re
 (
E
q
. 1
)

ISKR PEBC F-measure CS

(a) Shopping Dataset (b) Wikipedia Dataset

Figure 5: Scores of Expanded Queries (Eq. 1)

0

0.2

0.4

0.6

0.8

1

QS1 QS2 QS3 QS4 QS5 QS6 QS7 QS8 QS9 QS10

T
im
e
(s
)

ISKR PEBC DataClouds F-measure CS

1.6 6.4 6.5 1.4 32.31.6 6.4 6.5 1.4 32.3

0

0.2

0.4

0.6

0.8

1

QW1 QW2 QW3 QW4 QW5 QW6 QW7 QW8 QW9 QW10

T
im
e
(s
)

ISKR PEBC DataClouds F-measure CS

(a) Shopping Dataset (b) Wikipedia Dataset

Figure 6: Query Expansion Time

faceted search [8, 14, 16], cluster labeling/summarization [6, 19],
result differentiation [18], etc. More detailed discussion of related
works is presented in the Appendix.

7. CONCLUSIONS AND FUTURE WORK
In this paper we propose a novel framework for query expansion:

generating a set of expanded queries that provides a classification
of the original query result set. Specifically, the expanded queries
maximally retrieve the results of the original query, and the results
retrieved by different expanded queries are different. To achieve
this, we propose to first cluster the results, and then generate an
expanded query for each cluster, whose set of results should be as
close to the cluster as possible. We formally define the Query Ex-
pansion with Clusters (QEC) problem. This problem is APX-hard.
We then design two efficient algorithms ISKR and PEBC for gener-
ating expanded queries based on the clustered results. In the future,
we would like to investigate how different clustering methods affect
the expanded queries, and design techniques for choosing the best
clustering method dynamically. We would also like to study how
to support vector space retrieval model, as well as the possibility of
interweaving the clustering and query expansion process.

8. ACKNOWLEDGEMENT
This material is based on work partially supported by NSF CA-

REER Award IIS-0845647, IIS-0915438 and IBM Faculty Award.

9. REFERENCES
[1] B. L. 0002 and H. V. Jagadish. Using Trees to Depict a Forest. PVLDB,

2(1):133–144, 2009.
[2] Z. Bar-Yossef and M. Gurevich. Mining Search Engine Query Logs via

Suggestion Sampling. PVLDB, 1(1):54–65, 2008.
[3] M. Baziz, M. Boughanem, and N. Aussenac-Gilles. Conceptual Indexing Based

on Document Content Representation. In CoLIS, pages 171–186, 2005.
[4] A. Z. Broder. A Taxonomy of Web Search. SIGIR Forum, 36(2):3–10, 2002.
[5] G. Cao, J.-Y. Nie, J. Gao, and S. Robertson. Selecting Good Expansion Terms

for Pseudo-Relevance Feedback. In SIGIR, pages 243–250, 2008.

[6] D. Carmel, H. Roitman, and N. Zwerdling. Enhancing Cluster Labeling Using
Wikipedia. In SIGIR, pages 139–146, 2009.

[7] C. Carpineto, R. de Mori, G. Romano, and B. Bigi. An Information-Theoretic
Approach to Automatic Query Expansion. ACM Trans. Inf. Syst., 19(1):1–27,
2001.

[8] K. Chakrabarti, S. Chaudhuri, and S. won Hwang. Automatic Categorization of
Query Results. In SIGMOD Conference, pages 755–766, 2004.

[9] P.-A. Chirita, C. S. Firan, and W. Nejdl. Personalized Query Expansion for the
Web. In SIGIR, pages 7–14, 2007.

[10] G. Fu, C. B. Jones, and A. I. Abdelmoty. Ontology-Based Spatial Query
Expansion in Information Retrieval. In OTM Conferences (2), pages
1466–1482, 2005.

[11] L. Fu, D. H.-L. Goh, and S. S.-B. Foo. Evaluating the Effectiveness of a
Collaborative Querying Environment. In ICADL, pages 342–351, 2005.

[12] F. A. Grootjen and T. P. van der Weide. Conceptual Query Expansion. Data
Knowl. Eng., 56(2):174–193, 2006.

[13] Y. Huang, Z. Liu, and Y. Chen. Query Biased Snippet Generation in XML
Search. In SIGMOD Conference, pages 315–326, 2008.

[14] A. Kashyap, V. Hristidis, and M. Petropoulos. FACeTOR: Cost-Driven
Exploration of Faceted Query Results. In CIKM, pages 719–728, 2010.

[15] G. Koutrika, Z. M. Zadeh, and H. Garcia-Molina. Data Clouds: Summarizing
Keyword Search Results over Structured Data. In EDBT, pages 391–402, 2009.

[16] C. Li, N. Yan, S. B. Roy, L. Lisham, and G. Das. Facetedpedia: Dynamic
generation of query-dependent faceted interfaces for wikipedia. In WWW, pages
651–660, 2010.

[17] Z. Liu, S. Natarajan, and Y. Chen. Generating Expanded Queries Based on
Clustered Query Results. Technical Report ASUCIDSE-2011-003, Arizona
State University, 2010.

[18] Z. Liu, P. Sun, and Y. Chen. Structured Search Result Differentiation. PVLDB,
2(1):313–324, 2009.

[19] M. Muhr, R. Kern, and M. Granitzer. Analysis of Structural Relationships for
Hierarchical Cluster Labeling. In SIGIR, pages 178–185, 2010.

[20] S. E. Robertson. On Term Selection for Query Expansion. Journal of
Documentation, 46:359–364, 1990.

[21] N. Sarkas, N. Bansal, G. Das, and N. Koudas. Measure-driven keyword-query
expansion. PVLDB, 2(1):121–132, 2009.

[22] Y. Tao and J. X. Yu. Finding Frequent Co-occurring Terms in Relational
Keyword Search. In EDBT, pages 839–850, 2009.

[23] O. Vechtomova, S. E. Robertson, and S. Jones. Query Expansion with
Long-Span Collocates. Inf. Retr., 6(2):251–273, 2003.

[24] J. Xu and W. B. Croft. Query Expansion Using Local and Global Document
Analysis. In SIGIR, pages 4–11, 1996.

[25] Y. Xu, G. J. F. Jones, and B. Wang. Query Dependent Pseudo-Relevance
Feedback based on Wikipedia. In SIGIR, pages 59–66, 2009.

357

APPENDIX

A. Pseudo Code of Algorithm 1

Algorithm 1 Iterative Single-Keyword Refinement
ISKR (User Query: uq, Cluster: C, Results not in C: U)
1: K = the set of keywords in C ∪ U
2: q = uq
3: Refine(C,U,K, q, weight)
4: return q

REFINE (C,U,K, q, weight))
1: T = ∅
2: for each k ∈ K, k /∈ q do
3: E(k) = the set of results that do not contain k
4: benefit(k) = S(R(q) ∩ C ∩ E(k))
5: cost(k) = S(R(q) ∩ U ∩ E(k))
6: value(k) = benefit(k)/cost(k)
7: insert k into T
8: end for
9: for each k ∈ K, k ∈ q do

10: D(k) = R(q\k)\R(q)
11: benefit(k) = S(D(k) ∩ C)
12: cost(k) = S(D(k) ∩ U)
13: end for
14: while true do
15: k = top-1 keyword in T
16: if value(k) ≤ 1 then
17: break
18: end if
19: if k ∈ q then
20: q = q\k
21: MaintainT (T, q, k, E(k),K, C, remove)
22: else
23: q = q ∪ k
24: MaintainT (T, q, k, E(k),K, C, add)
25: end if
26: end while
27: return q

MAINTAINT (T, q, k, E(k),K, C, type)
1: if type = add then
2: deltaResult = R(q\k) ∩ E(k)
3: else
4: deltaResult = R(q\k)\R(q)
5: end if
6: for each k′ ∈ K do
7: if each k′ appears in all results in deltaResult then
8: continue
9: end if

10: if type = add then
11: benefit(k′) = R(q) ∩ U ∩ E(k′)
12: cost(k′) = R(q) ∩ C ∩ E(k′)
13: else
14: D(k) = R(q\k)\R(q)
15: benefit(k′) = D(k) ∩ C
16: cost(k′) = D(k) ∩ U
17: end if
18: remove k′ from T
19: value(k′) = benefit(k′)/cost(k′)
20: add k′ to T
21: end for

B. Pseudo Code of Algorithm 2

Algorithm 2 Partial Elimination Based Convergence
PEBC (User Query: uq, Cluster: C, Results not in C: U)
1: K = the set of keywords in C ∪ U
2: q = uq
3: Converge(C,U,K, q)
4: return q

CONVERGE (C,U,K, q))
1: nseg = 5 {set the number of segments to split the interval}
2: nit = 5 {set the number of iterations}
3: left = 0, right = 100, step = (right− left)/nseg
4: for i=1 to nit do
5: for x = left; x ≤ right; x+ = step do
6: currC = C, currU = U
7: repeat
8: r = a randomly selected result
9: bestvalue = 0

10: for each distinct keyword k /∈ r do
11: E(k) = the set of results that do not contain k
12: benefit(k) = E(k) ∩ U
13: cost(k) = E(k) ∩ C
14: value(k) = benefit(k)/cost(k)
15: if value(k) > bestvalue then
16: selecetd = k, bestvalue = value(k)
17: end if
18: end for
19: q = q ∪ selected
20: currC = C\E(k), currU = U\E(k)
21: until roughly x% percent of results in U are eliminated
22: end for
23: left, right = the interval with the largest average score
24: end for

C. Experimental Setup
Environment. All experiments were performed on a machine with
AMD Atholon 64 X2 Dual Core Processor 6000+ CPU with 3GHz,
4GB RAM, running Windows Server 2008.

Data Set. We tested our approaches on two data sets: shopping
and Wikipedia. Shopping is a data set that contains information of
electronic products crawled from circuitcity.com. Each product has
a title, a category, and a set of features. Wikipedia is a collection of
document-centric XML files used in INEX 2009.3

Query Set and Result Clustering. We tested 10 queries on each
data set, as shown in Table 1 (Appendix). The queries on Wikipedia
dataset are composed of ambiguous words. The queries on shop-
ping dataset are to search for specific products. We adopt k-means
for result clustering. Each result is modeled as a vector whose com-
ponents are features in the results and the weight of each compo-
nent is the TF of the feature. The similarity of two results is the
cosine similarity of the vectors.

Comparison Systems. We compared the proposed ISKR and
PEBC algorithms with several representative query expansion meth-
ods:
(1) Data Clouds [15], which takes a set of ranked results, and re-
turns the top-k important words in the results. The importance of
a word is measured by its term frequency in the results it appears,
inverse document frequency, as well as the ranking score of the re-
sults that contain the word. Data Clouds is a representative method
for returning important words in the search results, without cluster-
ing the results.
(2) Google. For each test query, we take the first 3-5 related queries
3http://www.inex.otago.ac.nz/

358

suggested by Google (the number of which is the same as the num-
ber of queries generated by other approaches). Google is a repre-
sentative work of suggesting related queries using query logs.
(3) CS, representing Cluster Summarization [6]. It first clusters the
results, then generates a label for each cluster. The label of a clus-
ter is selected based on the term frequency (tf) and inverse cluster
frequency (icf) of the words in the cluster. CS is a representative
method for cluster summarization and labeling.
(4) F-measure, which is an alternative ISKR algorithm that con-
siders the value of a keyword k with respect to a query q as the
delta F-measure of q after adding k to q or removing k from q. As
discussed in Section 3, since our goal function is to maximize the
F-measure of a query, the delta F-measure more accurately reflects
the value of a keyword than the benefit/cost ratio. However, in this
approach, after a keyword is added to or removed form the current
query, the values of all keywords will need to be updated, which
potentially leads to a low efficiency.

We implemented Data Clouds and CS.
In ISKR and PEBC, we consider the top-20% words in the results

in terms of tfidf for query expansion. In PEBC, we empirically set
the number of points tested in each iteration as 3, and the number
of iterations as 3. Since there are a lot of results for queries on
Wikipedia data set, all systems only consider the top 30 results to
generate expanded queries, where the results are ranked using tfidf
of the keywords. We also set the maximal number of expanded
queries for each approach to be 5.

D. Test Queries
The test queries are shown in Table 1.

Wikipedia
QW1 San Jose
QW2 Columbia
QW3 CVS
QW4 Domino
QW5 Eclipse
QW6 Java
QW7 Cell
QW8 Rockets
QW9 Mouse
QW10 sportsman, Williams
Shopping
QS1 Canon Products
QS2 Networking Products
QS3 Networking Products Routers
QS4 TV
QS5 TV Plasma
QS6 HP Products
QS7 Memory
QS8 Memory 8GB
QS9 Memory Internal
QS10 Printer

Table 1: Data and Query Sets

E. Scalability of Query Expansion
We have tested the scalability of all three approaches with respect
to the number of results returned by the user query. We use query
QW2 “Columbia”, and vary the number of results from 100 to 500.
The time shown for ISKR and PEBC include both clustering and
query generation. As shown in Figure 7, the processing time of
both approaches increases linearly, and they have a reasonable re-
sponse time even if 500 results are used.

0

5

10

15

20

25

30

100 200 300 400 500

T
im
e
 (
s)

Number of Results

ISKR

PEBC

Figure 7: Scalability over Number of Results

F. Related Work
Query Expansion. Expanded queries can be generated based on
query log [2, 9], general or domain-specific ontology [3, 12, 10],
user profile and collaboratively filtering [11]. Since such informa-
tion may not always be available, there are also works that generate
expanded queries only based on the information contained in the
corpus, i.e., the results retrieved by the user query and/or the entire
data repository. As our work falls into this category, we focus the
discussion on corpus-driven query expansion.

One class of work is based on relevance feedback. The expanded
query aims to retrieve a set of results that are similar to the rel-
evant results, where the relevant results are specified by the user
in explicit feedback or are considered to be the top ranked results
in pseudo feedback. To generate new queries, various approaches
have been proposed to select and rank terms from relevant results,
including TF-IDF based methods [15, 24], probabilistic language
model based methods [20], vector space model based methods [25],
etc. However, since users typically provide feedback to top ranked
results only, top ranked results are mostly likely reinforced and the
diversity of the results are compromised. Furthermore, the pseudo
feedback approach assumes that relevant documents are similar
to each other, and are quite different from irrelevant ones. Thus
relevance feedback approach is not suitable for ambiguous or ex-
ploratory queries where the relevant interpretation of the query se-
mantics among several alternatives is unknown.

There are also works that generate new queries based on popular
words in the original query result [24, 7, 5, 22, 15, 21], considering
factors like term frequency, inverse document frequency, ranking
of the results in which they appear, etc. In particular, [15, 22] ex-
ploit relational databases instead of text documents, and [22] only
considers term frequency but has the advantage of generating ex-
panded queries without evaluating the original one. [23] addition-
ally considers the proximity to the original query keywords when
selecting words from results or corpus to compose new queries. As
discussed in Section 1 and shown in Section 5, these approaches
emphasize on result summarization, and are not suitable for han-
dling exploratory and ambiguous queries.

[21] addresses a specific application: query expansion when search-
ing products with user ratings. It selects a set of product attributes
as expanded terms based on co-occurrence patterns, extreme rating
(e.g., product attributes mentioned in highly positive or negative
reviews) and consistent rating (e.g., features present in unanimous
reviews).

Faceted Search. Faceted search provides a classification of the
data and enables effective data navigation. There are several ap-
proaches for automatically constructing faceted navigation inter-

359

faces given the set of query results, which aim at reducing the user’s
expected navigational cost in finding the relevant results [8, 14, 16].

Compared with faceted search, our approach is advantageous in
two cases: (1) when it is difficult to extract facets, such as searching
text documents; and (2) when the query is ambiguous. For ambigu-
ous queries like “apple”, “eclipse”, etc., different results may have
completely different facets. In this case, it is difficult for faceted
search to navigate the results and disambiguate the query.

Cluster Labeling / Summarization. The goal of cluster label-
ing is to find a set of descriptive words for each cluster, which sum-
marizes the content of the cluster, and meanwhile differentiates it
from other clusters. Some representative works include [6, 19].
A typical way of measuring the desirableness of a term is TFICF,
i.e., term frequency and inverse cluster frequency. Finding clus-
ter representatives for structured data has also been studied: [1]
assumes each result to be a tuple in a relational database with nu-
merical attributes, and uses the k-medoids method to generate a
representative for each cluster. As we have discussed in Section 1,
while cluster labeling techniques are useful, their goal is different
as query expansion, and thus they cannot be directly applied for
query expansion. Unlike cluster labeling, the interaction of the
terms needs to be considered in query expansion, making it a lot
more challenging. Furthermore, while cluster labeling quality is
typically judged empirically, in this work we propose a quantita-
tive measure of query expansion (i.e. the harmonic mean of the
F-measures of the expanded queries).

Compared with existing work, there are several uniqueness of
our approach. First, compared with existing query expansion ap-
proaches, we generate expanded queries with the aim of presenting
a classification of the original query results. This is especially use-
ful for handling exploratory queries and ambiguous queries. Sec-
ond, our technical contributions focus on how to generate queries
with high F-measure given the ground truth of query result. To
the best of our knowledge, this is the first study on this problem.
Furthermore, unlike existing work that addresses the query expan-
sion problem using heuristics, this work formalizes the problem
and quantifies the quality of an approach.

Result Differentiation. One of our prior works [18] studied the
problem of result differentiation. With the goal of differentiating a
set of user selected results, [18] selects a set of feature types defined
as (entity, attribute) such that results have different values or value
distributions on those feature types. For instance, for two stores
that both sell outwear, [18] may choose outwear as a differentiating
feature for those stores if one store sells a lot of them while another
only sells a few. However, such a choice is not good for the query
expansion problem as both stores can be retrieved by keyword “out-
wear”. On the other hand, for the query expansion problem, results
of the original query may be significantly different and do not share
the same type of features. The technique in [18] that selects feature
types shared by all results is generally inapplicable. Furthermore,
since a query is generated for each cluster of results, the set of se-
lected keywords/features should co-occur in many results in this
cluster (but not in many results in other clusters). This challenge is
not applicable in [18] for differentiating individual results.

G. Expanded Queries
The expanded queries generated by each approach for the queries
in Table 1 are shown in Figures 8 and 9.

QW3: CVS

ISKR q1: "CVS, prince, household"

q2: "CVS, code, community"

q3: " CVS, southwest"

PEBC q1: "CVS, prince, shop"

q2: "CVS, wikipedia“

q3: "CVS, southwest"

CS q1: “CVS, station, distribution, retail "

q2: “CVS, webster, indiana, settlement”

q3: “CVS, system, jike, java"

Google q1: "CVS, careers"

q2: "CVS, test"

q3: "CVS, caremark"

Data

Clouds

q1: "CVS, Bull"

q2: "CVS, gnuplot"

q3: "CVS, Java"

F-measure q1: "CVS, station vma”

q2: "CVS, eastern, caremark"

q3: "CVS, community"

QW2: Columbia

ISKR q1: "Columbia, University, research"

q2: "Columbia, Album"

q3: "Columbia, british"

PEBC q1: "Columbia, University, college"

q2: "Columbia, Album"

q3: "Columbia, Mountain"

CS q1: "Columbia, guillermo, calvo, argentina"

q2: "Columbia, essential, toni, bennett "

q3: "Columbia, wakaheena, history, highway"

Google q1: "Columbia, country"

q2: "Columbia, house"

q3: "Columbia, wikipedia"

Data

Clouds

q1: "Columbia, strong"

q2: "Columbia, yakama"

q3: "Columbia, light"

F-measure q1: "Columbia, University, research "

q2: "Columbia, Album"

q3: "Columbia, British"

QW1: San Jose

ISKR q1: "San Jose, Player, Hockey"

q2: "San Jose, Location"

PEBC q1: "San Jose, Player,"

q2: "San Jose, Location"

CS q1: "San Jose, sabercat, season, arena "

q2: "San Jose, war, california, gold"

Google q1: "San Jose, Attractions"

q2: "San Jose, costa rica "

Data

Clouds

q1: "San Jose, scorer"

q2: "San Jose, kyle"

F-measure q1: "San Jose, Player, hockey"

q2: "San Jose, location"

QW4: Domino

ISKR q1: "Domino, page, long"

q2: "Domino, album, produce"

q3: "Domino, queen"

PEBC q1: "Domino, page, science"

q2: "Domino, album"

q3: "Domino, queen"

CS q1: "Domino, restaurt, pizza, food

q2: "Domino, vocal, album, die “

q3: "Domino, french, language, christian "

Google q1: "Domino, game"

q2: "Domino, movie"

q3: "Domino, records"

Data Clouds q1: "Domino, album"

q2: "Domino, pizza"

q3: "Domino, sugar"

F-measure q1: "Domino, page science"

q2: "Domino, album brand"

q3: "Domino, retreival"

QW5: Eclipse

ISKR q1: "Eclipse, model, software"

q2: "Eclipse, march"

q3: "Eclipse, greek"

PEBC q1: "Eclipse, model, environment, automate"

q2: "Eclipse, hali"

q3: "Eclipse, greek"

CS q1: "Eclipse, core, plugin, offici al"

q2: "Eclipse, role, origin, video"

q3: "Eclipse, greek, ancient, athenian “

Google q1: "Eclipse, mitsubishi"

q2: "Eclipse, car"

q3: "solar, eclipse"

Data

Clouds

q1: "Eclipse, core, postfix"

q2: "Eclipse, role, task"

q3: "Eclipse,paganu"

F-measure q1: "Eclipse, Model, software"

q2: "Eclipse, March, related"

q3: "Eclipse, greek"

QW6: Java

ISKR q1: "Java, Server"

q2: "Java, code"

q3: "Java, Island"

PEBC q1: "Java, server, web"

q2: "Java, aspectj"

q3: "Java, island"

CS q1: "Java, blog, microsoft, tool "

q2: "Java, view, howard, system "

q3: "Java, western, south, parallel"

Google q1: "Java, tutorials"

q2: "Java, games"

q3: "Java, test"

Data Clouds q1: "Java, nabble"

q2: "Java, bit"

q3: "Java, room"

F-measure q1: "Java, Server”

q2: "Java, Data"

q3: "Java, Molucca"

QW7: Cell

ISKR q1: "Cell, express, data"

q2: "Cell, biological"

q3: "Cell, battery"

PEBC q1: "Cell, express"

q2: "Cell, language"

q3: "Cell, battery"

CS q1: "Cell, biophosphate, placent, mosaic "

q2: "Cell, sumono, yumeka, template"

q3: "Cell, battery, kinase, amala"

Google q1: "cell, parts of a cell"

q2: "Cell, theory"

q3: "Cell, animal"

Data Clouds q1: "Cell, multicellular"

q2: "Cell, bit"

q3: "Cell, stomach"

F-measure q1: "Cell, express data"

q2: "Cell, biological"

q3: "Cell, battery"

QW8: Rockets

ISKR q1: "Rockets, NBA"

q2: "Rockets, launch"

q3: "Rockets, iowa"

PEBC q1: "Rockets, NBA"

q2: "Rockets, Interior"

q3: "Rockets, Built"

CS q1: "Rockets, vernon, maxwell, orlando"

q2: "Rockets, israel, dome, missile"

q3: "Rockets, built, rhode, singer "

Google q1: "Model, Rockets"

q2: "Space, Rockets"

q3: "Bottle, Rockets"

Data Clouds q1: "Rockets, cincinnati"

q2: "Rockets, anti"

q3: "Rockets, target"

F-measure q1: "Rockets, NBA"

q2: "Rockets, Interior"

q3: "Rockets, Built"

Figure 8: Expanded Queries (1)

360

QW9: Mouse

ISKR q1: "Mouse, technique"

q2: "Mouse, scientific"

q3: "Mouse, cartoon"

PEBC q1: "Mouse, technique"

q2: "Mouse, scientific"

q3: "Mouse, cartoon"

CS q1: "Mouse, technique, wheel, interface"

q2: "Mouse, birch, hesperian, fossil "

q3: "Mouse, cartoon, television, adventure"

Google q1: "Mouse, Pictures"

q2: "Mouse breaker"

q3: “Mouse, Pictures of mice"

Data Clouds q1: "Mouse, mystery"

q2: "Mouse, laugh"

q3: "Mouse, bush"

F-measure q1: "Mouse, technique"

q2: "Mouse, scientific"

q3: "Mouse, cartoon"

QW10: Sportsman, Williams

ISKR q1: "Sportsman, Williams, smith, point"

q2: "Sportsman, Williams, launch"

q3: "Sportsman, Williams, stuart"

PEBC q1: "Sportsman, Williams, smith"

q2: "Sportsman, Williams, fire"

q3: "Sportsman, Williams, club"

CS q1: "Sportsman, Williams, piano, season american"

q2: "Sportsman Williams, alliance, youth, Iraqi"

q3: "Sportsman Williams, barker, salem, high"

Google q1: "Sportsman, Williams, football"

q2: "Sportsman, Williams, baseball"

q3: "Sportsman, Williams, news"

Data

Clouds

Set1: "Sportsman, Williams, gamebook"

Set2: "Sportsman, Williams, highway"

Set3: "Sportsman, Williams, kick"

F-measure q1: "Sportsman, Williams, NBA, boston"

q2: "Sportsman, Williams, launch"

q3: "Sportsman, Williams, stuart"

QS1: Canon, Products

ISKR q1: "canonproducts: category: Camcorders"

q2: "canonproducts: category: printer"

q3: "canonproducts: category: camera"

PEBC q1: "Canonproducts: category: camcorders"

q2: "Canonproducts: category: printer"

q3: "Canonproducts: category: camera"

CS q1: "canonproducts:category:camcorders"

q2: "camera:image resolution:4752 x 3168"

q3: "camera:shutter speed:15 - 13,200 sec."

Google q1: "Canon, Cameras"

q2: "Sony, products"

q3: "canon camera products"

Data

Clouds

q1: "Canon, Camera"

q2: "Canon, Printer"

q3: "Canon, canon wp-dc26 underw"

F-

measure

q1: "Canonproducts: category: camcorders"

q2: "Canonproducts: category: printer"

q3: "Canonproducts: category: camera"

QS2: Networking, Products

ISKR q1: "Networking products: category: routers"

q2: "firewalls: vlans: portshield"

q3: "Networking products: category: switches"

PEBC q1: "networking products: category: routers"

q2: "networking products: category: firewalls"

q3: "networking products: category: switches"

CS q1: "Networking products: category: routers"

q2: "firewalls:name:d-link dir-130 vpn firewall"

q3: “Switches:name:d-link*"

Google q1: "Social Networking products"

q2: "Computer Networking products"

q3: "Networking products price"

Data

Clouds

q1: "Networking Products, Switches"

q2: "Networking products, Ethernet"

q3: "Networking products, firewalls"

F-measure q1: "Networking products: category: routers"

q2: "firewalls: form factor: desktop"

q3: "Networking products: category: switches"

QS3: Networking, Products, Routers

ISKR q1: "Routers: Name: integr"

q2: "Routers: Name: rangemax"

q3: "Routers: Name: linksys"

PEBC q1: "Routers: Name: integr"

q2: "Routers: Name: rangemax"

q3: "Routers: Name: linksys"

CS q1: "Routers: RJ-45Ports: 4"

q2: "Routers: Features: MAC Filtering"

q3: "Routers: Name: linksys"

Google q1: "Networking, wireless, routers"

q2: "Network, routers"

q3: "Wood routers"

Data Clouds q1: "Cisco 1841 routers"

q2: "Cisco 1801 integr"

q3: "Cisco 1801 integr"

F-measure q1: "Routers: Name: integr"

q2: "Routers: Name: rangemax"

q3: "Routers: Name: linksys"

QS4: TV

ISKR q1: "TV: brand: Toshiba"

q2: "TV: brand: LG"

PEBC q1: "TV: brand: Toshiba"

q2: "TV: brand: Samsung"

CS q1: “TV:display area:26""

q2: “TV:name:lg 42lg70"

Google q1: "TV, guide, products"

q2: "TV, electronics"

q3: "TV, hair products"

Data

Clouds

q1: "TV, Toshiba"

q2: "TV, LG"

q3: "TV, TV/DVD combo"

F-measure q1: "TV: brand: Toshiba"

q2: "TV: DisplayType: LCD HDTV"

QS5: TV, Plasma

ISKR q1: "TV: brand: Panasonic"

q2: "TV: brand: Samsung"

PEBC q1: "TV: displayarea: 42`"

q2: "TV: displayarea: 50`"

CS q1: "TV: displayarea: 42`"

q2: "TV: brand :LG"

Google q1: "TV Plasma vs lcd"

q2: "TV LCD"

q3: "TV, bestbuy plasma"

Data

Clouds

q1: "Panosonic"

q2: "Samsung"

q3: "42`"

F-measure q1: "TV: brand: Toshiba"

q2: "LCD, TV"

QS6: HP, Products

ISKR q1: "HPproducts: category: printer"

q2: "HPproducts: category: battery"

q3: "HPproducts: category: laptop"

PEBC q1: "HPproducts: category: printer"

q2: "HPproducts: category: battery"

q3: "HPproducts: category: laptop"

CS q1: "HPproducts: category: printer"

q2: "HPproducts: category: battery"

q3: "HPproducts: category: laptop"

Google q1: "HP Products Corporation"

q2: "HP Printers"

q3: "HP Laptops"

Data

Clouds

q1: "Battery"

q2: "compatible models"

q3: "printer"

F-

measure

q1: "HPproducts: category: printer"

q2: "HPproducts: category: battery"

q3: "HPproducts: category: laptop"

QS7: Memory

ISKR q1: "Memory: category: harddrive"

q2: "Memory: category: flashmemory“

q3: "Memory: category: ddr3"

PEBC q1: "Memory: category: harddrive"

q2: "Memory: category: flashmemory"

q3: "Memory: category: ddr3"

CS q1: "Memory: name: cavalry*"

q2: "Memory: category: flashmemory"

q3: "Memory: category: ddr3"

Google q1: "Human memory"

q2: "Computer memory"

q3: "Memory game"

Data

Clouds

q1: "Flash Memory"

q2: "DDR2"

q3: "DDR3" "

F-measure q1: "Memory: category: flashmemory"

q2: "Memory: category: harddrive"

q3: "Memory: category: ddr3"

QS8: Memory 8GB

ISKR q1: "Flash Memory: memory size: 8gb"

q2: "Memory: Category: HardDrive"

q3: "Memory: Category: DDR3"

PEBC q1: "Memory: Category: FlashMemory"

q2: "Memory: Category: HardDrive"

q3: "Memory: Category: DDR3"

CS q1: "Flash Memory: memory size: 8gb"

q2: "Memory: category: harddrive"

q3: "Memory: category: ddr3"

Google q1: "Memory cards 8gb"

q2: "Laptop memory, 8GB"

q3: "Flash memory"

Data

Clouds

q1: "Harddrive"

q2: "Flash Memory"

q3: "DDR3"

F-measure q1: "Memory: category: Flash Memory"

q2: "Memory, 8GB, Transcend"

q3: "Memory: category: DDR3"

QS9: Memory Internal

ISKR q1: "Memory: category: Harddrive"

q2: "Memory: category: Flash Memory"

PEBC q1: "Memory: Category: Harddrive"

q2: "Memory: Category: FlashMemory"

CS q1: "Memory: name: hitachi*"

q2: "Memory: category: Flash Memory"

Google q1: "dell internal memory"

q2: "d internal dell"

Data

Clouds

q1: "flashmemory"

q2: "harddrive"

F-measure q1: "Memory: category: Harddrive"

q2: "Memory: category: Flash Memory"

QS10: Printer

ISKR q1: "Printer: printmethod: laser"

q2: “Printer: printmethod: inkjet,

PEBC q1: "Printer: Name: imageclass"

q2: "Printer: Name: Pixma*"

CS q1: "Printer: Condition: New"

q2: "Printer: PrintMethod: Laser"

Google q1: "Canon, Printer"

q2: "HP, Printer"

Data

Clouds

q1: "pixma"

q2: "imageclass"

F-measure q1: "Printer: Name: imageclass"

q2: "Printer: Name: Pixma"

Figure 9: Expanded Queries (2)

361

