
Similarity Join Size Estimation using Locality Sensitive
Hashing∗

Hongrae Lee
University of British Columbia

xguy@cs.ubc.ca

Raymond T. Ng
University of British Columbia

rng@cs.ubc.ca

Kyuseok Shim
Seoul National University

shim@ee.snu.ac.kr

ABSTRACT
Similarity joins are important operations with a broad range
of applications. In this paper, we study the problem of vec-
tor similarity join size estimation (VSJ). It is a generaliza-
tion of the previously studied set similarity join size estima-
tion (SSJ) problem and can handle more interesting cases
such as TF-IDF vectors. One of the key challenges in sim-
ilarity join size estimation is that the join size can change
dramatically depending on the input similarity threshold.

We propose a sampling based algorithm that uses Locality-
Sensitive-Hashing (LSH). The proposed algorithm LSH-SS
uses an LSH index to enable effective sampling even at high
thresholds. We compare the proposed technique with ran-
dom sampling and the state-of-the-art technique for SSJ
(adapted to VSJ) and demonstrate LSH-SS offers more ac-
curate estimates throughout the similarity threshold range
and small variance using real-world data sets.

1. INTRODUCTION
Given a similarity measure and a minimum similarity

threshold, a similarity join is to find all pairs of objects
whose similarity is not smaller than the similarity threshold.
The object in a similarity join is often a vector. For instance,
a document can be represented by a vector of words in the
document, or an image can be represented by a vector from
its color histogram. In this paper, we focus on the vector
representation of objects and study the following problem.

Definition 1 (The VSJ Problem). Given a collection
of real-valued vectors V = {v1, ..., vn} and a threshold τ
on a similarity measure sim, estimate the number of pairs
J = |{(u, v) : u, v ∈ V, sim(u, v) ≥ τ, u 6= v}|.

Similarity joins have a broad range of applications in-
cluding near duplicate document detection and elimination,

∗This work was supported by the National Research Foun-
dation of Korea (NRF) grant funded by the Korea govern-
ment (MEST) (No. 2010-0000793).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 37th International Conference on Very Large Data Bases,
August 29th - September 3rd 2011, Seattle, Washington.
Proceedings of the VLDB Endowment, Vol. 4, No. 6
Copyright 2011 VLDB Endowment 2150-8097/11/03... $ 10.00.

query refinement for web search, coalition detection [3], and
data cleaning processes [17, 2]. Accordingly, similarity joins
have recently received much attention, e.g. [17, 2, 6, 3, 11].
Chaudhuri et al. identified a similarity join operation as a
primitive operator in database systems [6].

To successfully incorporate similarity join operations in
database systems, it is imperative that we have reliable size
estimation technique for them. The query optimizer needs
accurate size estimations to produce an optimized query
plan. Thus, in this paper, we focus on the size estimation
of vector similarity joins.

In the literature, the similarity join size estimation prob-
lem has been defined using sets as follows:

Definition 2 (The SSJ Problem). Given a collection
of real-valued sets S = {s1, ..., sn} and a threshold τ on a
similarity measure sim, estimate the number of pairs J =
|{(r, s) : r, s ∈ S, sim(r, s) ≥ τ, r 6= s}|.
Note that our formulation of similarity joins with vectors
is more general and can handle more practical applications.
For instance, while in the SSJ problem a document is sim-
ply a set of words in the document, in the VSJ problem a
document can be modeled with a vector of words with TF-
IDF weights. It can also deal with multiset semantics with
occurrences. In fact, most of the studies on similarity joins
first formulate the problem with sets and then extend it with
TF-IDF weights, which is indeed a vector similarity join.

The SSJ problem has been previously studied by Lee et
al. [14]. A straightforward extension of SSJ techniques for
the VSJ problem is to embed a vector into a set space. We
convert a vector into a set by treating a dimension as an
element and repeating the element as many times as the
dimension value, using standard rounding techniques if val-
ues are not integral [2]. In practice, however, this embed-
ding can have adverse effects on performance, accuracy or
required resources. Intuitively, a set is a special case of a bi-
nary vector and is not more difficult to handle than a vector.
For instance, Bayardo et al. [3] define the vector similarity
join problem and add special optimizations that are possible
when vectors are binary vectors (sets).

In our VSJ problem, we consider cosine similarity as the
similarity measure sim since it has been successfully used
across several domains [3]. Let u[i] denote the i-th dimension
value of vector u. Cosine similarity is defined as cos(u, v) =
u·v/ ‖u‖ ‖v‖, where u·v =

∑
i u[i]·v[i] and ‖u‖ =

√∑
i u[i]2.

We focus on self-joins and discuss extensions to general joins
in Appendix B.2.

One of the key challenges in similarity join size estimation
is that the join size can change dramatically depending on

338

the input similarity threshold. While the join size can be
close to n2 at low thresholds where n is the database size,
it can be very small at high thresholds. For instance, in the
DBLP data set, the join selectivity is only about 0.00001
% at τ = 0.9. While many sampling algorithms have been
proposed for the (equi-)join size estimation, their guaran-
tees fail in such a high selectivity range, e.g. [15, 10, 9].
Intuitively, it is not practical to apply simple random sam-
pling when the selectivity is very high. This is problematic
since similarity thresholds between 0.5 and 0.9 are typically
used [3]. Note that the join size in that range may be large
enough to affect query optimization due to the large cross
product size. Moreover, as observed in [13], join size errors
propagate. That is, even if the original errors are small,
their transitive effect can be devastating.

In this paper, we propose sampling based techniques that
exploit the Locality Sensitive Hashing (LSH) scheme, which
has been successfully applied in similarity searches across
many domains. LSH builds hash tables such that similar ob-
jects are more likely to be in the same bucket. Our key idea
is that although sampling a pair satisfying a high threshold
is very difficult, it is relatively easy to sample the pair using
the LSH scheme because it groups similar objects together.
We show that the proposed algorithm LSH-SS gives good
estimates throughout the similarith threshold range with a
sample size of Ω(n) pairs of vectors (i.e. Ω(

√
n) tuples from

each join relation in an equi-join) with probabilistic guar-
antees. The proposed solution only needs minimal addition
to the existing LSH index and thus is readily applicable
to many similarity search applications. As a summary, we
make the following contributions:

• We present two baseline methods in Section 3. We
consider random sampling and adapt Lattice Counting
(LC) [14] which is proposed for the SSJ problem.

• We extend the LSH index to support similarity join
size estimation in Section 4. We also propose LSH-S
which relies on an LSH function analysis.

• We describe a stratified sampling algorithm LSH-SS
that exploits the LSH index in Section 5. We apply
different sampling procedures for the two partitions
induced by an LSH index: pairs of vectors that are in
the same bucket and those that are not.

• We compare the proposed solutions with random sam-
pling and LC using real-world data sets in Section 6.
The experimental results show that LSH-SS is the
most accurate with small variance.

2. RELATED WORK
Many algorithms have been proposed on the similarity

join processing, e.g. [17, 2, 6, 3]. Their focus is not on size
estimation. In fact, the existence of many join processing
algorithms motivates the size estimation study for query op-
timization. Most of them studied set similarity joins with
complex weights such as TF-IDF or vector similarity joins.

Lee et al. proposed LC for the SSJ problem [14]. We
present this technique in more details in the following section
and compare with the proposed solution in the experiments.
Hadjieleftheriou et al. studied the problem of selectivity
estimation for set similarity selection (not join) queries [11].

There have been many studies using random sampling
for the (equi-)join size estimation; some examples include

adaptive sampling [15], cross/index/tuple sampling [10], bi-
focal sampling [9], and tug-of-war [1]. Some of them can
be adapted to similarity joins, but their guarantees do not
hold due to differences in sampling cost models or they re-
quire impractical sample sizes. Below, we outline two closely
related sampling algorithms.

Adaptive sampling is proposed by Lipton et al [15]. Its
main idea is to terminate sampling process when the query
size (the accumulated answer size from the sample so far)
reaches a threshold not when the number of samples reaches
a threshold. While it does not produce reliable estimates in
skewed data, we observe that its adaptive nature can still
be useful for the VSJ problem. It is used as a subroutine in
our solution in Section 5.

Bifocal sampling is proposed by Ganguly et al. to cope
with the skewed data problem [9]. It tackles the problem by
considering high-frequency values and low-frequency values
with separate procedures. However, as will be shown shortly,
it cannot guarantee good estimates at high thresholds when
applied to the VSJ problem.

3. BASELINE METHODS

3.1 Random Sampling
The first baseline method is uniform random sampling.

We select m pairs of vectors uniformly at random (with re-
placement) and count the number of pairs satisfying the
similarity threshold τ . We return the count scaled up by
M/m where M denotes the total number of pairs of vectors
in the database V . We also consider an alternative method
of first sampling

√
m records and computing similarities of

all the pairs in the sample (cross sampling [10]).
Equi-join size estimation techniques mostly do not offer

clear benefits over the simple random sampling in the VSJ
problem. We note two challenges in the VSJ problem com-
pared to the equi-join size estimation. In the equi-join size of
|R ./ S|, we can focus on frequency distribution on the join
column of each relation R and S. For instance, if we know a
value v appears nr(v) times in R and ns(v) times in S, the
contribution of v in the join size is simply nr(v) · ns(v), i.e.
multiplication of two frequencies. We do not need to com-
pare all the nr(v) · ns(v) pairs. In similarity joins, however,
we need to actually compare the pairs to measure similar-
ity. This difficulty invalidates the use of popular auxiliary
structures such as indexes [10, 7] or histograms [7].

Furthermore, similarity join size at high thresholds can
be much smaller than the join size assumed in equi-joins.
For instance, in the DBLP data set (n = 800K), the join
size of Ω(n logn) assumed in bifocal sampling is more than
15M pairs and corresponds to the cosine similarity value of
only about 0.4. In the most cases, users will be interested
in much smaller join sizes and thus higher thresholds.

3.2 Adaptation of Lattice Counting
Lattice Counting (LC) is proposed by Lee et al. [14] to

estimate SSJ size with Jaccard similarity. Jaccard simi-
larity between two sets A,B is defined as simJ(A,B) =
|A∩B|/|A∪B|. LC relies on succinct representation of sets
using Min-Hashing [4]. A useful property of Min-Hashing is
that if h is a Min-Hash function then P (h(A) = h(B)) =
simJ(A,B). For each set A, a signature of the set sig(A)
is constructed by concatenating k Min-Hash functions. Jac-
card similarity between two sets A,B can be estimated by

339

the number of positions of sig(A) and sig(B) which overlap.
LC performs an analysis on the signatures of all sets. For
our purposes, LC can be treated as a black box.

We observe that the analysis of LC is valid as long as
the number of matching positions in the signatures of two
objects is proportional to their similarity. Note that this re-
quirement is exactly the property of the LSH scheme. Thus
LC can be applied for the VSJ problem with an appropriate
LSH scheme. In fact, Min-Hashing is the LSH scheme for
Jaccard similarity. For the VSJ problem, we first build the
signature database by applying an LSH scheme to the vector
database and then apply LC.

4. LSH INDEX FOR THE VSJ PROBLEM
We first describe how we extend the LSH index and present

a naive method with a uniformity assumption, and then
present LSH-S which improves it with random sampling.

4.1 Preliminary: LSH Indexing
Let H be a family of hash functions such that h ∈ H :

Rd → U . Consider a function h that is chosen uniformly at
random from H and a similarity function sim : Rd × Rd →
[0, 1]. The family H is called locality sensitive if it satisfies
the following property [5].

Definition 3. [Locality Sensitive Hashing] For any vec-
tors u, v ∈ Rd,

P (h(u) = h(v)) = sim(u, v).

That is, the more similar a pair of vectors is, the higher
the collision probability is. The LSH scheme works as fol-
lows [12, 5]: For an integer k, we define a function family G =
{g : Rd → Uk} such that g(v) = (h1(v), ..., hk(v)), where
hi ∈ H, i.e. g is the concatenation of k LSH functions. For
an integer `, we choose ` functions G = {g1, ..., g`} from G
independently and uniformly at random. Each gi, 1 ≤ i ≤ `
effectively constructs a hash table denoted by Dgi . A bucket
in Dgi stores all v ∈ V that have the same gi values. For
space, only existing buckets are stored using standard hash-
ing. G defines a collection of ` tables IG = {Dg1 , ..., Dg`}
and we call it an LSH index. Table 3 in appendix is a sum-
mary of notations.

LSH families have been developed for several (dis)similarity
measures including Hamming distance, `p distance, Jaccard
similarity, and cosine similarity. We rely on the LSH scheme
proposed by Charikar [5] that supports cosine similarity.
The proposed algorithms can easily support other similarity
measures by using an appropriate LSH family.

4.1.1 Extending The LSH Scheme with Bucket Counts
We describe algorithms based on a single LSH table: g =

(h1, ..., hk) with k hash functions and an LSH table Dg. Ex-
tensions with multiple LSH tables are in Appendix B.2. Sup-
pose that Dg has ng buckets; all vectors in the database are
hashed into one of the ng buckets. We denote a bucket by
Bj , 1 ≤ j ≤ ng. Given a vector v, B(v) denotes the bucket
to which v belongs. In the LSH table, each bucket Bj stores
the set of vectors that are hashed into Bj . We extend the
conventional LSH table by adding a bucket count bj for each
bucket Bj that is the number of vectors in the database that
are hashed into Bj . The overhead of adding a bucket count
to each bucket is not significant compared to other infor-
mation such as vectors. Depending on implementation, the
count may be readily available.

similarity0 1

1

Pr[g(u) = g(v)]

similarity0 1

1

Pr[g(u) ≠ g(v)]

(a) PDF for LSH collision

u & v are in the same bucket

τ

P[H∩T]
P[L∩T]

τ

(b) PDF for LSH non-collision

u & v are not in the same bucket

Figure 1: Probability Density Functions of (non-)
collision in the LSH scheme

4.2 Estimation with Uniformity Assumption
Given a collection of vectors V , and a similarity threshold

τ , let M denote the number of total pairs in V , i.e. M =
(
n
2

)
.

Consider a random pair (u, v), u, v,∈ V, u 6= v. We denote
the event sim(u, v) ≥ τ by T , and the event sim(u, v) <
τ by F . We call (u, v) a true pair (resp. false pair) if
sim(u, v) ≥ τ (resp. sim(u, v) < τ). Depending on whether
u and v are in the same bucket, we denote the event B(u) =
B(v) by H and the event B(u) 6= B(v) by L. With these
notations, we can define various probabilities. For instance,
P (T) is the probability of sampling a true pair. P (H|T)
is the probability that a true pair is in the same bucket
and P (T |H) is the probability that a pair of vectors from a
bucket is a true pair. We use NE to denote the cardinality
of the set of pairs that satisfy the condition of event E . For
instance, NT is the number of true pairs (the VSJ size J)
and NH is the number of pairs in the same bucket. NH can
be computed by NH =

∑ng
j=1

(
bj
2

)
.

The key observation is that any pair of vectors from a
bucket is either a true pair or a false pair. Using Bayes’
rule [16], we can express this observation as follows: NH =
NT · P (H|T) + NF · P (H|F). That is, the total number of
pairs of vectors in the same bucket is the sum of the number
of true pairs that are in the same bucket (NT ·P (H|T)) and
the number of false pairs that happened to be in the same
bucket (NF ·P (H|F)). Since NF = M−NT , rearranging the
terms gives NT = (NH−M ·P (H|F))/(P (H|T)−P (H|F)).
Using ‘ ˆ ’ for an estimated quantity, we have an estimator
for the join size J(= NT) as follows:

N̂T = ĴU =
NH −M · P̂ (H|F)

P̂ (H|T)− P̂ (H|F)
. (1)

Note that M and NH are constants given V and Dg. The
conditional probabilities in Equation (1) need to be esti-

mated to compute N̂T . We next present our first estimator
that relies on an LSH function analysis and a uniformity
assumption to estimate the conditional probabilities.

Consider a random pair (u, v) such that sim(u, v) is se-
lected from [0, 1] uniformly at random. Recall that when
sim(u, v) = s, P (h(u) = h(v)) = s from Definition 3.
P (g(u) = g(v)) = sk since g concatenates k hash values.
Figure 1(a) shows the collision probability density function
(PDF) f(s) = sk where s = sim(u, v). The vertical dotted
line represents the similarity threshold τ . The darker area
on the right side of the τ line is the good collision probabil-
ity, i.e. the probability that B(u) = B(v) (u and v are in the
same bucket) and sim(u, v) ≥ τ . Thus the area represents
P (H ∩ T). Likewise, the area on the left side of the τ line

340

is P (H ∩ F), which is the probability that sim(u, v) < τ ,
but B(u) = B(v). Notice that the area below f(s) does not
equal to 1 since it does not cover the entire event space; u
and v may not be in the same bucket. Figure 1(b) shows the
other case where u and v are in different buckets. Its PDF
is 1 − f(s) as shown as the curve. P (L ∩ T) and P (L ∩ F)
are defined similarly as shown in the figure.

Given g (and thus f) and τ , P (H∩F), P (H∩T), P (L∩F)
and P (L∩T) can be estimated by computing the correspond-
ing areas in Figure 1. Based on these areas, we can estimate
the desired conditional probabilities using the following:

P (H|T) =
P (H ∩ T)

P (H ∩ T) + P (L ∩ T)
(2)

P (H|F) =
P (H ∩ F)

P (H ∩ T) + P (L ∩ F)
. (3)

Plugging P (H|T) and P (H|F) computed as above into Equa-
tion (1), we have the following estimator for the VSJ size:

ĴU =
(k + 1)NH − τk ·M∑k−1

i=0 τ
i

. (4)

We give its derivation in Appendix A.1.
We note that ĴU implicitly assumes that the similarity of

pairs is uniformly distributed in [0, 1]. However, this distri-
bution is generally highly skewed [14]; most of pairs have low
similarity values and only a small number of pairs have high
similarity values. We next present LSH-S that removes the
uniformity assumption with sampling.

4.3 LSH-S: Removing Uniformity Assumption
We consider two methods to remove the uniformity as-

sumption. First, we estimate the conditional probabilities
by random sampling without resorting to the LSH func-
tion analysis. For instance, we can estimate P (H|T) by
counting the number of pairs in the same bucket among
the true pairs in the sample. Second, we weight the condi-
tional probabilities using samples. For example, if all the
pairs in the sample have a similarity value of 0.3, we can
only consider similarity s = 0.3 in Figure 1 without consid-
ering the whole area. We call the second method LSH-S
and present only LSH-S since it outperformed the first one
in our experiments. In LSH-S, for each similarity s that
appears in the sample, the f(s) value is weighted by the
occurrence of s in the sample. For a sample S, we use the
following weight: w(s) = |{(u, v) ∈ S : sim(u, v) = s}|/|S|.
For instance, if similarities in S are {0.1, 0.1, 0.1,0.2, 0.2},
w(0.1) = 3/5, w(0.2) = 2/5 and w(s) = 0 for s /∈ {0.1, 0.2}.

Let ST denote the subset of true pairs in S and SF denote
S − ST . With this weighting scheme, since f(s) = sk,

P̂ (H|T) =
∑

(u,v)∈ST

(sim(u, v))k/|ST | (5)

P̂ (H|F) =
∑

(u,v)∈SF

(sim(u, v))k/|SF |. (6)

LSH-S uses Equations (5) and (6) in Equation (1).

5. STRATIFIED SAMPLING USING LSH
A difficulty in LSH-S is that the conditional probabilities,

e.g. P (H|T), need to be estimated and it is hard to acquire
reliable estimates of them. In this section, we present an
algorithm that overcomes this difficulty by using the LSH
index in a slightly different way.

An interesting view of an LSH index is that it partitions
all pairs of vectors in V into two strata: pairs that are in the
same bucket and pairs that are not. The pairs in the same
bucket are likely to be more similar from the property of
LSH (Def. 3). Recall that the difficulty of sampling at high
thresholds is that the join size is very small and sampling
a true pair is hard. Our key intuition is that even at high
thresholds it is relatively easy to sample a true pair from
the set of pairs that are in the same bucket.

We demonstrate our intuition with a real-world example.
Table 1 shows actual probabilities varying τ in the DBLP
data set. We observe that other than at low thresholds,
say 0.1 ∼ 0.3, P (T) is close to 0, which implies that naive
random sampling is not going to work well with any reason-
able sample size. However, note that P (T |H) is consistently
higher than 0.04 even at high thresholds. That is, it is not
difficult to sample true pairs among the pairs in the same
bucket. P (H|T) is large at high thresholds but very small
at low thresholds. This means that at high thresholds, a
sufficient fraction of true pairs are in the same bucket. But
at low thresholds, most of true pairs are not in the same
bucket, which implies that the estimate from the pairs in
the same bucket is not enough. However, at low thresholds,
P (T |L) becomes larger and thus sampling from the pairs
that are not in the same bucket becomes feasible.

τ P (T) P (T |H) P (H|T) P (T |L)
0.1 .082 0.31 0.00001 0.082
0.3 .00024 0.054 0.00041 0.00024
0.5 .0000034 0.049 0.0028 0.000032
0.7 3.9E-7 0.045 0.21 2.8E-7
0.9 9.1E-8 0.040 0.86 1.3E-8

Table 1: An example probabilities in DBLP

For sampling in general, it has been observed that “if
intelligently used, stratification nearly always results in a
smaller variance for the estimated mean or total than is
given by a comparable simple random sampling” [8, p99].
We propose below one specific scheme for stratified sampling
using LSH, and show its benefit empirically at Section 6.

5.1 LSH-SS: Stratified Sampling
We define two strata of pairs of vectors as follows depend-

ing on whether two vectors of a pair are in the same bucket.

• Stratum H (SH): {(u, v) : u, v ∈ V,B(u) = B(v)}

• Stratum L (SL): {(u, v) : u, v ∈ V,B(u) 6= B(v)}

Note that SH and SL are disjoint and thus we can in-
dependently estimate the join size from each stratum and
add the two estimates. SH and SL are fixed given Dg. Let
JH = |{(u, v) ∈ SH : sim(u, v) ≥ τ}|, JL = |{(u, v) ∈ SL :

sim(u, v) ≥ τ}|, and let ĴH and ĴL be their estimates. We
estimate the join size as follows:

ĴSS = ĴH + ĴL. (7)

A straightforward implementation would be to perform
uniform random sampling in SH and SL, and aggregate the
two estimates. However, this simple approach may not work
well. The problem is that it can be harder to guarantee
a small error of ĴL with the same sample size due to very
small P (T |L) at high thresholds [15]. See the next example.

Example 1. Assume that NL = 1, 000, 000, JL = 1 at
τ = 0.9, and the sample size is 10; only one pair out of

341

1, 000, 000 pairs satisfies τ = 0.9 and we sample 10 pairs.
In most cases, the true pair will not be sampled and ĴL = 0.
But if the only true pair is sampled, ĴL = 100, 000. The es-
timate fluctuates between 0 and 100, 000 and is not reliable.

Our solution for this problem is to use different sampling
procedures in the two strata. Recall that similarities of the
pairs in SH are higher and P (T |H) is not too small, even
at high thresholds. Thus, for SH , we use uniform random
sampling. Relatively small sample size will suffice for reli-
able estimation in SH . In SL, however, P (T |L) varies sig-
nificantly depending on the threshold. In general, while at
low thresholds P (T |L) is relatively high and the estimate is
reliable, P (T |L) becomes very small at high thresholds and
the resulting estimate is more likely to have a large error and
is much less reliable. For the same sample size, the variance
itself decreases as the join size decreases (e.g. Lemma 4.1
of [1]). However, we may need many more samples at high
thresholds, where the join size can be very small, to have
the same error guarantee [15, 9].

Thus, we use ĴL only when it is expected to be reliable and
discard ĴL when it is not. Discarding ĴL at high thresholds
generally does not hurt accuracy much since the contribution
of JL in J is not large. In Table 1, when the similarity
thresholds is high, P (H|T) is large, which means that a large
fraction of true pairs are in SH , not in SL. We use adaptive
sampling [15] in SL since it enables us to detect when the
estimate is not reliable. A novelty is that we return a safe
lower bound when we cannot have a good error guarantee
within the allowable sample size.

Algorithm 1 describes the proposed stratified sampling al-
gorithm LSH-SS. It applies a different sampling subroutine
to each stratum. For SH , it runs the random sampling sub-
routine SampleH. For SL, it runs the adaptive sampling
subroutine SampleL. The final estimate is the sum of esti-
mates from the two Strata as in Equation (7) (line 3).

5.1.1 Sampling in Stratum H
SampleH of Algorithm 1 describes the random sampling

in SH . First, a bucket Bj is randomly sampled weighted by
the number of pairs in the bucket, weight(Bj) =

(
bj
2

)
(line

3). We then select a random pair (u, v) from Bj (line 4).
The resulting pair (u, v) is a uniform random sample from
SH . SampleH has one tunable parameter mH which is the
sample size. We count the number of pairs satisfying the
similarity threshold τ in mH sample pairs and return the
count scaled up by NH/mH (line 9).

5.1.2 Sampling in Stratum L
SampleL of Algorithm 1 employs adaptive sampling [15] in

SL. It has two tunable parameters δ and mL. δ is the answer
size threshold, the number of true samples to give a reliable
estimate, and mL is the maximum number of samples. We
sample a pair from SL (line 3) and see if it satisfies the
given threshold (line 4). In case LSH computation for bucket
checking at line 3 is expensive, we can delay the checking
till line 5, which in effect results in slightly more samples.
The while-loop at line 2 can terminate in two ways: (1) by
acquiring a sufficiently large number of true samples, nL ≥ δ
or (2) by reaching the sample size threshold, i ≥ mL, where
i is the number of samples taken. In the former case, we
return the count scaled up by NL/i (line 12). Theorem 2.1
and 2.2 of adaptive sampling [15] provide error bounds in

Algorithm 1 LSH-SS

Procedure LSH-SS

Input: similarity threshold τ , sample size for Stratum H mH ,
answer size threshold δ, max sample size for Stratum L mL

1: ĴH = SampleH(τ,mH)

2: ĴL = SampleL(τ, δ,mL)

3: return ĴSS = ĴH + ĴL
Procedure SampleH

Input: τ , mH (sample size)
1: nH = 0
2: for i from 1 to mH do

3: sample a bucket Bj with weight(Bj) =
(bj
2

)
4: sample two vectors u, v ∈ Bj , u 6= v
5: if sim(u, v) ≥ τ then
6: nH = nH + 1
7: end if
8: end for
9: return ĴH = nH ·NH/mH
Procedure SampleL

Input: τ , δ (answer size th.), mL (sample size th.)
1: i = 0, nL = 0
2: while nL < δ and i < mL do
3: sample a uniform random pair (u, v), B(u) 6= B(v)
4: if sim(u, v) ≥ τ then
5: nL = nL + 1
6: end if
7: i = i+ 1
8: end while
9: if i ≥ mL then

10: return ĴL = nL // or ĴL = nL · cs(NL/mL) when a
dampening factor 0 < cs ≤ 1 is used.

11: end if
12: return ĴL = nL · (NL/i)

such cases. In the latter case, adaptive sampling returns a
loose upper bound. We cannot guarantee that the estimate
is reliable and simply return the number of true pairs found
in the sample, nL, as ĴL without scaling it up. Since JL is
at least as large as nL, we call ĴL = nL a safe lower bound.

This conservative approach does not degrade accuracy
much since the majority of true pairs are in SH at high
thresholds. It is possible, however, that there can be “grey
area” of thresholds. While the random sampling does not
guarantee its accuracy, there are enough true pairs in SL to
make its impact on underestimation significant. Hence, we
consider the use of a dampened scale-up constant 0 < cs ≤ 1,
which is multiplied to the full scaling-up factor at line 10.
We analyze the impact of this dampened scale-up factor in
the following section.

For the tunable parameters, we used mH = n and mL = n
and δ = logn1 where n is the database size, n = |V |. Note
that the size is expressed in the number of pairs. This corre-
sponds to sampling

√
n vectors from two collections of vec-

tors (n =
√
n×
√
n) in equi-joins, which is even smaller than

the sample size
√
n logn in [9]. These parameter values give

provably good estimates at both high and low thresholds.
We give the details in the following section.

5.2 Analysis
Let α = P (T |H) and β = P (T |L) for the sake of presen-

tation. In our analysis, a similarity threshold τ is consid-
ered high when α ≥ logn/n and β < 1/n, and is consid-
ered low when α ≥ logn/n and β ≥ logn/n. Our model

1All logarithms used are base-2 logarithms.

342

is analogous to the classic approach of distinguishing high
frequency values from low frequency values to meet the chal-
lenge of skewed data, e.g.[9, 7]. Our distinction effectively
models different conditional probabilities that are observed
in different threshold values as in Table 1.

We first analyze the high threshold case and then the low
threshold case. This distinction is only for the analysis pur-
poses. The behavior of Algorithm 1 is adaptive and users
do not need to distinguish two cases by parameters.

5.2.1 Guarantees at high thresholds
Recall that α = P (T |H) is the probability that a pair of

vectors in a bucket is indeed a true pair and β = P (T |L) is
the probability that a pair of vectors that are not in the same
bucket is a true pair. We assume α ≥ logn/n and β < 1/n
at high thresholds. The condition on α intuitively states
that even when the join size is small, the fraction of true
pairs in SH is not too small from the property of LSH. Our
assumption on α is not a stringent condition, i.e. logn/n is
usually a very small value and will be easily satisfied by any
reasonably working LSH index. The condition on β states
that it is hard to sample true pairs in SL at high thresholds.

As a sanity check, consider the example in Table 1. In
the data set, n = 34, 000 and β ∼ 0.00003 (∼ 1/n) at τ =
0.5. High thresholds correspond to [0.5, 1.0]. It that range
α = P (T |H) is consistently higher than 0.04 which is well
over the assumed value of α which is 0.00046 (∼ logn/n)
for the data set. β = P (T |L) is also below or very close to
the calculated 0.00003 in the range. Table 2 in Appendix C
shows more examples of α and β values in other data sets,
which again satisfy our assumptions.

The following theorem states that LSH-SS gives a good
estimate at high thresholds. See Appendix A.2 for a proof.

Theorem 1. Let 0 < ε < 1 be an arbitrary constant.
Assume α ≥ logn/n and β < 1/n. Then for sufficiently
large n with c = 1/(log e · ε2), mH = cn and mL = cn,

Pr(|ĴSS − J | ≤ (1 + ε)J) ≥ 1− 2

n
.

The term 1 in the error bound is from the conservative na-
ture of the SampleL procedure of not scaling up the result
when the accuracy is not guaranteed. However, since the
majority of true pairs are in SH at high thresholds, its im-
pact is rather insignificant. For overestimations, the bound
is very conservative and our experiments in Section 6 show
much better results than the theoretical guarantees in The-
orem 1. For underestimations, the error bound in Theo-
rem 1 is not meaningful because underestimation is capped
by −100%. The following theorem, which is based on the
dampened scale-up factor, has the advantage of providing a
meaningful bound for underestimations as well.

In the approach using a dampened scale-up constant 0 <
cs ≤ 1, we multiply the full scale-up factor by cs. The fol-
lowing theorem quantifies the effect of using the dampened
scale-up factor. See Appendix A.3 for a proof.

Theorem 2. For a constant 0 < ε < 1, using a dampened
scale-up factor of 0 < cs ≤ 1 at line 10 of SampleL in
Algorithm 1 guarantees

Pr(|ĴL − JL| ≥ ε′JL) ≤ ε−2 · 1− β
mLβ

.

where ε′ = 1− (1− ε)cs. When Ĵ > J , i.e. overestimation,
we have a tighter bound ε′ = cs(1 + ε)− 1.

Compared with Theorem 1, the guarantee of Theorem 2 is
weaker in terms of probability, but it provides a tighther
bound; 1 − cs < ε′ < 1. The dampened scale-up factor cs
represents the trade-offs between the accuracy and the prob-
abilistic guarantee. Using a smaller cs enables a stronger
guarantee in probability reducing variance by a factor of cs
(see Appendix A.3), but the relative error bound increases.
We discuss the choice of cs in Section 6.

5.2.2 Guarantees at low thresholds
At low thresholds, we assume that α ≥ logn/n and β ≥

logn/n. The rationale is that as the actual join size in-
creases, more true pairs are in SL and sampling true pairs
in SL becomes not so difficult any more. Again these con-
ditions are usually met when the threshold is low as in the
example in Table 1. In fact, the contribution from SL, JL
dominates the join size at low thresholds. The following
theorem states that LSH-SS gives a reliable estimate even
when the threshold is low. See Appendix A.4 for a proof.

Theorem 3. Let 0 < ε < 1 be an arbitrary constant.
Assume α ≥ logn/n and β ≥ logn/n. Then with c =
4/(log e·ε2), c′ = max(c, 1/(1−ε)), mH = cn and mL = c′n,

Pr(|ĴSS − J | ≤ εJ) ≥ 1− 3

n
.

We demonstrate that our guarantees indeed hold and thus
LSH-SS provides reliable estimates at both high and low
thresholds with real-world data sets in the following section.

6. EXPERIMENTAL EVALUATION

6.1 Set Up
Data sets: We have conducted experiments using three

data sets. The DBLP data set consists of about 800K vec-
tors. The NYT data set is NYTimes news articles and
consists of about 150K vectors. The PUBMED data set
is PubMed abstracts and consists of 400K vectors. We give
detailed data set descriptions in Appendix C.1. We only re-
port results of the DBLP and NYT data set; results on the
PUBMED data set is in Appendix C.4.

Algorithms compared: We implemented the following
algorithms for the VSJ problem.

• LC(ξ) is the Lattice Counting algorithm in [14] with
a minimum support threshold ξ.

• LSH-S is the LSH index based algorithm in Section 4.

• LSH-SS is the LSH index based stratified sampling
algorithm in Section 5. We used m1 = n, δ = logn,
m2 = n and k = 20 unless specified otherwise. LSH-
SS(D) is LSH-SS with a dampened scale-up factor.
We used cs = nL/δ. See Appendix C.3 for a discussion
on alternative choices.
• We consider two random sampling methods: RS(pop)

and RS(cross). In RS(pop), we sample pairs from the
cross product. RS(cross) is cross sampling [10], where
we sample d√mR e records and compare all the pairs
in the sample. mR = d · n where d is a constant to
compare algorithms with roughly the same runtime.

Evaluation metric: We use average relative error to
show the accuracy. A relative error is defined as est size /
true size. We show errors of overestimations and underes-
timations separately to clearly depict the characteristics of

343

 0

 200

 400

 600

 800

 1000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
e
la

ti
v
e
 E

rr
o
r

(%
),

 O
v
e
re

s
t.

Similarity Threshold τ

LSH-SS
LSH-SS(D)

RS(pop)
RS(cross)

(a) Relative error (Overest.)

-100

-80

-60

-40

-20

 0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
el

at
iv

e
E

rr
or

 (
%

),
 U

nd
er

es
t.

Similarity Threshold τ

(b) Relative error (Underest.)

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
T

D
 σ

Similarity Threshold τ

(c) Variance

Figure 2: Accuracy/Variance on DBLP

each algorithm. To measure reliability, we report the stan-
dard deviation (STD) of estimates. We report figures over
100 experiments. For efficiency, we measure the runtime,
which is time taken for estimation. For all algorithms, we
loaded necessary data structures (data or index) in memory.

We implemented all the algorithms in Java. We ran all
our experiments on a server running 64 GNU/Linux 2.6.27
over 2.93 GHz Intel Xeon CPUs with 64GB of main memory.

6.2 Accuracy, Variance and Efficiency
DBLP: We first report the results on the accuracy, vari-

ance and runtime using the DBLP data set. Figure 2(a)
(resp. Figure 2(b)) shows relative errors of overestimations
(resp. underestimations) over the similarity threshold range.
Figure 2(c) shows the variance of the estimates.
LSH-SS delivers accurate estimations over the whole thresh-

old range. In Figure 2(a), we see that LSH-SS hardly over-
estimates, which is expected from the discussions in Sec-
tion 5.2. LSH-SS(D) occasionally overestimates, but its
error is smaller than 30%. Figure 2(b) shows the underes-
timation tendency of LSH-SS, but it is much less severe
than those of RS(pop) and RS(cross). We observe that
LSH-SS(D) shows smaller underestimations.

The following table shows the actual join size J and its
selectivity at various similarity threshold τ .

Note the dramatic differences in the join size depending
on τ . At τ = 0.1 there are more than 100 billion true pairs,
and its selectivity is about 30 %. But at τ = 0.9 there are

 0

 50

 100

 150

 200

 250

 300

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
e
la

ti
v
e
 E

rr
o
r

(%
),

 O
v
e
re

s
t.

Similarity Threshold τ

LSH-SS
LSH-SS(D)

RS(pop)
RS(cross)

(a) Relative error (Overest.)

-100

-80

-60

-40

-20

 0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
el

at
iv

e
E

rr
or

 (
%

),
 U

nd
er

es
t.

Similarity Threshold τ

(b) Relative error (Underest.)

 10

 100

 1000

 10000

 100000

 1e+06

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
T

D
 σ

Similarity Threshold τ

(c) Variance

Figure 3: Accuracy/Variance on NYT

τ 0.1 0.3 0.5 0.7 0.9
J 105B 267M 11M 103K 42K

selectivity 33% 0.085% 0.0036% 0.000064% 0.000013%

only 42, 000 true pairs, and the selectivity is only 0.00001%.
Yet LSH-SS is able to estimate the join size quite accurately
and reliably exploiting the LSH index. Moreover, in Figure 2
(c), LSH-SS shows very small variance at high thresholds.
RS(pop) and RS(cross) are as accurate as LSH-SS at low

thresholds. However as the threshold increases, their errors
rapidly increase; their estimations fluctuate between huge
overestimation and extreme underestimation (i.e. −100%)
in Figure 2(a) and (b). As a consequence, their variance is
quite large in Figure 2(c).
LSH-S and LC show consistently outperformed by oth-

ers, and we omit their results. LSH-S has large errors at
high thresholds, e.g. τ ≥ 0.6. This is because the esti-
mations of conditional probabilities are not reliable due to
insufficient number of true pairs sampled. LC underesti-
mates over the whole threshold range. We hypothesize that
it is because of the characteristic of the binary LSH function
for cosine similarity. Intuitively the binary LSH functions
need more hash functions (larger k) to distinguish objects,
which has negative impact on the runtime. It appears that
LC is not adequate for binary LSH functions.

For runtime, LSH-SS and LSH-SS(D) took less than
750 msec and RS(pop) and RS(cross) took about 780 sec
on the average. The runtime of LSH-S was 1028 msec, and
that of LC was about 3 sec.

344

-100

-50

 0

 50

 100

 150

10 20 30 40 50

R
e
la

ti
v
e
 E

rr
o
r

(%
),

 τ
=

0
.5

Number of hash functions k

LSH-SS LSH-S

(a) Accuracy, τ = 0.5

-100

 0

 100

 200

 300

 400

 500

10 20 30 40 50

R
e
la

ti
v
e
 E

rr
o
r

(%
),

 τ
=

0
.8

Number of hash functions k

LSH-SS LSH-S

(b) Accuracy, τ = 0.8

Figure 4: Impact of k on DBLP

NYT: Figure 3 shows relative errors and variance on the
NYT data set. LSH-SS gives good estimates at high thresh-
olds. It shows underestimation at τ ≤ 0.5. In general, how-
ever, this is not the most interesting similarity range and
this is probably not a serious flaw. The problem can be ad-
dressed either by using a bigger dampened scale-up factor
cs or increasing the sample size. We see that LSH-SS(D)
has smaller underestimation problems. Again, we observe
that estimations of RS(pop) and RS(cross) fluctuate at high
thresholds. Their variance is larger than the variance of
LSH-SS or LSH-SS(D) throughout the threshold range.

For runtime, LSH-SS took 1091 msec and RS took 920
msec on the average.

6.3 Impact of Parameters
We assume a pre-built LSH index with parameters opti-

mized for its similarity search. The relevant parameter for
our estimation purposes is k which specifies the number of
hash functions used for an LSH table. We analyze the im-
pact of k on accuracy and variance.

Figure 4 shows accuracy at τ = 0.5, 0.8. The conclusion is
the same at other thresholds. We observe that LSH-SS is
not much affected by k. This is because an LSH table pro-
vides sufficient distinguishing power with relatively small k.
LSH-SS will work with any reasonable choice of k. LSH-S
is highly sensitive to k for the reason specified in Section 6.2.
The same observation is made in variance as well.

k = 10 k = 20 k = 30 k = 40 k = 50
size (MB) 3.2 7.5 12.6 14.1 16.5

The above table shows space occupied by an LSH table
on the DBLP data set ignoring implementation-dependent
overheads. When k = 20, there are about 480K non-empty
buckets which add 7.5M of space for the g function values,
bucket counts, and vector ids. The DBLP binary is 50M .

If we are given the freedom of choosing k, we observe that
slightly smaller k values, say between 5 and 15, generally
give better accuracy. See Appendix B.1 for more discussions.

7. CONCLUSION
We propose size estimation techniques for vector similar-

ity joins. The proposed methods rely on the ubiquitous LSH
indexing and enable reliable estimates even at high similar-
ity thresholds. We show that LSH-SS gives good estimates
throughout the threshold range with probabilistic guaran-
tees. The proposed techniques only need minimal addition
to the existing LSH index and can be easily applied.

8. REFERENCES
[1] N. Alon, P. B. Gibbons, Y. Matias, and M. Szegedy.

Tracking join and self-join sizes in limited storage. In
Proc. SIGMOD, pages 10–20, 1999.

[2] A. Arasu, V. Ganti, and R. Kaushik. Efficient Exact
Set-Similarity Joins. In Proc. VLDB, pages 918–929,
2006.

[3] R. J. Bayardo, Y. Ma, and R. Srikant. Scaling up all
pairs similarity search. In Proc. WWW, pages
131–140, 2007.

[4] A. Z. Broder. On the Resemblance and Containment
of Documents. In Proc. SEQUENCES, pages 21–29,
1997.

[5] M. S. Charikar. Similarity Estimation Techniques
from Rounding Algorithms. In Proc. STOC, pages
380–388, 2002.

[6] S. Chaudhuri, V. Ganti, and R. Kaushik. A Primitive
Operator for Similarity Joins in Data Cleaning. In
Proc. ICDE, pages 5–16, 2006.

[7] S. Chaudhuri, R. Motwani, and V. Narasayya. On
Random Sampling over Joins. In Proc. SIGMOD,
1999.

[8] W. G. Cochran. Sampling Techniques. John Wiley &
Sons, 1977.

[9] S. Ganguly, P. B. Gibbons, Y. Matias, and
A. Silberschatz. Bifocal sampling for skew-resistant
join size estimation. In Proc. SIGMOD, pages
271–281, 1996.

[10] P. J. Haas, J. F. Naughton, S. Seshadri, and A. N.
Swami. Fixed-Precision Estimation of Join Selectivity.
In Proc. PODS, pages 190–201, 1993.

[11] M. Hadjieleftheriou, X. Yu, N. Koudas, and
D. Srivastava. Hashed Samples: Selectivity Estimators
For Set Similarity Selection Queries. In Proc. VLDB,
pages 201–212, 2008.

[12] P. Indyk and R. Motwani. Approximate Nearest
Neighbors: Towards Removing the Curse of
Dimensionality. In Proc. STOC, pages 604–613, 1998.

[13] Y. E. Ioannidis and S. Christodoulakis. On the
Propagation of Errors in the Size of Join Results. In
Proc. SIGMOD, pages 268–277, 1991.

[14] H. Lee, R. T. Ng, and K. Shim. Power-Law Based
Estimation of Set Similarity Join Size. In Proceedings
of the VLDB Endowment, pages 658–669, 2009.

[15] R. Lipton, J. F. Naughton, and D. A. Schneider.
Practical selectivity estimation through adaptive
sampling. In Proc. SIGMOD, pages 1–11, 1990.

[16] R. Motwani and P. Raghavan. Randomized
Algorithms. Cambridge University Press, 1995.

[17] S. Sarawagi and A. Kirpal. Efficient set joins on
similarity predicates. In Proc. SIGMOD, pages
743–754, 2004.

345

APPENDIX
A. PROOFS

A.1 Equation (4)
Since f(s) = sk, the four areas defined in Figure 1 can be

calculated as follows:

P [H ∩ F] =

∫ τ

0

f(s)ds =
τk+1

k + 1

P [H ∩ T] =

∫ 1

τ

f(s)ds =
1− τk+1

k + 1

P [L ∩ F] =

∫ τ

0

1− f(s)ds = τ − τk+1

k + 1

P [L ∩ T] =

∫ 1

τ

1− f(s)ds = 1− τ − 1− τk+1

k + 1
.

Using the above probabilities in Equation (2) and (3) gives,

P (H|T) =
1

1− τ

∫ 1

τ

f(s)ds =

∑k
i=0 τ

i

k + 1
(8)

P (H|F) =
1

τ

∫ τ

0

f(s)ds =
τk

k + 1
. (9)

We have the following estimator ĴU by using above P (H|T)
and P (H|F) in Equation (1):

ĴU =
NH −M · P̂ (H|F)

P̂ (H|T)− P̂ (H|F)

=
NH −M · τ

k

k+1∑k
i=0 τ

i

k+1
− τk

k+1

=
(k + 1)NH −M · τk∑k−1

i=0 τ
i

.

A.2 Proof of Theorem 1
We analyze the behavior of SampleH and SampleL in

Algorithm 1 separately by the two lemmas below. We then
combine the two results using Equation (7).

First, the following lemma shows that SampleH in Algo-
rithm 1 gives a reliable estimate at high thresholds.

Lemma 1. Let 0 < ε < 1 be an arbitrary constant. As-
sume α ≥ logn/n. Then with c = 4/(log e·ε2) and mH = cn,
we have

Pr(|ĴH − JH | ≤ εJH) ≥ 1− 1

n
.

Proof. Let X be a random variable denoting the num-
ber of pairs in the sample that satisfy τ in SampleH of
Algorithm 1. Then X is a binomial random variable with
parameters (mH , α) [16]. Since mH = cn and α ≥ logn/n,

E(X) ≥ c logn.

For an arbitrary constant 0 < ε < 1, by Chernoff bounds [16]

Pr(|X − E(X)| > εE(X)) ≤ e−
c lognε2

4 .

Letting c = 4/(log e · ε2) gives

Pr(|X − E(X)| > εE(X)) ≤ 1

n
.

E(X) = JH · mHNH . Thus, NH
mH
·E(X) = NH

mH
·mH · JHNH = JH .

Therefore,

Pr(|NH
mH
·X − JH | > εJH) ≤ 1

n
.

ĴH = X ·NH/mH in SampleH of Algorithm 1. Plugging in

ĴH in the above inequality completes the proof.

Second, the following lemma states that SampleL returns
a safe lower bound with high probability.

Lemma 2. Assume β < 1/n. Then for sufficiently large
n, an arbitrary constant c′ and mL = c′n, we have

Pr(ĴL ≤ c′) ≥ 1− 1

n
.

Proof. Let Y be a random variable denoting the num-
ber of pairs in the samples satisfying τ in SampleL of Al-
gorithm 1. We show that Y is not likely to be bigger than
δ = log n. Y is a binomial random variable with parameters
(mL, β).
For an arbitrary constant ε′ ≥ 2e−1, by Chernoff bounds [16]

Pr(Y > (1 + ε′)E(Y)) ≤ 2−E(Y)(1+ε′).

Therefore, the probability that the loop of SampleL termi-
nates by acquiring enough number of true pairs (δ = logn)
is as follows:

Pr(Y > δ = logn) ≤ 2− logn =
1

n
.

Since mL = c′n and β < 1/n,

E(Y) < c′.

If Y ≤ δ, SampleL of Algorithm 1 returns ĴL = Y without
scaling it up. Therefore,

Pr(ĴL = E(Y) < c′) ≥ 1− 1

n
.

Finally, we prove Theorem 1 using Lemma 1 and Lemma 2.
For sufficiently large n, c′ ≤ JL. Thus from Lemma 2,

Pr(|ĴL − JL| ≤ JL) ≥ 1− 1

n
.

Since ĴSS = ĴH + ĴL and J = JH + HL, combining the
above inequality with Lemma 1 proves the theorem.

A.3 Proof of Theorem 2
Let X be a random variable for the number of true pairs

in the sample, i.e. nL, in SampleL of Algorithm 1. X
follows a binomial distribution B(mL, β), and µX = mLβ

and σX =
√
mLβ(1− β). Suppose 0 < cs ≤ 1 is used as a

dampening factor. Let s be the sampling ratio, s = mL/NL,
and Y be the estimate using cs. Y = cs/s · X, and µY =

cs/s ·mLβ = csNLβ = csJL and σY = cs/s ·
√
mLβ(1− β).

Applying Chebyshev’s inequality [16], for any k ∈ R+,

Pr (|Y − µY | ≥ k · σY) ≤ 1

k2
.

σY /µY =
√

(1− β)/mLβ. Letting ε = k
√

(1− β)/mLβ
gives

Pr

(
|Y − µY |
µY

≥ ε
)
≤ ε−2 · 1− β

mLβ
.

346

The lower bound of the estimation is JL − (1 − ε)µY . In
overestimation, cs(1+ε)JL ≥ JL since otherwise it would be
underestimation. Thus, the upper bound of the estimation
is (cs(1+ε)−1)JL because cs ≤ 1, 1−(1−ε)cs ≥ cs(1+ε)−1.
Letting ε′ = 1− (1− ε)cs proves the theorem.

A.4 Proof of Theorem 3
As we have the same conditions on α, mH , and c, Lemma 1

still holds in the low threshold range as well. However, due
to the increased β, a different analysis needs to be done
for SampleL (Lemma 2). We first show that SampleL re-
turns a scaled-up estimate not a safe lower bound with high
probability, and then show that the scaled-up estimate is
reliable.

Similarly as in Lemma 2, Y is a binomial random variable
with parameters (mL, β). Since mL = c′n and β ≥ logn/n,

E(Y) ≥ c′ logn.

From the given condition, c′ ≥ 2/(log e · ε2) and c′ ≥ 1/(1−
ε). Since (1 − ε)E(Y) ≥ (1 − ε)c′ logn ≥ logn = δ, by
Chernoff bounds,

Pr(Y ≥ δ) ≥ 1− 1

n
.

This means that the while-loop (line 2) of SampleL Al-
gorithm 1 terminates by reaching the desired answer size
threshold δ with high probability. Then SampleL returns
ĴL = Y · JL/mL. Moreover, since c′ ≥ 4/(log e · ε2), by
Chernoff bounds,

Pr(|Y − E(Y)| ≥ εE(Y)) ≤ 2

n
.

Therefore,

Pr(|ĴL − JL| ≤ εJL) ≥ 1− 2

n
.

Since ĴSS = ĴH+ĴL and J = JH+HL, the above inequality
along with Lemma 1 completes the proof.

B. ADDITIONAL DISCUSSION

B.1 The Optimal-k for The VSJ Problem
Recall that k is the number of LSH functions for g. Ideally,

we want high P (T |H) and P (H|T) because the estimate
from SH is more reliable and having more true pairs in SH
reduces the dependency on SL. P (T |H) (resp. P (H|T)) is
analogous to precision (resp. recall) in information retrieval.
We note that k value has the following trade-offs between
P (T |H) and P (H|T).

• A larger k increases P (T |H) but decreases P (H|T).
With a sufficiently large k, only exactly the same vec-
tors will be in the same bucket. P (T |H) = 1 in this
case. However, only a very small fraction of true pairs
is in the same bucket resulting in a very small P (H|T).

• A smaller k decreases P (T |H) but increases P (H|T).
In an extreme case of k = 0, SH consists of all the
pairs of vectors in V , and thus P (H|T) = 1. However,
P (T |H) = P (T) and the LSH scheme does not offer
any benefit.

Observe that P (T |H) ≥ P (T |L) from the property of the
LSH indexing. The intuition on choosing k is that we want
to increase JH as long as we have good estimates with high

probability. Since decreasing k increases P (H|T) and JH ,
this means that we can decrease k as long as P (T |H) is
not too small. Decreasing k also reduces the LSH function
computation time. With this intuition, we can formalize the
problem of choosing k as follows:

Definition 4 (The Optimal-k Problem). Given a de-
sired error bound ε > 0 and the bound on the probabilistic
guarantee p, find the minimum k such that P (T |H) ≥ ρ,
where ρ = ρ(ε, p).

If can we assume a similarity distribution of the database,
we can analytically find the optimal k. However, P (T |H) is
dependent on data and the LSH scheme used, and so is the
optimal value of k.

B.2 Extensions

B.2.1 Using Multiple LSH Tables
The proposed algorithms so far assume only a single LSH

table, but a typical LSH index consists of multiple LSH ta-
bles. In this section, we describe how we can utilize more
than one LSH tables for the estimation purposes. We con-
sider two estimation algorithms using multiple LSH tables:
median estimator and virtual bucket estimator.

Median estimator. The median estimator applies LSH-
SS to each LSH table independently without modifying LSH-
SS and merges the estimates. Suppose an LSH index IG =
{Dg1 , . . . , Dg`} with ` tables. From each table Dgi , 1 ≤ i ≤
`, we generate an estimate Ĵi with a sample of n pairs. Its
estimate, Ĵm, is the median of the estimates, Ĵi, 1 ≤ i ≤ `.
This approach makes the algorithm more reliable reducing
the probability that Ĵm deviates much from J . From Theo-
rems 1 and 3, the probability that Ĵi differs from J by more
than a factor of 1 + ε is less than 2/n with the assumed join
size and sample size. When taking the median, the proba-
bility that more than `/2 Ĵi’s deviate by more than (1 + ε)J

is at most 2−`/2 by the standard estimate of Chernoff [16].

This states that Ĵm is within the same factor of error with
higher probability than the guarantees in Theorems 1 and
3. The effective sample size increases by a factor of `. When
a sample size that is greater than n is affordable, exploiting
multiple LSH tables can make the estimate more reliable.
However, dividing a total sample size of n into multiple es-
timates can impair the accuracy of individual estimates.

Virtual bucket estimator. We consider virtual buck-
ets formed by multiple LSH tables. A pair (u, v) is regarded
as in the same bucket if u and v are in the same bucket in
any of ` LSH tables. This can improve the accuracy when
an existing LSH scheme has a relatively large k than nec-
essary. Recall from the discussions in the previous section
that when k is too large, g becomes overly selective and SH
can be too small. Then the true pairs from SH can be only a
small portion of the true pairs. Considering virtual buckets
can address this problem by relaxing the bucket conditions;
B(u) = B(v) if and only if there exist a Dgi such that u and
v belong to the same bucket B ∈ Dgi . With virtual buckets,
when we check B(u) = B(v) (or 6=) for (u, v), we need to
check up to ` tables. At lines 3 and 4 of SampleH in Algo-
rithm 1, a pair (u, v) is chosen from V uniformly at random
and is discarded if u and v are not in the same bucket in
any Dgi , 1 ≤ i ≤ `. At line 3 of SampleL, Bi(u) 6= Bi(v) is
checked for all Dgi and if Bi(u) = Bi(v) in any Dgi , (u, v)
is discarded. The analysis remains the same but the set of

347

pairs in same buckets, SH becomes effectively larger, which
gives potentially better accuracy. The runtime increases be-
cause of the bucket checking in multiple LSH tables.

B.2.2 Non-self Joins
In this section, we discuss how to extend the proposed

algorithms to handle joins between two collections of vectors
U and V . The basic ideas remain the same but we need to
make sure that a pair under consideration consists of one
vector from each collection.

Definition 5 (The General VSJ Problem). Given
two collection of real-valued vectors V = {v1, ..., vn1}, U =
{u1, ..., un2} and a threshold τ on a similarity measure sim,
estimate the number of pairs J = |{(u, v) : u ∈ U, v ∈
V, sim(u, v) ≥ τ}|.

Suppose that we have two LSH tables Dg and Eg that are
built on U and V respectively using g = (g1, . . . , g`). We
describe how we modify LSH-S and LSH-SS.

LSH-S. We make two changes for LSH-S: NH computa-
tion and sampling. In self-joins, NH in Equation (1) is the

number of pairs in the same bucket: NH =
∑ng
j=1

(
bj
2

)
. In

general joins, NH =
∑ng
j=1 bj ·ci such that Bj ∈ Dg, Ci ∈ Eg,

bj is the bucket count of Bj , ci is the bucket count of Ci,
and g(Bj) = g(Ci), where g(B) denotes the g value that
identifies bucket B. For Bi, if there does not exist a bucket
Ci ∈ Eg such that g(Ci) = g(Bj), ci = 0. Next, a pair (u, v)
is sampled uniformly at random such that u ∈ U and v ∈ V .

LSH-SS. SH is the set of pairs (u, v), u ∈ U, v ∈ V such
that g(u) = g(v). That is, the buckets of u and v have
the same g value: g(Bj) = g(Ci) where u ∈ Bj in Dg and
u ∈ Ci in Eg. SL is the set of pairs (u, v), u ∈ U, v ∈ V such
that g(u) 6= g(v). To sample a pair from SH , we randomly
sample a bucket Bj with weight(Bj) = bj · ci where g(Ci) =
g(Bj), Bj ∈ Dg and Ci ∈ Eg. We sample u from Bj and
v from Ci uniformly at random within the buckets. The
resulting pair (u, v) is a uniform random sample from SH .
Lines 3 and 4 of SampleH in Algorithm 1 need to be changed
accordingly. To sample from SL, we sample u ∈ U and v ∈ V
uniformly at random, and (u, v) is discarded if g(u) = g(v).
Line 3 of SampleH needs corresponding changes.

C. SUPPLEMENTARY EXPERIMENTS

C.1 Data Set Description
The DBLP data set consists of 794,016 publications is the

same as the data set used in [3]. Each vector is constructed
from authors and title of a publication. There are about
56,000 distinct words in total and each word is associated
with a dimension in a vector. The vector of a publication
represents whether the corresponding word is present in the
publication. Thus this data set is a binary vector data set.
The average number of features is 14, and the smallest is 3
and the biggest is 219. The NYT data set is NYTimes news
articles downloaded from UCI Machine Learning Reposi-
tory2 and consists of 149,649 vectors. Again each dimension
represents a word and has the corresponding TF-IDF weight.
The dimensionality is about 100k and the average number
of feature is 232. The PUBMED data set is constructed
from PubMed abstracts and is also downloaded from the

2http://archive.ics.uci.edu/ml/datasets.html

 0

 0.5

 1

 1.5

 2

 2.5

 3

LSH-SS
δ=0.5 log n

LSH-SS
δ=log n

LSH-SS
δ=2log n

LSH-SS
δ= n

1/2
RS(pop)
m=1.5n

A
v
e

ra
g

e
 R

e
la

ti
v
e

 E
rr

o
r,

 m
=

n

Figure 5: Relative error varying δ (the answer size
threshold) in SampleL

 0

 1

 2

 3

 4

 5

LSH-SS
δ=0.5 log n

LSH-SS
δ=log n

LSH-SS
δ=2log n

LSH-SS
δ= n

1/2
RS(pop)
m=1.5n

#
 τ

 w
it
h

 B
ig

 E
rr

o
r

Underestimation
Overestimation

Figure 6: The number of τ values with Ĵ/J ≥ 10

(overest.) or J/Ĵ ≥ 10 (underest.) varying δ

UCI repository. It consists of 400,151 TF-IDF vectors. The
dimensionality is about 140k. It takes 4.7, 4.6, and 5.6 sec-
onds to build LSH indexes from respective in-memory raw
data.

C.2 Impact of Parameters: δ and m

In this section, we study the impact of parameters related
with the sample size using the DBLP data set. The goal
is to see if our analysis and choice of parameter values are
appropriate. Recall that LSH-SS and RS have the follow-
ing parameters; mH is the sample size in SampleH, δ is the
answer size threshold in SampleL, mL is the (maximum)
sample size in SampleL, and mR is the sample size of ran-
dom sampling. In our analysis and experiments, we used
the following parameter values: mH = mL = n, δ = logn,
and mR = 1.5n. Since mH ,mL and mR control the over-
all sample size and δ specifies the answer size threshold,
we use two functions f1 and f2 to control the parameters:
mH = mL = f1(n), mR = 1.5f1(n) and δ = f2(n). We test
the following alternatives:

• f1:
√
n, n/ logn, 0.5n, n, 2n, and n logn

• f2: 0.5 logn, logn, 2 logn, and
√
n

We perform two types of combinations of f1 and f2. First,
we fix f1(n) = n and vary f2. Next, we fix f2(n) = logn
and vary f1. For each combination we show two results:
the average absolute error for τ = {0.1, 0.2, ..., 1.0} and the
number of τ values with large errors among the 10 τ values.
We define an error to be a big overestimation when Ĵ/J ≥ 10

and to be a big underestimation when J/Ĵ ≥ 10.

C.2.1 Answer Size Threshold δ

Figure 5 gives the average (absolute) relative error vary-
ing δ and Figure 6 gives the number of τ values that give
large errors. m(= f1) is fixed at n. δ > 2 logn has a big
underestimation problem. A large δ may prevent even a re-
liable estimate from being scaled up and result in a huge

348

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

sqrt(n) n/log n 0.5n n 2n nlog n

A
v
e

ra
g

e
 R

e
la

ti
v
e

 E
rr

o
r,

 δ
=

lo
g

 n

Sample Size m

LSH-SS
RS(pop)

Figure 7: Relative error varying the sample size m

 0

 1

 2

 3

 4

 5

 6

sqrt(n) n/log n 0.5n n 2n nlog n

#
 τ

 w
it
h

 B
ig

 E
rr

o
r

Sample Size m

LSH-SS, Overestimation
RS(pop), Overestimation

LSH-SS, Underestimation
RS(pop), Underestimation

Figure 8: The number of τ with Ĵ/J ≥ 10 (overest.)

or J/Ĵ ≥ 10 (underest.) varying the sample size m.
The total number of τ is 10: {0.1, 0.2, ..., 1.0}

loss in contributions from SL. For instance, δ =
√
n is too

conservative and its estimate is less than 10% of the true
size at 4 out of 10 τ values.

Simple heuristics such as using different δ depending on
the threshold can improve the performance. For instance us-
ing 0.1 logn ≤ δ ≤ 0.5 logn at high thresholds, e.g. τ ≥ 0.7,
greatly improved the runtime without sacrificing accuracy
in our experiments. At low thresholds, e.g. τ ≤ 0.3, using
a slightly bigger value of δ, e.g. 2 logn, resulted in better
accuracy and variance without increasing the runtime much.

C.2.2 Sample Size Threshold m

Figure 7 gives the average absolute relative error varying
the sample size and Figure 8 gives the number of τ values
that give large errors. δ is fixed at logn. f1 < 0.5n causes
serious underestimations in both algorithms. With f1 =
n logn, LSH-SS does not give any large errors, but the
runtime roughly increases by logn.

C.3 Impact of Parameter: cs

Using a larger dampened scale-up factor cs has less under-
estimation. In the DBLP data set, setting cs = 0.5 reduces
underestimation errors from −95% (LSH-SS) to −65% at
τ = 0.6. However, it can cause overestimation problems
with large variance as discussed in Section 5.2. cs = 1
has overestimation errors between 100% and 900% at high
thresholds. cs = 0.5 gives errors between 16% and 437%,
cs = 0.1 gives errors less than 62%. The choice of cs de-
pends on specific application requirements, but if variance
is not a concern, 0.1 ≤ cs ≤ 0.5 can be recommended.

C.4 PUBMED: Accuracy, Variance, Efficiency
Figure 9 shows the accuracy and variance on the PUBMED

data set with k = 5. The average error of LSH-SS is 73%
and that of RS is 117%. LSH-SS shows underestimation
tendency but its STD is more than an order of magnitude
smaller than that of RS. When the data set is largely dis-

-100

 0

 100

 200

 300

 400

 500

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
e

la
ti
v
e

 E
rr

o
r

(%
)

Similarity Threshold τ

LSH-SS
RS(pop)

(a) Relative error

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
T

D

Similarity Threshold τ

LSH-SS
RS(pop)

(b) Variance

Figure 9: Accuracy/Variance on PUBMED

NYT PUBMED
τ α β α β

0.1 .710 1.85E-4 .0179 .00593
0.3 .710 3.26E-5 2.15E-4 6.37E-7
0.5 .708 9.93E-6 2.15E-4 1.40E-8
0.7 .705 3.25E-6 1.72E-4 2.19E-9
0.9 .696 6.95E-7 1.29E-4 4.98E-10

high th. αorβ 1.8E-4 1.17E-5 6.09E-5 4.99E-6
low th. αorβ 1.8E-4 1.8E-4 6.09E-5 6.09E-5

Table 2: α and β in NYT and PUBMED

similar, smaller k improves accuracy. In such cases, con-
structing an LSH table on-the-fly can be a viable option.

Symbol Description
U, V a collection of vectors, database
J join size
n database size, |V | = n
m sample size
u, v vectors
τ similarity threshold
h an LSH function, e.g. h1(u)
k # LSH functions for an LSH table
` # LSH tables in an LSH index
g g = (h1, . . . , hk), vector of LSH functions

Dg, Eg an LSH table using g
G G = {g1, . . . , g`}
IG an LSH index with using G that consists of Dg1 , . . . , Dg`
B,C a bucket in an LSH table, e.g. B(u): the bucket of u
bj , ci bucket counts, e.g. bj is the bucket count of bucket Bj
T True pairs, (u, v) such that sim(u, v) ≥ τ
F False pairs, (u, v) such that sim(u, v) < τ
H High (expected) sim. pairs that are in the same bucket
L Low (expected) sim. pairs that are not in the same bucket

P (T |H) given (u, v) s.t. B(u) = B(v), prob. of sim(u, v) ≥ τ
P (H|T) given (u, v) s.t. sim(u, v) ≥ τ , prob. of B(u) = B(v)
P (T |L) given (u, v) s.t. B(u) 6= B(v), prob. of sim(u, v) ≥ τ
P (L|T) given (u, v) s.t. sim(u, v) ≥ τ , prob. of B(u) 6= B(v)

S stratum. e.g. SH : set of pairs that are in the same bucket
N # pairs, e.g. NH : # pairs in the same bucket

M # pairs in V , M =
(|V |

2

)
Table 3: Summary of Notations

349

