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ABSTRACT
Studies find that at least 20% of web queries have local intent; and
the fraction of queries with local intent that originate from mo-
bile properties may be twice as high. The emergence of standard-
ized support for location providers in web browsers, as well as of
providers of accurate locations, enables so-called hyper-local web
querying where the location of a user is accurate at a much finer
granularity than with IP-based positioning.

This paper addresses the problem of determining the importance
of points of interest, or places, in local-search results. In doing
so, the paper proposes techniques that exploit logged directions
queries. A query that asks for directions from a location a to a lo-
cation b is taken to suggest that a user is interested in traveling to b
and thus is a vote that location b is interesting. Such user-generated
directions queries are particularly interesting because they are nu-
merous and contain precise locations.

Specifically, the paper proposes a framework that takes a user lo-
cation and a collection of near-by places as arguments, producing
a ranking of the places. The framework enables a range of aspects
of directions queries to be exploited for the ranking of places, in-
cluding the frequency with which places have been referred to in
directions queries. Next, the paper proposes an algorithm and ac-
companying data structures capable of ranking places in response
to hyper-local web queries. Finally, an empirical study with very
large directions query logs offers insight into the potential of direc-
tions queries for the ranking of places and suggests that the pro-
posed algorithm is suitable for use in real web search engines.

1. INTRODUCTION
With the proliferation of high-end mobile devices and improve-

ment to the wireless infrastructure, accessing the Internet from mo-
bile phones is becoming commonplace. Current projections are
that in the near future, the sales of high-end mobile devices with
capable browsers will outnumber the sales of desktop computers,
and the mobile Internet is slated to become bigger than the con-
ventional, wired Internet. Recent studies find that at least 20% of
web queries have local intent, and the fraction of queries with local
intent that originate from mobile properties may be twice as high.
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The emergence of standardized support for location providers in
web browsers, as well as of providers of accurate locations, enables
so-called hyper-local web querying where the location of a user is
accurate at a much finer granularity than with IP-based positioning.

This paper addresses a fundamental problem that arises in mobile
search: determining the importance of points of interest in local-
search results. We consider a setting in which a mobile user queries
the web for popular near-by places. The user may optionally also
specify a category of places of interest (e.g., restaurants, attrac-
tions, shopping). We assume that a collection of geo-referenced,
near-by places is available, but we are agnostic as to how they were
collected (e.g., from a yellow pages service or a web crawl). The
challenge is to produce a good ranking of the places and to do so
in a scalable fashion so that the places can be ranked for any query
location. While previous work on local-web querying (e.g., [3, 22])
assumes IP-based positioning and therefore knows the location of
the user within a ZIP code, we assume that the user’s location is
known within tens to hundreds of meters, leading to a fundamen-
tally different problem.

Our first contribution is to show that logs of directions queries
are a promising source of user-generated content that may enable
the desired ranking. A directions-query log entry contains an ori-
gin, a destination, and the time at which the query was issued. With
the rise in queries to map-based services, such logs are voluminous.
In particular, they are much larger and much more current than on-
line reviews of points of interest, which would be another source
for determining user interest in places. Although one can imag-
ine many reasons for issuing directions queries (e.g., to determine
mileages for expense reports) a query suggests that there is an inter-
est of some kind in the destination. Also, aggregate figures across
large numbers of queries serve to eliminate noise (as confirmed by
our studies).

Intuitively, we interpret a query for directions to a point b as a
vote by a user that point b is of interest. However, we also allow
our scoring functions to take several other aspects into considera-
tion. First, not all votes are equal: a vote from an origin farther
away from b could be considered as more important than a vote
from nearby b, as it suggests that the user was willing to travel
a longer distance to reach b. Second, when candidate places are
considered in response to a point-of-interest query from a user lo-
cation l, the distance to a should be a factor in the ranking. Third,
as directions queries have a temporal component, it is relevant to
consider whether temporal patterns in the directions queries can be
exploited. For example, users may have different intentions in the
morning than in the evening, or on weekdays versus weekend days.

We believe that this is the first research that explores the potential
of directions logs for the ranking of places in local search. Studies
have been reported that aim to identify places that individuals visit
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from GPS logs and related data sources [7, 17, 18, 19, 25]. Some
of these studies also study link-based ranking of places. This pa-
per does not consider the identification of places; and it considers
ranking based on directions queries, not link-based techniques.

Our second contribution is a scalable query processing technique
for a general hyper-local location-ranking architecture. The archi-
tecture, shown in Figure 1, operates in two phases. In the offline
phase, we compute a score for each place in our directory. In the
online phase, we rank places relative to a user’s query location and
the distance the user is willing to travel [16].
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Hyper−local

Ranking

Retrieval

Top−k places

Query

h−index

...

hcell−rankings

...
+

Online

Offline
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Figure 1: Architecture for hyper-local ranking

The offline score can combine scores from several scorers, thus
leveraging different information sources. In addition to driving di-
rections, we can consider the rankings of web pages (or just PageR-
ank) associated with places, or reviews that places have received in
Google or yelp.com. Combining multiple scorers has been con-
sidered in previous work [11] and is not considered here.

Our query processing technique superimposes a grid on the space.
For each grid cell, called an hCell, we store a list of the places that
fall into the cell, sorted by their (offline) score. At query time, we
retrieve the set of hCells relevant to the query and then compute the
top-k places, adjusting the score of each candidate place according
to its distance to the user’s query location.

We report on experiments that show that real (driving) directions
logs are a viable source for the scoring of places and that the pro-
posed framework scales to large data sources and is capable of fast
query response, enabling integration with an existing search engine
infrastructure.

Roadmap: Section 2 presents the problem setting and proposes
techniques that use driving directions for place ranking. Section 3
then discusses the spatial indexing required to follow our work and
presents a baseline algorithm and a more efficient algorithm for
place ranking. Section 4 considers the suitability of a real driv-
ing directions log for ranking of places. Section 5 presents per-
formance experiments for the ranking algorithms we propose. We
cover related work in Section 6 and conclude in Section 7. An ap-
pendix contains a detailed description of our data sources, some
examples of ranking functions that take into account the directions
query logs, pseudocode for the baseline algorithm, proofs, and ad-
ditional experimental results.

2. RANKING OF PLACES

2.1 Problem Setting
A query takes four arguments: (i) the user’s location, (ii) the time

that the query is issued, (iii) the maximum distance the user is will-
ing to travel, and (iv) a query string. The query string can be one

of a predefined set of categories, e.g., museums, restaurants, and
shopping. This query is capable of supporting a class of popular
services. The result of a query is a ranked list of nearby places
that match the query string, where the ranking aims to reflect the
interestingness of the places.

To formalize the key concepts of the problem setting, we assume
that a set of places P is given and has signature L × C, where L is
the set of locations in Euclidean space and C is a set of categories
(e.g., restaurant, cafe). Places thus model points of interest that a
user can visit, and they are categorized. We use Google’s business
directory as P .

We also assume that a set D of directions query log entries is
given, and we use the Google Maps query log. An entry d ∈ D is
a record 〈t, a, b, ||a, b||〉 with signature T × L × L× R+. Here, T
is the domain of query times and t is the time when the query was
issued; L was defined earlier, and a is the “from” and b is the “to”
of the query; ||a, b|| is the distance between a and b.

A user query q ∈ Q is a quadruple 〈l, t,D, q̄〉 with signature
L× T ×R+ ×Qq . Here,Qq is the set of all possible strings, i.e.,
a set of predetermined categories C, with the empty string denoting
all categories. Also, q.D is the distance that the user is willing to
travel. This parameter may be specified by the user, or it may be
derived from the travel pattern of the user (e.g., walking, driving)
using the query logs.

2.2 Scoring Functions
We use a scoring function S : Q× P × D to rank an argument

place according to a set of log entries and a user query. Since we
use scoring functions for ranking, the absolute values returned by a
scoring function do not matter—only the relative values matter.

Specifically, our framework supports the following kind of scor-
ing function:

S(q, p,D) = S(p,D)× weightq.D(||q.l, p.l||).

This function separates the offline scoring from the online scor-
ing, as discussed in Section 1. Thus, S(p,D) represents the offline
part of the scoring, while the weight weightq.D(·) is computed in
the online part. This arrangement enables maximum precomputa-
tion for the problem considered. At query time, the offline score
needs only be adjusted by a simple multiplication with a score that
depends on the distance between a query and a place. This is im-
portant to achieve low query latency.

We restrict the function weightq.D(·) to be non-increasing, as
we discuss in Section 3.3. This simply means that a user is as-
sumed to prefer to travel a shorter rather than a longer distance to
achieve the same reward. This assumption also underlies k nearest
neighbor querying. Appendix A presents a range of possible scor-
ing and weight functions and an experimental comparison of these
functions.

2.3 Time-Aware Scoring
Time-aware scoring may be applied to any scoring function we

just described. To account for the intuition that users’ behavior
vary across the day and between weekdays and weekend days, we
assign different weights to different directions queries according to
the temporal match between their time and the time in the user’s
query.

Thus, we can obtain a temporal counterpart of each instance of
the previous kind of scoring function as follows:

S ′(q, p,D) = S(q, p,D) + α× Stod(q.t)(q, p,D) +

+β × Sdow(q.t)(q, p,D).
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Here, α and β are positive constants. Function Stod(·) restricts the
scoring function to the query log tuples that occur during a particu-
lar time of the day. We divide a day into disjoint intervals for morn-
ing (06.00–10.00), lunch (10.00–14.00), afternoon (14.00–17.00),
dinner (17.00–20.00), evening (20.00–23.00), and night (23.00–
06.00). Similarly, function Sdow(·) restricts the scoring function
to the query log tuples that occur during particular sets of days of
the week: either weekends or weekdays.

We note that the directions query logs can be used in this time-
aware setting in contrast to other methods used until now (e.g.,
number of reviews, sentiment of reviews).

3. RANKING ALGORITHMS
We assume that a set of places has been retrieved and scored in

an offline phase. We describe two algorithms that then compute the
top-k most relevant places for a query issued by a user at a known
location.

We first provide background information on our spatial indexing
approach. Because major search engines (e.g., Google) use space-
filling curves to index their geo content, our methods rely on these
techniques for better integration.

3.1 Spatial Indexing
To efficiently retrieve places located in a given geographic re-

gion, we use a space-filling curve that maps locations on Earth to a
one dimensional curve.
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Figure 2: Example of a Hilbert curve at two levels

We project the Earth’s surface onto the six faces of a unit cube
(applying standard transformations to account for distortion). On
each face of the cube we use the Hilbert curve [21] to map points
from 2-D to 1-D. The Hilbert curve is defined recursively, as exem-
plified in Figure 2 that considers part of the 5th face of the Earth.
Each cell is subdivided into four smaller cells at each subsequent
level (identified by the numbers 0, 1, 2, 3 every time). The process
stops when the desired granularity has been achieved. We use cells
from level 1 (a face in the unit cube) to level 23 (approximately a
1 m×1 m cell). We refer to cells in a Hilbert Curve as hCells in the
following. Also, we denote as hCellIDl the ID of a hCell at level
l. Example hCellIDs can be seen in Figure 2 for l = 3 (left) and
l = 4 (right)1. Advise Appendix B for additional details.

Each (latitude, longitude) location is mapped to an hCell at level
23. Addresses are mapped into hCells by using a standard geocoder.
A geocoder is a piece of software that maps various geographic data
(e.g., address, ZIP code) to (latitude, longitude) pairs.

3.2 Table-Based Algorithm (Baseline)
We first describe a table-based ranking algorithm. The algo-

rithm uses a table BusinessListing, which contains informa-
1We have that hCellID1 ∈ {0, . . . , 5} (face of the Earth) and
hCellIDl+1 = hCellIDl.s where s ∈ {0, 1, 2, 3} tells us the or-
der by which the Hilbert curve crosses the four smaller squares of
the hCellIDl.

tion aboutP . The schema of BusinessListing is (PlaceID,
Location, Category, Score), where PlaceID is an ID
of a place, Location is its location (expressed as an hCell23 iden-
tifier), Category is the category to which it belongs (e.g., restau-
rant), and Score is the offline score assigned to this place (see
Figure 1), which can be the result of a combination of scores from
multiple scorers.

The table-based algorithm takes as input a subset of the tuples in
BusinessListing, namely the places that are within the range
the user is willing to travel. We use standard spatial indexes to
find such tuples/places. From this subset of tuples, the algorithm
computes a place ranking by sorting the result tuples according to
their distance-weighted scores (online part of Figure 1). The pseu-
docode can be found as Algorithm 2 in Appendix C. The following
example illustrates the ranking.

EXAMPLE 1. Assume that we have a database with the businesses
in Table 1 and that Table 2 contains the information necessary for
the algorithm, computed from the query log.

Table 1: Example business directory
Loc Name Type Category

5.1 . . . Petros’ place Greek restaurant Restaurant
5.1 . . . Christian’s place Danish restaurant Restaurant
5.0 . . . Hector’s place Colombian restaurant Restaurant
5.0 . . . Alon’s place Coffee shop Restaurant
5.3 . . . Jack’s place American restaurant Restaurant

Table 2: Statistics of interest for Example 1
BusName Offline score Distance (km)

Petros’ place 1000 2.2
Christian’s place 700 1.2
Hector’s place 200 1.5
Alon’s place 500 1.0
Jack’s place 550 1.2

We assume that the query q is 〈5.2. . . , 2009/Jun/15 14:23:24.412
PST, 2 km, restaurant〉. The relevant set of places then excludes
Petros’ place, which is too far away (further than the 2 km that the
user is willing to travel). Assuming a simple linear weighting func-
tion (weightq.D(d) = 1 − d/D), the algorithm ranks the results
as follows: Christian’s place (score = (1−1.2/2.0)×700 = 280),
Alon’s place (score = (1 − 1.0/2.0) × 500 = 250), Jack’s place
(score = (1 − 1.2/2.0) × 550 = 220), Hector’s place (score =
(1− 1.5/2.0)× 300 = 75).

Although this naive algorithm is fast when the set of relevant
places is small (i.e., the distance the user is willing to travel is small
or the density of places is low), it rapidly degrades as we need to
examine more places. One reason is that the distance function call
is expensive.

3.3 Threshold-Based Algorithm
The algorithm described next adopts the approach of the thresh-

old algorithm [13] and is capable of handling a very large number
of places. This algorithm integrates well with current search en-
gines that use space filling curves to index their geo content.

Supported scoring functions. The algorithm accepts any scoring
of places that is adjusted with a weighting function weightq.D(d)
that decreases monotonically with d, i.e., for di < dj we always
have weightq.D(di) ≥ weightq.D(dj).

A simple example in our case would be a scoring function of
the form: S(p,D) = |{d| d ∈ D ∧ d.b = p.l}|, where d.b is the
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destination for the directions query d and p.l is the location of the
place p.2

The set of possible scorers is very general, and arbitrary scorers
can be combined to compute a query-independent score for each
place. At query time, the (offline) scores are adjusted according to
the query location.
Place ranking in hCells. We assume that the space has been parti-
tioned into hCells at a given level. For each hCell, we precompute
a sorted list of places that map to it. This sorting is done offline ac-
cording to S(p,D) as it is independent of the query location. Given
a preselected set of categories, we carry out this procedure for each
category (i.e., having places of the same category in each sorted
list).

When receiving a user query that contains a location q.l and the
distance q.D the user is willing to travel, we select the hCells that
intersect the circle with center q.l and radius q.D. Assume that we
obtain n hCells and thus n ranked lists Li, i ∈ {1, 2, . . . , n}, of
places. Algorithm 1 computes the top-k places from these lists and
returns them in priority queue L.

The algorithm maintains a priority queue PQ of the lists Li,
where the priority of a list is the best possible score that an unseen
place in the list can have. This number is easily computed from the
shortest distance from the user to the hCell of the list and the top
scoring unexamined place in the list. In each iteration, we pick the
most promising place from the list that is the head of PQ that we
(according to its offline score) have not yet examined and add it to
the results (L). The algorithm terminates early if the score of the
k-th element of the results L is higher than the maximum possible
(online) score of the first element in the list at the head of the queue
PQ.

This algorithm is an adaptation of the threshold algorithm (TA;
or more specifically NRA) [13]. First, it does not rank objects for
which each list contains a separate dimension; rather, each list con-
tains completely different objects. Second, the score for each place
in each list is adjusted dynamically according to its distance to the
user.

The following theorems establish the main properties of our al-
gorithm: the algorithm correctly finds the top-k list of places; and
for a particular level of hCells, it examines the minimum number
of places possible.

THEOREM 1. Algorithm 1 finds the correct top-k list if function
weightq.D(·) is non-increasing, i.e., if for every di ≥ dj we have
weightq.D(di) ≤ weightq.D(dj).

THEOREM 2. Algorithm 1 finds the top-k list in the minimum
number of steps for a given partition of space (and only sorted
access to our lists Li).

The proofs, in Appendix D, adapt proofs of similar properties by
Fagin et al. [13], to our setting and assumptions.

In the experimental section, we show that it is possible to keep
the ranked lists according to the offline score for only one particular
level of the hCells; this yields good results in all possible scenarios.
EXAMPLE 2. We continue with Example 1. Assume that the busi-

nesses are located as shown in Figure 3. We use level 2 hCells, and
aim to find the top-3 results.

Initially PQ and L are empty. We have three lists as input to the
algorithm: L0, L1, and L3. We know that the minimum distance
between the user and the hCells are: m0 = 0.5 km, m1 = 0.4 km,
and m3 = 0.3 km.
2In our case, the scoring function in the right part of the equation
depends on the query logs; thus, it is S(p,D). In general, any
function that does not depend on the user’s query q can be used.

Algorithm 1: Threshold-based algorithm
Input: A query q = 〈l, t,D, q̄〉, lists (L1, . . . , Ln), minimum

distances for every list’s hCell (m1, . . . , mn), k
Output: List L with all the k highest ranked places according to user

query q
activeLists← {1, 2, . . . , n};
/* Priority queues (PQ and L) have 2

operations: getNext() returns the next
element from the queue and pops the element;
insert(element, priority) inserts an element into
the queue with a specific priority */

PQ← ∅;
L← ∅;
/* lists Li have 3 operations: getNext()

returns the next element in the list and
removes the element; pollNext() returns the
next element without removing the element
from the list; hasMore() returns true iff
the list is non-empty */

for i = 1 to n do
/* The prioritization is over the maximum

possible score achieved for that list */
p = Li.pollNext();
PQ.insert(i,S(p,D)× weightq.D(mi));

while activeLists.size() > 0 do
nextListToCheck ← PQ.getNext();
if nextListToCheck /∈ activeLists then

continue;
if LnextListToCheck.hasMore() then

p = LnextListToCheck.getNext();
/* notice that we are using the exact

score */
if ||p.l, q.l|| ≤ q.D then

L.insert(p,S(p,D)× weight(||p.l, q.l||));
if LnextListToCheck.hasMore() then

p = LnextListToCheck.pollNext();
PQ.insert(nextListToCheck,S(p,D)×
weight(mnextListToCheck));

else
activeLists.remove(nextListToCheck);

if the k-th element in L has a score greater than the first list in
PQ maximum expected score then

break;

return L

The algorithm first initializes priority queue PQ. Taking into ac-
count the minimum distances, the lists, and the simple linear weight
function from Example 1, we have:

PQ = 〈(L1, (1−
0.5

2.0
) · 1000), (L3, (1−

0.3

2.0
) · 550)

(L0, (1−
0.4

2.0
) · 500)〉

= 〈(L1, 750), (L3, 467.5), (L0, 375)〉.

Since the hCell with ID 1 has the highest priority in PQ, it is
examined first. List L1 contains Petros’ place first, which has a dis-
tance from user’s location that exceeds q.D. Thus it is ignored, but
the priority queue is updated. Since Christian’s place is next in L1,
after this step, PQ will be 〈(L1, 560), (L3, 467.5), (L0, 375)〉.

Again, list L1 is examined as it has the highest priority in PQ.
Christian’s place is added to priority queue L, and L = 〈(C, 280)〉.
Since we extracted list L1 from PQ, we have PQ = 〈(L3, 467.5),
(L0, 375)〉.

We then examine list L0, since it is next in PQ. After one it-
eration of the main while loop, we get PQ = 〈(L0, 375)〉 and
L = 〈(C, 280), (A, 220)〉.
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L0 = 〈(J, 500), (H, 300)〉

L1 = 〈(P, 1000), (C, 700)〉

L3 = 〈(A, 550)〉
0 3

21 0.4 km

0.3 km

0.5 km

P

C

J
AH

User

Figure 3: Threshold-based algorithm example

We now examine list L0 since it is next in PQ. After the it-
eration, we get L = 〈(C, 280), (J, 250), (A, 220)〉 and PQ =
〈(L0, 150)〉. We now have three elements in priority queue L.
Since the last element has an actual score that is greater than the
maximum possible score of any remaining element in list L0, we
have found the top-3 elements and are done.

4. DIRECTIONS LOGS EVALUATION
We now describe key characteristics of our data sources (more

details can be found in Appendix E) and show that the directions
log can be a very effective signal for place ranking. Additional
experiments can be found in Appendix F.

4.1 Key Data Source Statistics
We use a sample of queries from a travel directions log that con-

tains all the queries issued at Google Maps during July 2009. We
focus on queries in a sub-region of the United States and thus con-
sider the business listings located in this sub-region. We limit the
set of business listings to a subset of categories including museums,
hotels, restaurants, night clubs, and landmarks.

The query log that we use (D) contains queries for 18,968,123
different locations. For the categories of interest we have 151,721
business listings (P). It is clear that most of the destinations of
driving directions queries are not businesses in the directory.

We perform a join between the destination query log and the
business directory, on the log destination and the business loca-
tion attributes. There are 128,159 businesses for which there is at
least one query with a destination matching the business location.
That is, around 84.47% of all business listings in the directory are
queried in the driving directions queries; 0.676% of driving direc-
tions queries in D have a business in P as their destination. Al-
though, 0.676% is a small percentage, the actual number of queries
issued for the 128,159 businesses is 49,533,223; this number is al-
most two orders of magnitude greater than the number of reviews
for the same places (which was around 550,000). Interestingly,
22.5% of the places for which we have directions queries do not
have any reviews, showing that the abundance of directions queries
offers additional coverage.

In the business directory available, there were multiple busi-
nesses located in the same location (hCell23). This happens be-
cause the business directory merges several data sources and then
performs an imperfect Entity Resolution (ER). Furthermore, the
information extracted from web pages is not always completely ac-
curate. The problem of ER in the business listing is orthogonal to
our study (see Appendix E.3 for additional details).

Figure 4 shows the distribution of the queries across locations
for the locations that “survived” the join between D and P , i.e.,
locations in which at least one business is located and for which at
least one directions query has the location as its destination. For
example, in the lower right corner of the figure, we can observe
that there is a location that has received ∼8 × 106 queries. In the
top left corner of the figure, we can see that there are around 8,000
locations that have received 1 query each.
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Figure 4: Distribution of queries across locations

4.2 Utility of Directions Logs
This experiment investigates the utility of the directions logs sig-

nal. We compare the sets of the top-k results produced and the
rankings of the results with the corresponding sets and ranking pro-
duced by other methods.

We have created a system where a user is able to select a loca-
tion the user knows very well and then select a category among the
following three: restaurant, point of interest, and hotel. Finally, the
user selects a maximum travel distance. The system then computes
the top-5 places that three methods produce:

1. DL: number of directions log entries that have the place as
their destination,

2. NR: number of reviews for the place under consideration, and
3. AR: the average score (sentiment) that reviews have assigned

to the place under consideration.
Finally, the resulting 15 places (top-5 from each method) are

shuffled and shown to the user, without the user knowing the ori-
gin of each place3. We did not incorporate distance between the
user and a place since we wanted to compare the usefulness of our
(offline) signal against two other standard signals. The user is then
asked to evaluate these 15 places with a score between 0 and 4:

Score Specification
0 I have no idea of what this is
1 Not interesting to most people in general and not recommended
2 Neutral to most people in general
3 An OK location to most people in general
4 Very interesting to most people in general and recommended

Since users are experts in the areas they selected (e.g., around their
houses or work), their assessments are considered to be of high
quality.

We had 10 users select locations, issue queries, and evaluate 15
places for each query. A total of 45 queries and 675 places were
evaluated during this process.

We compared the average score that the evaluators assigned to
the top-5 places of each method: our proposed signal (DL) had an
average score of 1.960, while AR had 1.498, and NR had 1.453.
This means that our signal is better at reporting the best places in
its top-5 list than the other two signals.

We also evaluated the rankings produced by each method using
the nDCG metric [15]. This metric can be defined for any list of
evaluated objects; it compares the ranking a method has done (list
of objects) to an optimal list of objects according to the evaluation
scores. We evaluated nDCG for the top-5 places of each of the
methods we examined. The metric takes values between 0 and 1: 1
means that the ranking is as expected according to the evaluations,
3If there are duplicates among the top-5 lists, we continue deeper
into the lists so that we always show 15 places.
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and 0 means that the ranking is very bad. DL had nDCG equal to
0.787, AR had 0.845, and NR had 0.827.

This study shows that driving directions logs can serve as a strong
signal, on par with reviews, for place ranking. This is an important
finding because log data offer a number of advantages over reviews,
as mentioned in Section 4.3. The fact that the directions-based sig-
nal is comparable to the review-based signals is surprising. It is up
to a scorer that takes into account multiple signals to decide how
the signals should be combined based on their characteristics.

4.3 Correlation with Number of Reviews
In this experiment, we evaluate the feasibility of using driving

directions logs as a proxy for the popularity/importance of a place.
We compare the correlation of the driving directions based signal
with the number of reviews for a place, which is a commonly ac-
cepted measure of popularity. The number of reviews was extracted
via Google’s business directory, and it is the total number of re-
views found in various data sources on the Web.

For this experiment, we choose 100 random user locations. We
then issue the category query “food” and set the distance the user
is willing to drive to 2 km. Each of the 100 queries has at least 100
ranked results (otherwise, we choose a new random user location).
We had to consider 514 distinct places to find 100 user locations
with at least 100 food-related places within a radius of 2 km (∼20%
of the randomly selected places had at least 100 results).

We then find the number of reviews of each ranked place for
all the queries. We partition the ranked results into batches of ten
results (the top-10, the top-11–20, etc.). For each batch, we sum the
number of reviews for the places ranked in those places for the 100
rankings that we have; the result can be seen in Figure 5. There
is a clear correlation between the rankings of the results and the
number of reviews that a place has, which shows that the directions
logs are indicative of the popularity of a place.

These findings are important because driving directions logs are
cheap to collect and are orders of magnitude more frequent than
user reviews, which are expensive to obtain. Further, the logs pro-
vide near real-time evidence of changing sentiment, an aspect that
is usually hard to capture with other signals (e.g., the reviews that
a place has received; even a newly added web page of a restaurant
will need time to increase its PageRank), and they are available for
broader types of locations.

The scoring function we used for this experiment is S(p,D) =
|{d = 〈t, a, p.l, ||a, p.l||〉| d ∈ D}| and weightq.D(d) = 1− d

q.D
.

However, similar results are obtained when using other scoring and
weighting functions (like the ones described in Appendix A).

5. PERFORMANCE EVALUATION
We now proceed to report on the evaluation of the runtime per-

formance of the proposed table-based and threshold-based ranking
algorithms in the presence of very large log and place databases.

In the experiments, we assume that the user issues an empty
query string (retrieve all possible places around me) in order to
have more results to rank. Also, the user is located in a region with
high business density.

We use the same datasets as described in Section 4.1, and we run
all the experiments on a single machine with two AMD dual-core
Opteron CPUs (we only use one of the cores) at 2.2 GHz and with
8 GB of RAM.

For the table-based algorithm, we use MySQL as the DBMS with
indexing for efficiently determining the places near a user. For the
threshold-based algorithm, we load the ranked lists from the offline
computation into memory.
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Figure 5: Number of reviews for our ranked list of results

5.1 Table- vs. Threshold-Based Algorithm
For the threshold-based algorithm we use hCells at level 7 (for

reasons that will be clear later on) and compute the top-100,000
results.

Figure 6 presents the ranking time vs. the distance that the user is
willing to travel. It can be observed that the table-based algorithm
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Figure 6: Performance comparison for our two algorithms

(baseline) takes up to 9.5 secs for large distances (which translates
into a lot of places), while the threshold-based (efficient) algorithm
takes around 350 msecs in the worst case.

5.2 Varying the hCell Level
In this experiment, we vary the hCell level from 3 to 23. We

start at 3 because the areas the query logs cover are at this level.
We measure the time required to find the top-1,000 results. The
measurements can be seen in Figure 7 for varying distances (q.D)
that the user is willing to travel and for all hCell levels.
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Figure 7: Elapsed time vs. hCell level

We observe that the higher the hCell level (i.e., the smaller our
hCells are), the more time is required for our computation for all
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distances d. This is so because we have to handle more ranked
lists of results, which makes the handling of the priority queue PQ
slower.

We also see that for small distances (like q.D = 1 km and
q.D = 2 km), the elapsed time for ranking increases significantly
if one uses a very low hCell level. This happens because we have
to process large lists in order to find results that belong to the small
region of interest to the user. Put differently, we have to consider
places that lie in relatively large regions, and that will eventually be
filtered given the user’s low willingness to travel.

It seems that a very good trade-off for all possible distances is to
use hCell levels 6 or 7. Thus, a search engine can keep statistics for
only one of these two hCell levels and not for every possible level,
thus achieving important savings in storage and computation.

5.3 Varying the Value of k
Next, we evaluate the time required to find the top-k places for a

fixed maximum travel distance and different values of k. We chose
the distance q.D = 512 km, for a user located in a region with high
business density. This setting maximizes the number of places to
rank, thus imposing a greater burden on the ranking algorithm. We
experiment with hCell level 7, since the previous experiment shows
that the threshold-based algorithm performs very well at this level.

Figure 8 presents the time required to compute the top-k lists
for several values of k. As expected, the total time increases with
k. We note that the process is incremental, meaning that we can
first find the top-10 results and then, using the same data structures,
continue running the algorithm up to the desired level of k.
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values for k

5.4 Performance of Offline Procedures
For this experiment, we measure the storage and time require-

ments of the offline part of our two algorithms. The MySQL table
BusinessListing is around 89 MB for the table-based algo-
rithm (it contains some metadata about the places); the total mem-
ory required for the creation of all the ranked lists (based on the
offline score) is around 100.7 MB for all possible levels we have
considered.

Both algorithms need to compute the offline score; the additional
cost that the threshold-based algorithm imposes is that one must
create ranked lists for each hCell beforehand, which is not required
in the table-based algorithm. This additional cost (when everything
run on one machine) is around 25–26 secs for hCell levels 3–8 and
then steadily increases to 28.3 secs for level 9, 31.7 secs for level
10, 38.8 secs for level 11, . . . , 329.5 secs for level 23.

We can see that for low levels, the additional offline time is in-
significant; as the level of detail increases, the overhead also in-
creases. However, the cost is not prohibitive for our method, es-

pecially when we are at levels 6 and 7 where, as we saw earlier,
we achieve the best performance. Also, this computation is done
offline and its cost will be amortized across millions of queries.

6. RELATED WORK
Finding interesting locations and/or destinations: A number of
studies have aimed to identify important locations using primarily
GPS data. Our setting assumes that we know the important lo-
cations and that they are classified (e.g., restaurants, hotels); this
information is found in business directories.

In the location identification setting, several studies aim to iden-
tify places visited by individuals from GPS logs. Ashbrook and
Starner [1, 2] present techniques capable of learning significant
user locations and predicting user movement based on GPS data.
Brilingaite et al. [4, 5, 6] capture routes and (start and end) destina-
tions from GPS trajectories and use these along with temporal us-
age information for predicting the routes and destinations of users.
Experiments with data from users demonstrate that the techniques
are effective. Krumm and Horvitz [17, 18] also propose techniques
for destination prediction based on GPS data.

Liu et al. [19] and Cao et al. [7] extract so-called stay points
from the trajectories of users; they propose clustering and reverse
geocoding techniques that aim to derive semantically meaningful
locations from the stay points. Zheng and Xie [25] also identify
stays from GPS logs, propose a hierarchical containment ordering
for the geographical extents of stays, and then mine so-called life
patterns of individuals from the resulting location histories. Along
the same lines Zheng et al. [25], mine locations from GPS trajecto-
ries. Here, focus is on identifying public locations, which are then
ranked using link-based techniques. Cao et al. [7] offer improved
link-based ranking techniques.

Our approach can use the results from this line of research as
another source of places (instead of a business directory). Our
approach does not use GPS data and link-based techniques for its
ranking, but considers a different alternative: that of using driving
directions ranking. GPS datasets typically contain many positions
for few users; in contrast, directions queries are derived from larger
user populations, with each user issuing few queries.

Ranking functions in a Spatial Context: Other related work deals
with the problem of place ranking [24], where the ranking of ob-
jects (e.g., houses) is defined with respect to other qualities around
them (e.g., restaurants, schools, hospitals) within a distance range.
Also, a framework for the efficient computations of this ranking is
provided. These methods do not try to determine the inherent value
of a place; they determine the value of a place given the fact that
other places are around it. Thus, one could apply our algorithms
and then, as a next step, the algorithms described in [24].

In a more general context, substantial research has considered
local search where the results that a user sees for a query depend
on the user’s location; the results though are documents and not
ranked places/businesses (for example, one result could be a blog
post about a particular restaurant), which makes the setting very
different. Two recent works in this field propose indexes that are
evaluated in terms of efficiently in their settings [8, 26].

In other work [10], NLP techniques are used for geo-searches on
the web. The idea is to find phrases like “next to Eiffel tower” in
a hotel’s web document and to thus be able to answer queries like
“hotel in Paris” more accurately. Again the output is ranked docu-
ments, not ranked places. Our work differs from other techniques
in that no geocoding is used, but only NLP techniques. Means of
detecting and extracting geographical information (e.g., addresses)
from web documents has also been studied [20]. The idea is to
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extract addresses, phones, ZIP codes and other useful geographical
information from a web document and then to augment the location
information with keywords from the content of the web document.
Query log analysis: Backstrom et al. [3] aim to determine the re-
gion of importance for a query, using a probabilistic model. This
work does not use positioning, but rather depends on IP-based (10×
10 km2) positioning. We try to determine good places, which is dif-
ferent from trying to determine the region to which a query is rele-
vant. Other work [22] in this line of research aims to determine the
so-called dominant location for each query (the location most im-
portant for a particular query). The techniques used include query
tokenization, query log analysis, and exploration of the snippets of
search results for the top-k results.

Work on mobile search log analysis [9] aims to determine how
users search using mobile devices. Some of the explored user be-
haviors are the number of keywords in queries, number of queries
per user per day, and search topics.

Finally, there is some work on categorization of queries depend-
ing on their scope (local, neighborhood, etc.) [14, 23]. Other work
in this area [16] explores the distances that one is willing to travel
in order to get to a particular place. This work can be used in our
framework to automatically find a maximum threshold for travel
distance for a given query.
TA/NRA comparison: The threshold-based algorithm proposed
in Section 3.3 is an adaptation of the threshold algorithm (TA) and
more specifically, a variation of TA called “no random accesses”
(NRA) [13]. Both TA and NRA rank objects. Each object has m
scores for m different attributes. The overall score of an object
is determined by a combination of the scores for the m attributes,
using some monotone aggregation function. For each of the m at-
tributes there is a ranked list of the objects according to their score
for that attribute. TA and NRA find the top-k objects according to
the overall score. TA and NRA differ in that NRA assumes sorted
access to the ranked lists, i.e., to see the object in the lth position
of a sorted list, one must have seen all l − 1 objects before it. Our
algorithm differs from NRA in that each list contains different ob-
jects in our setting, not a ranking of the same objects for a different
attribute. In addition, in our setting, the score for each place in
each list is adjusted dynamically according to its distance to the
user, which we believe has not been explored in any other work.

7. CONCLUSIONS AND DIRECTIONS
Given the ability to accurately determine the location of a mo-

bile user and the obvious revenue possibilities involved, it is likely
that answering hyper-local queries will receive increasing atten-
tion. Our first contribution is to present a new signal, directions
logs, that can be used for scoring places in response to hyper-local
queries. We present key statistics about these logs and show that di-
rection queries have a good correlation with the number of reviews
for places. But unlike reviews and ratings, they are inexpensive to
collect and readily available.

We present an architecture for answering hyper-local queries that
is the first to take into account the distance between a user and a
place and to adjust the score of the place accordingly. To support
this framework, we propose a threshold-based algorithm that scales
very well with the number of places under consideration. This algo-
rithm returns exact rankings under assumptions that are reasonable
in practice.

In terms of future research, we see interesting issues in explor-
ing additional scoring functions and methods for combining these
functions. In particular, some scoring functions may be more ap-
propriate than others for specific types of user queries. Another

interesting aspect of our work is the personalization of the ranking
depending on a user’s specific search history.
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[15] K. Järvelin and J. Kekäläinen. Cumulated Gain-Based Evaluation of
IR Techniques. ACM Trans. Inf. Syst., 20(4):422–446, 2002.

[16] R. Jones, W. V. Zhang, B. Rey, P. Jhala, and E. Stipp. Geographic
Intention and Modification in Web Search. Int. J. Geogr. Inf. Sci.,
22(3):229–246, 2008.

[17] J. Krumm and E. Horvitz. Predestination: Inferring Destinations
from Partial Trajectories. In Ubicomp, pp. 243–260, 2006.

[18] J. Krumm and E. Horvitz. Predestination: Where Do You Want to Go
Today? IEEE Computer, 40(4):105–107, 2007.

[19] J. Liu, O. Wolfson, and H. Yin. Extracting Semantic Location from
Outdoor Positioning Systems. In MDM, pp. 73, 2006.

[20] Y. Morimoto, M. Aono, M. E. Houle, and K. S. McCurley. Extracting
Spatial Knowledge from the Web. In SAINT, pp. 326–333, 2003.

[21] H. Sagan. Space-Filling Curves. Springer-Verlag,
Berlin/Heidelberg/New York, 1994.

[22] L. Wang, C. Wang, X. Xie, J. Forman, Y. Lu, W.-Y. Ma, and Y. Li.
Detecting Dominant Locations from Search Queries. In SIGIR,
pp. 424–431, 2005.

[23] X. Yi, H. Raghavan, and C. Leggetter. Discovering Users’ Specific
Geo Intention in Web Search. In WWW, pp. 481–490, 2009.

[24] M. L. Yiu, X. Dai, N. Mamoulis, and M. Vaitis. Top-k Spatial
Preference Queries. In ICDE, pp. 1076–1085, 2007.

[25] Y. Zheng, L. Zhang, X. Xie, and W.-Y. Ma. Mining Interesting
Locations and Travel Sequences from GPS Trajectories. In WWW,
pp. 791–800, 2009.

[26] Y. Zhou, X. Xie, C. Wang, Y. Gong, and W.-Y. Ma. Hybrid index
structures for location-based web search. In CIKM, pp. 155–162,
2005.

297



APPENDIX
A. ADDITIONAL SCORING AND WEIGHT

FUNCTIONS
We present some specific examples of possible scoring functions

that can be used in practice. We recall that a place p = 〈l, c〉 has a
signature L× C, where L is the set of locations in Euclidean space
and C is a set of categories that could be of interest to the users.

A.1 Scoring Functions
Count-based Scoring: The simplest scoring function assigns a
score to a place p that is equal to the count of directions to p:

SC(p,D) = |{d = 〈t, a, p.l, ||a, p.l||〉| d ∈ D}|.

The intuition is that the importance of a place increases with the
number of users that are willing to travel to reach the place.

Distance-Aware Scoring: With distance-aware scoring, we weigh
the contribution to a count by a directions query 〈t, a, b,D〉 by
||a, b||, and do not just use a plain count:

SD(p,D) =
∑

〈t,a,p.l,‖a,p.l‖〉∈D

||a, p.l||.

The intuition is that the importance of a place increases with the
distance that users are willing to travel to reach the place. If a user
is willing to travel long distances, the place is more important than
if the user is willing to travel only short distances to reach it.

Locality-Aware Scoring: With locality-aware scoring, we only
take into account queries with a distance ||a, b|| similar to the one
the user is willing to travel:

SL(p,D) = |{〈t, a, p.l, ||a, p.l||〉 ∈ D| ||a, p.l|| ≈ ||q.l, p.l||}|.

The intuition behind this scoring function is that people who are
willing to drive similar distances, will more probably want to go to
similar places.

A.2 Weighting Functions
Linear Weight: We used two linear weight functions:

weightq.D (||q.l, p.l||) = 1− ||q.l, p.l||
q.D

and

weightq.D (||q.l, p.l||) = 1− ||q.l, p.l||
2× q.D .

The first one takes the value 1 for ||q.l, p.l|| = 0 and decreases
linearly to the value 0 for ||q.l, p.l|| = q.D. The second one takes
again the value 1 for ||q.l, p.l|| = 0 and decreases linearly to the
value 1

2
for ||q.l, p.l|| = q.D.

Parabolic Weight: We used two parabolic weight functions:

weightq.D (||q.l, p.l||) = 1− ||q.l, p.l||
2

q.D2

and

weightq.D (||q.l, p.l||) = 1− ||q.l, p.l||
2

2× q.D2
.

The first one takes the value 1 for ||q.l, p.l|| = 0 and decreases
parabolically to the value 0 for ||q.l, p.l|| = q.D. The second one
takes again the value 1 for ||q.l, p.l|| = 0 and decreases paraboli-
cally to the value 1

2
for ||q.l, p.l|| = q.D.

A.3 Experimental Study
To study the differences of the various scoring and weighting

functions, we randomly chose 1,000 query locations and ranked all
points of interest, within a radius of 5 kms with all combinations of
the scoring and weight functions we defined in Appendix A.1 and
A.2.

We used three metrics to compare the ranking produced by dif-
ferent scoring functions [12]:
Kendall’s Tau: This metric counts the number of times that a pair
of entries (α, β) appears in reverse order in the two rankings, i.e.,
(α, . . . , β) in ranking one, and (β, . . . , α) in ranking two, normal-
ized by the total number of possible pairs.
Spearman’s Footrule: This metric counts is defined as the sum of
the absolute differences between the ranks of an item in two lists
(e.g., if place p is 1st in list 1 and 4th in list 2, place p contributes
|1 − 4| = 3 to the total sum. We normalize it by dividing by the
maximum possible value this sum can have [12].
Intersection Metric: When comparing two top-k lists, this met-
ric gives the sum of the sizes of the symmetric differences of the
two lists when considering the top-1, top-2, . . . , top-k elements of
the two lists, normalized by the maximum possible value of this
sum [12].

For all three metrics a value close to 0 signals similar rankings,
while a value close to 1 signals different rankings. Using as a
weight function a constant function (e.g., weightq.D(||q.l, p.l||) =
1), the comparison for the (offline) scoring functions gave the re-
sults contained in Table 3, where the Spearman’s footrule for the
top-10 lists is contained (C.-b. stands for Counts-based, D.-a. for
Distance-aware, and L.-a. for Locality-aware). Very similar results

Table 3: Comparison of offline scoring functions
Count-based Distance-aware Locality-aware

C.-b. 0 0.430 0.064
D.-a. 0.430 0 0.470
L.-a. 0.064 0.470 0

were obtained for Kendall’s tau and the intersection metric, and
also for other values of top-k.

Similarly, for the count-based scoring functions we defined in
Section A.1, Kendall’s tau metric for the top-20 lists is given in
Table 4 (where L.-1 stands for Linear-1, L.- 1

2
for Linear- 1

2
, P.-1 for

Parabolic 1 and P.- 1
2

for Parabolic- 1
2

).

Table 4: Comparison of weight functions
Linear-1 Linear- 1

2
Parabolic-1 Parabolic- 1

2

L.-1 0 0.044 0.001 0.060
L.- 1

2
0.044 0 0.048 0.006

P.-1 0.001 0.048 0 0.064
P.- 1

2
0.060 0.006 0.064 0

Very similar results were obtained for Spearman’s footrule and
the intersection metric, other values of top-k and other offline scor-
ing functions.

We observe that the actual definitions of the offline scoring func-
tions may give substantially different results (look for example the
comparison between the Count-based and the Distance-aware func-
tions). Furthermore, the weight functions can also change the ranked
lists by a fair amount. While we do not explore with user studies
how to select the appropriate functions, the space is very large and
many different aspects of ranking can be captured in our setting.
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B. SPACE PARTITIONING
The following example shows how a (latitude, longitude) pair is

mapped to an hCell’s ID for any possible hCell level.
EXAMPLE 3. We denote the hCell ID at level j, where j ∈ {1, 2,
. . . , 23}, by hCellIDj . Assume that we are given a location with
coordinates (37.2o,−119.34o), as seen in Figure 9. We want to
find the hCell ID of these coordinates at all levels. In this example,
we restrict ourselves to levels 1 and 2.

latitude = 37.2o

longitude = −119.34o

0

1 2

3

hCellID2 = hCellID1.1 = 5.1
hCellID1 = 5

Figure 9: Example of hCells

The process is recursive. We first find the hCell ID at level 1 of
these coordinates; this ID is a number between 0 and 5 (since at
level 1, we have a cube with six faces). We assume hCellID1 = 5.
We then take the rectangle and use the Hilbert curve to number its
four smaller rectangles. Then, the hCell ID for level 2 becomes
hCellID2 = hCellID1.1 = 5.1, as can be seen in the figure.

C. PSEUDOCODE FOR THE TABLE-BASED
ALGORITHM

Algorithm 2 contains the pseudocode the straightforward table-
based algorithm.

Algorithm 2: Table-based algorithm
Input: A query q = 〈l, t,D, q̄〉, a set of relevant places RP ⊆

BusinessListing
Output: A ranked list of the places in Result
Result←
SELECT PlaceID, Score ×weightq.D(||q.l,RP||) AS s
FROM RP
WHERE RP.Category = q̄
ORDER BY s;

The algorithm assumes that all places have been scored and that
the retrieval module has selected a subset of relevant places, e.g.,
places within 10 km of the user’s location. The SQL query simply
returns the places sorted by their distance-adjusted scores.

D. THEOREM PROOFS
Here is the proof of Theorem 1:

Proof: At each point of our algorithm, priority queue PQ contains
all the active lists. These are ordered by the maximum possible
score that a list can contain after removal of the elements we have
seen so far from the list.

The priority queueL contains a ranked list of places that we have
seen in the lists. The ranking for L is over the score S(q, p,D).

The algorithm may stop for two reasons:
1. There are no more elements to see in the listsLi: Then priority

queue L contains all the elements ranked by their actual score, and
we have solved the problem correctly.

2. The kth element in L has a score greater than the first list
in PQ. Assume the score of the kth -th element in L has score sk
and the first list in PQ has a maximum possible score sl. Since the
algorithm stopped, we have sk ≥ sl. All the places that have been
examined so far (and have been included in L) have been ranked
according to their actual score. Also, all the places that have not
been examined in the lists have a score that is at most sl ≤ sk.
Thus, we know that apart from the current top-k places in L, there
is no other place that can have a score that places it higher than the
kth place in L. Thus, we have computed the top-k places.

We need the non-increasing property of function weight(·) to
ensure that PQ always overestimates the maximum score for the
next element in the list.

Here is a sketch of the proof for Theorem 2:

Proof: Assume we have the ranked lists Li, for i = 1, 2, . . . , n
to which we only allow sorted access; sorted access means that
we have to retrieve elements from the top of each list Li before
retrieving elements below. Also, assume that the minimum distance
between the user and the hCell that list Li represents is mi.

Let’s assume that the ranked (by its offline score) content of list
Li is 〈pi,1, pi,2, . . . , pi,|Li|〉, for all i. Now assume that we decay
the places in lists Li in order to create the conceptual lists L′i =
〈p′i,1, p′i,2, . . . , p′i,|Li|〉; the score of place p′i,j is weightq.D(mi)
times less than the score of pi,j . Note that the relative order of
places in each list does not change due to the conceptual decay
process; all places are decayed by the same factor if they are in the
same list.

Each place’s p′i,j offline score has an “error” from its online
score that is bounded by a function that takes into account the
weight(·) function, the diameter of the hCell and the exact user’s
location. Our algorithm keeps a threshold (let’s call it Ton for this
proof) which is the maximum kth online score seen so far in places
of lists Li (and L′i). At each step, we pick the top place p in lists
L′i which has maximum possible offline score soff . If soff < Ton

and we have k examined elements, then we have found the correct
top-k elements.

Now assume that the number of places our algorithm has to ex-
amine before it finds the correct top-k places is d. Assume that
there is another algorithm A that correctly finds the top-k places
in our setting with at most d − 1 steps. Obviously, algorithms A
does not examine at least one place that our algorithms examines.
Let’s call this place p̂. Say that at that point that algorithm A stops
the threshold for our algorithm was T ′on. Then, since our algorithm
did not stop at that point and some of the lists L′i had at least the
place p̂, it was the case that s′off ≥ T ′on. Thus, if p̂ actually had an
online score T ′on (which is possible when place p̂ lies on the point
with minimum distance from the user’s location and the hCell of
the list where p̂ is located), then algorithm A would miss a place
that should have been included in the output top-k places.

E. DATA SOURCES
We describe the two main data sources used for place scoring:

the business directory data and the driving directions logs.

E.1 Business Directory
The business directory stores information regarding businesses

and their location. An important consideration is high coverage,
which is achieved by combining various data sources.

After the business listings have been retrieved, an extensive at-
tempt to do Entity Resolution (ER) takes place. A particular restau-
rant may have one entry in yelp.com, one in yellowbook.
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com, one in a blog post, and it may have its own web page. This
information has to be retrieved, cleaned, and then merged into (ide-
ally) one entity. Google is very aggressive with respect to ER, in
order to maintain high quality business listings.

After the cleaning and ER, the most accurate address for a busi-
ness is geocoded. Thus, we have a very good estimate of the actual
location of the business (with an accuracy of ∼10 m). Since the
geocoder is the same as the one that was used for the addresses
in the direction logs, we can perform a join between the two data
sources.

Google’s business directory is a table BusinessListingwith
schema (PlaceID, Name, Location, Category), where
PlaceID is an ID for a place, Name is the name of the place,
Location is a hCellID23 that captures the location of the place
(details on hCellIDs can be found in Section 3.1), and Category
is one of a few predefined business categories, e.g., museum, restau-
rant, university. Table 1 is an example business directory and can
be found in Section 3.2.

Because we have accurate locations of businesses, it is easy to
distinguish between two different “branches” of the same chain,
e.g., different McDonald’s restaurants.

We derive places from business listings:

Definition 1. We define a place p as a tuple p = 〈l, c, n〉,
where l is a location, c is a (business) category, and n is the (busi-
ness) name. We may also use the tuple 〈l, c〉 as a place, if the name
of the business under examination is not important.

E.2 Directions Logs
The main data source is the directions logs from Google maps. A

log entry contains a timestamp, an origin (or source), a destination,
and the distance from the source to the destination. The following
is an example of a log entry: 〈2009/Jun/15 16:24:43.956
PST, 5.2.2.0.3..., 5.2.2.3.2..., 61,043 m〉.

The timestamp is the time when the query was issued and has
an accuracy of 1 ms. The source and destination are given as
hCellID23 identifiers. These values are obtained by geocoding the
query strings provided by the user. If a geocode cannot be obtained
(e.g., if the source string is not an address but the string “choco-
late”), no source value is logged for this attempt to get directions.
Thus, we can be certain that if we have valid location IDs then the
original query contained actual addresses. The distance between
the source and the destination is given in meters and has an accu-
racy of some tens of meters.

E.3 Joining the Two Data Sources
We performed a join between the destination query log and the

business directory, on the log destination and the business location
attributes as we described in Section 4.1.

Let us now examine the number of places that have been as-
signed in the same location as other places have been assigned to.

Definition 2. There are k collisions in a particular location li if
there are exactly (k + 1) places for which p.l = li.

Figure 10 shows the histogram of collisions that appear in the
locations that we have in hand after we perform the join between
the query log (D) and the business directory (P).

Most locations contain exactly one place (business listing). There
are some locations, though, with more than one business. From
the empirical evaluation, we have determined that most collisions
occur because the entity resolution (ER) is not perfect, especially
when one has to take into account multiple data sources of busi-
ness listings. For example, we have seen examples of two places
in the same location that have the exact same name, or that have a
slightly different name (e.g., “La Strada Italian Restaurant” and “La
Strada Ristorante Italiano”), which are the same place, but were not
merged during the ER.

We also note that there are locations with more than 5 business
collisions. This happens, for example, when the only information
that we have for a restaurant is the city in which it is located, in
which case the location of the restaurant is assumed to be the cen-
ter of that city. We ignore all the places at locations with 5 or
more collisions in them. We only eliminate 1,733 places with this
method, which is less than 1.14% of the total business listings in
the region we examine.

The focus of this paper is not on entity resolution, and the busi-
ness directory at our disposal is clean enough for place ranking.

F. ADDITIONAL EXPERIMENTAL
RESULTS

F.1 Directions Log Time Dependence
We study the fluctuations in the number of driving directions

queries for different hours of the day and days of the week. We ex-
amined restaurants familiar to us: a steakhouse where people often
go for dinner on weekdays (it is generally avoided during weekends
since it is slightly isolated), a famous brunch place where people
go during weekends between the hours of 10 am and 2 pm, and a
place where people gather for drinks and food. Figure 11(a) shows
the normalized number of queries for different hours of the day
for these three places and for all the restaurants in our business di-
rectory. Figure 11(b) shows the normalized number of queries for
different days of the week (day 1 is Sunday).

These graphs reveal quite distinct temporal variation. For ex-
ample, the brunch place gets the majority of its queries during the
mornings of the weekends. Similarly, the (isolated) steakhouse re-
ceives few queries during the weekends, and the after-work hang-
out receives many queries during Friday’s before dinner and lunch
time.

F.2 Directions Logs Contribution
In this experiment we aim to understand whether a place ranking

signal based on driving directions adds new information to an exist-
ing place ranking system. The existing place ranking system may
take into account aspects such as the number of reviews, sentiment
of reviews, and the PageRank of web pages related to a place. The
purpose of this experiment is not to quantify the quality of the new
signal, but merely to determine whether it can bring new informa-
tion to ranking.

We use Kendall’s tau, described in Appendix A.3, to measure
the distance between two rankings, and we compare place rankings
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Figure 11: Normalized number of queries

generated using our scoring function with rankings generated us-
ing Google local search (GLS). For our ranking, we use the count-
based scoring function (see Appendix A.1) and weightq.D(d) =
1− d

q.D
.

Figure 12 uses box-whiskers plots to compare top-k rankings for
k = 5, 10, 15, . . . , 100 using Kendall’s tau. The boxes contain the
values between the first quartile and the third quartile. The end
points represent the minimum and maximum values observed for
the measurements, while the line inside the box is the median. We
see that the median of new information is around 50% for all the
values of k considered. Also, it tends to stabilize as k gets larger.
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Figure 12: Count-aware scoring versus GLS ranking

We note that no existing system explicitly uses a weightq.D(·)
function for the distance. Usually current systems just rank places
that are in the user’s ZIP code, irrespectively of the user’s distance
to the places, or they use other heuristics similar to this. Thus, it is
expected that the use of directions logs will add new information to
any existing ranking system.

F.3 Sensitivity to the User’s Location
In this experiment, we examine how sensitive our ranking func-

tions are to the exact location of a user.
For examining the sensitivity of our ranking functions to the ex-

act location of a user, we use the simple weightq.D(·) function
weightq.D(d) = 1 − d

q.D
and the count-based scoring function

(see Appendix A.1), which basically just counts the queries for a
particular location.

The settings for the experiment are as follows. We have 100
hypothetical users. Each user is located in a randomly chosen lo-

cation, the user issues the query “food” (one of the predetermined
categories), and the user is willing to travel 2 km. For each one of
the 100 users, we select 400 locations, such that their distances to
the user are less than ∼1.4 km.

For each one of the 400 locations, we re-rank the results that
were initially ranked for the associated user’s location, using the
ranking function S(q′, p,D), where q′ and q are only different in
the user’s location (q.l is the user’s original location and q′.l is one
of the 400 locations around the user). Then we compare the top-k
lists of the two lists using Kendall’s tau (with parameter p = 0).
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We have included all the comparisons of the top-50 lists for var-
ious distances and we present a box-whiskers plot (as described in
Appendix F.2) for distances that are less than 100 m, 200 m, . . . ,
1,400 m in Figure 13.

One can observe that two ranked lists are very similar (there is
a difference that is less than 1%) for distances of around 100 m.
The similarity decreases rapidly with distance, to around 8% for a
distance of 1.4 km. This provides evidence of the importance of
hyper-local ranking. When the precise location of a user is known,
we can do a better job of ranking locally interesting places.

The results for other scoring functions (e.g., the ones described
in Appendix A.1) and different values of k (for the top-k lists) were
very similar. We also experimented with some other weight func-
tions (e.g., the ones described in Appendix A.2); again, the results
are very similar to the ones presented here. Of course, the graph
depends on how fast the weightq.D(·) function decreases, but no
qualitative differences were observed during our experiments.
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