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ABSTRACT
In this paper, we present SnipSuggest, a system that provides on-
the-go, context-aware assistance in the SQL composition process.
SnipSuggest aims to help the increasing population of non-expert
database users, who need to perform complex analysis on their
large-scale datasets, but have difficulty writing SQL queries. As a
user types a query, SnipSuggest recommends possible additions to
various clauses in the query using relevant snippets collected from
a log of past queries. SnipSuggest’s current capabilities include
suggesting tables, views, and table-valued functions in the FROM

clause, columns in the SELECT clause, predicates in the WHERE

clause, columns in the GROUP BY clause, aggregates, and some
support for sub-queries. SnipSuggest adjusts its recommendations
according to the context: as the user writes more of the query, it is
able to provide more accurate suggestions.

We evaluate SnipSuggest over two query logs: one from an un-
dergraduate database class and another from the Sloan Digital Sky
Survey database. We show that SnipSuggest is able to recom-
mend useful snippets with up to 93.7% average precision, at in-
teractive speed. We also show that SnipSuggest outperforms naı̈ve
approaches, such as recommending popular snippets.

1. INTRODUCTION
Recent advances in technology, especially in sensing and high-

performance computing, are fundamentally changing many fields
of science. By increasing the amount of data collected by orders
of magnitude, a new method for scientific discovery is emerging:
testing hypotheses by evaluating queries over massive datasets.
In this setting, spreadsheets and hand-written scripts are insuffi-
cient. Consequently, despite the belief still held by many database
researchers, scientists today are increasingly using databases and
SQL to meet their new data analysis needs [13, 23, 24].

The Sloan Digital Sky Survey (SDSS) [22] is a famous exam-
ple of this shift toward data-intensive scientific analytics and SQL.
SDSS has mapped 25% of the sky, collecting over 30 TB of data
(images and catalogs), on about 350 million celestial objects [22].
SDSS has had a transformative effect in Astronomy not only due
to the value of its data, but because it made that data accessible via
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SQL [1]. To date, astronomers and others have submitted over 20.7
million SQL queries to the SDSS database; most queries are sub-
mitted through web forms but many forms enable users to modify
the submitted queries or even author queries from scratch [23].

There are many more examples of SQL use in science. The SQL-
Share system [14], developed by the eScience institute [25] at the
University of Washington (UW), allows scientists to upload their
data (e.g., in Excel files), and immediately query it using SQL. Our
own small survey of UW scientists revealed that respondents across
the sciences are using SQL on a weekly or even daily basis.

SQL is thus having a transformative effect on science. Author-
ing SQL queries, however, remains a challenge for the vast ma-
jority of scientists. Scientists are highly-trained professionals, and
can easily grasp the basic select-from-where paradigm; but to con-
duct advanced scientific research, they need to use advanced query
features, including group-by’s , outer-joins, user defined functions,
functions returning tables, or spatial database operators, which are
critical in formulating their complex queries. At the same time,
they have to cope with complex database schemas. For example the
SDSS schema has 88 tables, 51 views, 204 user-defined functions,
and 3440 columns [22]. One of the most commonly used views,
PhotoPrimary, has 454 attributes! The learning curve to becoming
an expert SQL user on a specific scientific database is steep.

As a result, many scientists today leverage database manage-
ment systems (DBMSs) only with the help of computer scientists.
Alternatively, they compose their SQL queries by sharing and re-
using sample queries: the SDSS website provides a selection of
57 sample queries, corresponding to popular questions posed by
its users [1]. Similarly, SQLShare provides a “starter kit” of SQL
queries, translated from English questions provided by researchers.
Scientists who write complex SQL today do this through cut and
paste. The challenge with sample SQL queries is that users either
have access to a small sample, which may not contain the infor-
mation that they need, or they must search through massive logs of
past queries (if available), which can be overwhelming.

Assisting users in formulating complex SQL queries is difficult.
Several commercial products include visual query building tools [4,
7, 15, 19], but these are mostly targeted to novice users who strug-
gle with the basic select-from-where paradigm, and are not used
by scientists. More recent work [26] has proposed a method for
clustering and ranking relations in a complex schema by their im-
portance. This can be used by an automated tool to recommend
tables and attributes to SQL users, but it is limited only to the most
important tables/attributes. Scientists are experts in their domain,
they learn quickly the most important tables. Where they truly need
help are precisely the “advanced” features, the rarely-used tables
and attributes, the complex domain-specific predicates, etc. Some
new systems, such as QueRIE [8], recommend entire queries au-
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thored by other users with similar query patterns. These, however,
are designed for users who have already written multiple queries,
and wish to see past queries that touch a similar set of tuples.

In this paper, we take a radically different approach to the prob-
lem. We introduce SnipSuggest, a new SQL autocomplete system,
which works as follows. As a user types a query, she can ask Snip-
Suggest for recommendations of what to add to a specific clause of
her query. In response, SnipSuggest recommends small SQL snip-
pets, such as a list of k relevant predicates for the WHERE clause,
k table names for the FROM clause, etc. The key contribution is in
computing these recommendations. Instead of simply recommend-
ing valid or generally popular tables/attributes, SnipSuggest pro-
duces context-aware suggestions. That is, SnipSuggest considers
the partial query that the user has typed so far, when generating its
recommendations. Our key hypothesis is that, as a user articulates
an increasingly larger fragment of a query, SnipSuggest has more
information on what to recommend. SnipSuggest draws its recom-
mendations from similar past queries authored by other users, thus
leveraging a growing, shared, body of experience.

This simple idea has dramatic impact in practice. By narrow-
ing down the scope of the recommendation, SnipSuggest is able
to suggest rarely-used tables, attributes, user-defined functions, or
predicates, which make sense only in the current context of the par-
tially formulated query. In our experimental section, we show an
increase in average precision of up to 144% over the state-of-the-art
(Figure 5(c)), which is recommendation based on popularity.

More specifically, our paper makes the following contributions:

1. We introduce query snippets and the Workload DAG, two
new abstractions that enable us to formalize the context-
aware SQL autocomplete problem. Using these abstractions,
we define two metrics for assessing the quality of recommen-
dations: accuracy and coverage (Section 3.2).

2. We describe two algorithms SSAccuracy and SSCoverage for
recommending query snippets based on a query log, which
maximize either accuracy or coverage (Sections 3.2.4, 3.2.5).

3. We devise an approach that effectively distinguishes between
potentially high-quality and low-quality queries in a log. We
use this technique to trim the query log, which drastically re-
duces the recommendation time while maintaining and often
increasing recommendation quality (Section 3.3).

4. We implement the above ideas in a SnipSuggest prototype
and evaluate them on two real datasets (Section 4). We
find that SnipSuggest makes recommendations with up to
93.7% average precision, and at interactive speeds, achiev-
ing a mean response time of 14ms per query.

2. MOTIVATING EXAMPLE
In this section, we present an overview of the SnipSuggest sys-

tem through a motivating scenario based on the SDSS query log.
Astronomer Joe wants to write a SQL query to find all the stars

of a certain brightness in the r-band within 2 arc minutes (i.e., 1
30

th
of 1◦) of a known star. The star’s coordinates are 145.622 (ra),
0.0346249 (dec). He wants to group the resulting stars by their right
ascensions (i.e., longitudes). This is a real query that we found in
the SDSS query log. Joe is familiar with the domain (i.e., astron-
omy), but is not familiar with the SDSS schema. He knows a bit of
SQL, and is able to write simple select-from-where queries.

It is well known that PhotoPrimary is the core SkyServer view
holding all the primary survey objects. So, Joe starts off as follows:
SELECT * FROM PhotoPrimary.

Joe is interested in only those objects that are near his coordi-
nates. Browsing through the 454 attributes of the PhotoPrimary

table’s schema fails to reveal any useful attributes over which to
specify this condition. Joe suspects that he needs to join PhotoPri-
mary with some other table, but he does not know which one. Joe
thus turns to SnipSuggest for help and asks for a recommendation
of a table to add to his FROM clause.

SnipSuggest suggests the five most-relevant snippets
for this clause: SpecObj, Field, fGetNearbyObjEq(?,?,?),
fGetObjFromRect(?, ?, ?, ?), and RunQA. (All the suggestions in
this section are real suggestions from SnipSuggest.)

In this example, fGetNearbyObjEq is what Joe needs. There are
several challenges with showing such a recommendation. First, the
recommended snippet is not a table, it is a user-defined function.
Second, the desired tables, views, or UDFs are not necessarily pop-
ular by themselves. They are just frequently used in the context of
the query that the user wrote so far. Finally, all recommendations
must be done at interactive speed for the user to remain focused.

Additionally, upon seeing a recommendation, a user can be con-
fused as to how to use the recommended snippet. To address this
challenge, SnipSuggest can show, upon request, either documenta-
tion related to the suggested snippet, or real queries that use it.

After this first step, Joe’s query thus looks as follows:

SELECT *
FROM PhotoPrimary P,

fGetNearbyObjEq(145.622,0.0346249,2) n
WHERE

Joe would now like to restrict the objects to include only those with
a certain redness value. Encouraged by his early success with Snip-
Suggest, instead of browsing through documentation again, he di-
rectly asks SnipSuggest for recommendations for his WHERE clause.
First is the missing foreign-key join p.objId = n.objId. Once
added, SnipSuggest’s next recommendations become: p.dec<#,
p.ra>#, p.dec>#, p.ra<#, and p.r≤#. These predicates are the most
popular predicates appearing in similar past queries. After a quick
glance at p.r’s documentation, Joe picks the last option, and adds
the following predicate to his query: p.r < 18 AND p.r > 15. This
example demonstrates the need for the query log. With the excep-
tion of foreign-key joins, it is not possible to determine useful pred-
icates for the WHERE clause using the database schema alone. Past
queries enable SnipSuggest to select the relevant predicates among
the large space of all possible predicates.

Now, his query looks as follows:
SELECT *
FROM PhotoPrimary P,

fGetNearbyObjEq(145.622,0.0346249,2) n
WHERE p.objID = n.objID AND p.r < 18 AND p.r > 15

In a similar fashion, SnipSuggest can help Joe to add a second
predicate (i.e., keep only objects that are stars: p.type = 6), and to
write the SELECT and GROUP BY clauses.

In summary, the challenges for SnipSuggest are to (1) recom-
mend relevant features without knowledge of the user’s intended
query, (2) leverage the current query context to improve the recom-
mendation quality, and (3) produce recommendations efficiently.

3. SnipSuggest
SnipSuggest is a middleware-layer on top of a standard rela-

tional DBMS as shown in Figure 1. While users submit queries
against the database, SnipSuggest’s Query Logger component logs
these queries in a Query Repository. Upon request, SnipSug-
gest’s Snippet Recommender uses this query repository to pro-
duce SQL-autocomplete recommendations. Finally, SnipSuggest’s
Query Eliminator periodically prunes the query log to improve rec-
ommendation performance by shrinking the Query Repository. We
now present these three components and SnipSuggest’s algorithms.
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Figure 1: SnipSuggest System Architecture

3.1 Query Logger and Repository
When the Query Logger logs queries, it extracts various features

from these queries. Informally, a feature is a specific fragment of
SQL such as a table name in the FROM clause (or view name or
table-valued function name), or a predicate in the WHERE clause.

The Query Repository comprises three relations: Queries,
Features, and QueryFeatures. Queries contains metadata about
the query (e.g., id, timestamp, query text) and is populated using the
existing infrastructure for query logging offered by most DBMSs.
The Features table lists each feature (i.e., SQL fragment) and the
clause from which it was extracted. The QueryFeatures table lists
which features appear in which queries. Appendix B outlines these
tables’ schemas, and the features that are currently supported.

3.2 Snippet Recommendation
While a user composes a query, she can, at any time, select a

clause, and ask SnipSuggest for recommendations in this clause.
At this point, SnipSuggest’s goal is to recommend k features that
are most likely to appear in that clause in the user’s intended query.

To produce its recommendations, SnipSuggest views the space
of queries as a directed acyclic graph (DAG) 1 such as that shown in
Figure 2 (which we return to later). For this, it models each query as
a set of features and every possible set of features becomes a vertex
in the DAG. When a user asks for a recommendation, SnipSuggest,
similarly, transforms the user’s partially written query into a set of
features, which maps onto a node in the DAG. Each edge in the
DAG represents the addition of a feature (i.e., it links together sets
of features that differ by only one element). The recommendation
problem translates to that of ranking the outgoing edges for the
vertex that corresponds to the user’s partially written query, since
this corresponds to ranking the addition of different features.

The query that the user intends to write is somewhere below the
current vertex in the DAG, but SnipSuggest does not know which
query it is. It approximates the intended query with the set of all
queries in the Query Repository that are descendants of the current
vertex in the DAG. We refer to such queries as the potential goals
for the partial query. For now, we assume that the set is not empty
(and discuss the alternative at the end of Section 3.2.4). Given this
set of potential goals, there are several ways to rank the features
that could possibly be added to the user query. We investigate two
of them in this paper. The first approach is simply to recommend
the most popular features among all those queries. The problem
with this approach is that it can easily lead to k recommendations
all leading to a single, extremely popular query. An alternate ap-
proach is thus to recommend k features that cover a maximal num-
ber of queries in the potential goals set.

We now describe the problem and our approach more formally.

3.2.1 Definitions
We begin with the definition of features.
DEFINITION 1. A feature f is a function that takes a query as

input, and returns true or false depending on whether a certain
property holds on that query.
1Note that the DAG is purely a conceptual model underlying Snip-
Suggest. The user never interacts with it directly.

Some examples are f FROMPhotoPrimary, representing if the
PhotoPrimary table appears in the query’s FROM clause,
f WHEREPhotoPrimary.objID=SpecObj.objID, representing whether the pred-
icate PhotoPrimary.objID = SpecObj.objID appears in the WHERE

clause, or fdistinct representing whether the distinct keyword ap-
pears anywhere in the query. A feature can have a clause associated
with it, denoted clause(f). For example, clause(f FROMPhotoPrimary) =
FROM. Through this paper, we use the notation fc

s to denote the
feature that string s appears in clause c.

DEFINITION 2. The feature set of a query q, is defined as:

features(q) = {f |f(q) = true}

When SnipSuggest ‘recommends a snippet’, it is recommending
that the user modify the query so that the snippet evaluates to true
for the query. For example, when it recommends f FROMPhotoPrimary, it is
recommending that the user add PhotoPrimary to the FROM clause.

DEFINITION 3. The dependencies of a feature f ,
dependencies(f), is the set of features that must be in the
query so that no syntactic error is raised when one adds f .

e.g., dependencies(fWHERE
PhotoPrimary.objID=SpecObj.objID)={fFROM

PhotoPrimary, f
FROM
SpecObj}

SnipSuggest only suggests a feature f for a partial query q if
dependencies(f) ⊆ features(q). In the workload DAG, feature
sets have parent-child relationships defined as follows:

DEFINITION 4. A feature set F2 is a successor of a feature set
F1, if ∃ f where F2=F1∪{f} and dependencies(f)⊆F1.

A successor of a feature set F1 is thus a feature set F2 that can
be reached by adding a single, valid feature.

Additionally, recommendations are based on feature popularity
that is captured by either marginal or conditional probabilities.

DEFINITION 5. Within a workloadW , the marginal probabil-
ity of a set of features F is defined as

P (F ) =
|{q ∈W |F ⊆ features(q)}|

|W |
i.e. the fraction of queries which are supersets of F . As shorthand,
we use P (Q) for P (features(Q)), and P (f) for P ({f}).

DEFINITION 6. The conditional probability of a feature f
given a feature set F is defined as

P (f |F ) =
P ({f} ∪ F )

P (F )

We are now ready to define the workload DAG. Let F be the set
of all features (including those that do not appear in workload).

DEFINITION 7. The workload DAG T = (V,E,w, χ) for a
query workload W is constructed as follows:

1. Add to V , a vertex for every syntactically-valid subset of F .
We refer to each vertex by the subset that it represents.

2. Add an edge (F1, F2) to E, if F2 is a succes-
sor of F1. Denote the additional feature of F2 by
addlFeature((F1,F2)) = f, where F2 = F1 ∪ {f}.

3. w : E → [0, 1] is the weight of each edge. The weights
are set as: w((X,Y )) = P (addlFeature((X,Y ))|X). If
P (X) = 0, then set to unknown.

4. χ : V → {blue, white} is the color of each vertex. The
colors are set as: χ(q) = blue if q ∈W , otherwise white.
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Figure 2: Example of a workload DAG.

Figure 2 shows an example workload DAG for 30 queries. The
queries correspond to the blue nodes, and are summarized at the
bottom. Ten are of the form SELECT * FROM PhotoPrimary, eight
are SELECT * FROM PhotoPrimary WHERE objID = #, etc. For sim-
plicity, we exclude, from the figure, features in the SELECT clause,
and nodes that are not reachable from the root along edges of
weight > 0, with the exception of node u. We use the acronyms
fGN, PP, SO, and PO to represent f FROMfGetNearbyObjEq, f FROMPhotoPrimary,
f FROMSpecObjAll, and f FROMPhotoObjAll, respectively. The edge ({PP},
{PP, SO}) indicates that if a query contains PhotoPrimary, there
is 33% chance that it also contains SpecObjAll.

Every syntactically-correct partial query appears in the workload
DAG since there is a vertex for every valid subset of F . Consider
a partial query, and its corresponding vertex q. Given q, SnipSug-
gest’s goal is to lead the user towards their intended query q∗ (also a
vertex in the DAG), one snippet at a time. We assume that there is a
path from q to q∗, i.e., that the user can reach q∗ by adding snippets
to their query. Since SnipSuggest suggests one snippet at a time,
the recommendation problem becomes that of ranking the outgo-
ing edges of q. Note that recommending an edge e corresponds to
recommending addlFeature(e).

For example, suppose Anna has written: SELECT * FROM

PhotoPrimary. This puts her at vertex v in Figure 2. Then, she re-
quests snippets to add to the FROM clause. At v, we see that she can
add fGetNearbyObjEq(), SpecObjAll, or PhotoObjAll. Re-
member, Figure 2 is not showing the whole DAG. In fact, the full
workload DAG contains an outgoing edge from v for each of the
342 tables, views, and table-valued functions in the SDSS schema.
The job of SnipSuggest is to recommend the edges that are most
likely to lead Anna towards her intended query.

3.2.2 Naı̈ve Algorithms
We present three techniques that we compare against Snip-

Suggest in Section 4. The most naı̈ve, the Random recom-
mender, ranks the outgoing edges randomly. The second ap-
proach, Foreign-key-based, used only for suggesting snippets
in the WHERE clause, exploits the schema information to rank
the features. It suggests predicates for foreign-key joins before
other predicates. The third approach, the Popularity-based tech-
nique actually leverages the past workload. It considers f =
addlFeature(e) for each outgoing edge from q, and ranks them
by P (f), the marginal probability of f . Even this simple tech-
nique, outperforms the above two algorithms by up to 449%.

The problem with these approaches is that they do not exploit
the rich information available in the workload DAG; the weighted
edges can tell us which features are likely to appear in the intended
query, given the current partial query. SnipSuggest’s algorithms
aim to better recommend snippets by leveraging such information.

3.2.3 Context-Aware Algorithms
In this section, we introduce the two algorithms that SnipSuggest

uses to recommend suggestions based on the current context (i.e.,
the current partial query). First, we need one more notion, and a
precise definition of the problem that each algorithm aims to solve.

DEFINITION 8. Given a workload DAG and a vertex q, define:
potential goals(q) = {v|v is blue and reachable from q}.

The potential goals of q is the set of queries that could poten-
tially be the user’s intended query, if it appears in the workload.
Sometimes, potential goals(q) is the empty set.

We consider two variations of the Snippet Suggestion Problem.
Given a workload DAG G, and a partial query q, recommend a set
of k outgoing edges, e1, . . . , ek, from q that:

1. Max-Accuracy Problem: maximizes
k∑

i=1

P (addlFeature(ei)|q)

2. Max-Query-Coverage Problem: maximizes
P (addlFeature(e1) ∨ . . . ∨ addlFeature(ek)|q)

Max-Accuracy aims to maximize the number of features in the top-
k that are helpful (i.e., appear in the intended query), whereas Max-
Query-Coverage aims to maximize the probability that at least one
feature in the top-k is helpful.

Consider the earlier example. Suppose SnipSuggest recom-
mends the top-2 snippets to add to the FROM clause. If the goal
is Max-Accuracy, then it suggests SO and PO. This corresponds to
the two outgoing edges from q, with the highest conditional prob-
abilities. If the aim is Max-Query-Coverage, then it suggests SO

and fGN. The reasoning is as follows: if Anna’s intention is the
rightmost blue query, then suggesting SO covers this case. If her
intention is not that query, then rather than PO, it is better to suggest
fGN because it increases the number of potential goals covered.

It is infeasible to build the workload DAG as it can have up to
2n vertices, where n = |F |. Thus, SnipSuggest implements two
algorithms, which simulate traversing parts of the DAG, without
ever constructing it: SSAccuracy and SSCoverage.

3.2.4 SSAccuracy
Given a partial query q and a query workload W , the goal of

the SSAccuracy algorithm is to suggest the k features with the
highest conditional probabilities given q. If q’s features have ap-
peared together in past queries, SSAccuracy is able to efficiently
identify the features with the highest conditional probabilities, with
a single SQL query over the QueryFeatures table, as shown in
Figure 3. By setting m to |features(q)|, the first half of the query
finds potential goals(q), i.e. the queries which have all the fea-
tures of q. It then orders all the features which appear in these
SimilarQueries, by their frequencies within this set of queries.
Note that each qf.feature f corresponds to one outgoing edge
from q (i.e. the edge ewhere addlFeature(e) = f ). Additionally,
if we divided count(s.query) by |potential goals(q)|, we would
find P (f |q). Thus, this query returns a list of edges, ordered by
weight (i.e., the conditional probability of the feature given q).

What if the partial query q does not appear in the work-
load? Every partial query q appears in the DAG, but it can
happen that all incoming edges have weight 0, and all outgoing
edges are unknown. This happens when potential goals(q) =
∅. e.g., if Bob has written q = SELECT * FROM SpecObjAll,

fGetNearbyObjEq(143.6,0.021,3), and requests suggestions in the
FROM clause (which is represented by vertex u in Figure 2).

In this case, SnipSuggest traverses up the DAG from q un-
til it reaches the vertices whose marginal probability is not zero
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WITH SimilarQueries (query) AS --finds potential_goals
(SELECT query
FROM QueryFeature
WHERE feature IN features(q)
[AND NOT EXISTS ( --used only by SSCoverage
select * from QueryFeature q
where q.query=query and q.feature in( previous))]

GROUP BY query
HAVING count(feature) = m)
SELECT qf.feature --popular features among SimilarQueries
FROM QueryFeature qf, SimilarQueries s
WHERE qf.query = s.query AND qf.feature NOT IN features(q)
GROUP BY qf.feature
ORDER BY count(s.query) DESC

Figure 3: Finds the most popular features among queries that share
m features with partial query q. NOT EXISTS clause is included for
SSCoverage, but omitted for SSAccuracy.

Algorithm 1 SnipSuggest’s Suggestion Algorithm
Input: query q, number of suggestions k, clause c, technique t
Output: a ranked list of snippet features
1: i← |features(q)|
2: suggestions← []
3: while |suggestions| < k : do
4: if t = SSAcc then
5: S ← execute Figure 3 SQL (m←i, exclude NOT EXISTS clause)
6: else if t = SSCov then
7: S ← execute Figure 3 SQL (m←i, previous← suggestions)
8: end if
9: for all s ∈ S do

10: if s /∈ suggestions and clause(s) = c then
11: suggestions← suggestions, s
12: end if
13: end for
14: i← i− 1
15: end while
16: return suggestions

(i.e., there exists an incoming edge with weight > 0). This cor-
responds to finding the largest subsets of features(q) that ap-
pear in the workload. In the above example, SnipSuggest tra-
verses up to the vertices {SO} and {fGN}. Then, it suggests
the most popular features among the queries under these vertices.
This can be achieved by executing the SQL query shown in Fig-
ure 3. First, SnipSuggest sets m to |features(q)|, thus looking at
potential goals(q). If fewer than k features are returned, then it
sets m to |features(q)| − 1, thus considering queries that share
|features(q)| − 1 features with q. It repeatedly decrements m
until k features are returned. Note that SnipSuggest executes the
query in Figure 3 at most |features(q)| times. In other words,
SnipSuggest will not iterate through every subset of features(q).
Instead, it considers all subsets of size m all at once, and it does
this for m = n, n− 1, n− 2, . . . , 0, where n = |features(q)|.

This process can cause some ambiguity of how to rank features.
For example, if P (f1|{SO, fGN}) = 0.8 and P (f2|{SO}) =
0.9, it is not clear whether f1 or f2 should be ranked first. Heuristi-
cally, SnipSuggest picks f1, because it always ranks recommenda-
tions based on more similar queries first. Algorithm 1 outlines the
full SSAccuracy algorithm (if we pass it t = SSAcc). In Section 4,
we show that SSAccuracy achieves high average precision, and in
Appendix C, we describe two simple optimizations.

3.2.5 SSCoverage
The Max-Query-Coverage problem is to suggest the features

f1, . . . , fk that maximize the probability that at least one sugges-
tion is helpful. The goal is to diversify the suggestions, to avoid
making suggestions that all lead toward the same query. It turns out

that the problem is NP-hard. Instead of an exact solution, we pro-
pose an approximation algorithm, SSCoverage, which is a greedy,
approximation algorithm for Max-Query-Coverage. We prove in
Appendix D that Max-Query-Coverage is NP-hard and that SSCov-
erage is the best possible approximation for it. We show this by
proving that Max-Query-Coverage is equivalent to the well-known
Maximum Coverage problem [12]. Given a set of elements U and
a set of sets S = S1, . . . , Sn, where each Si ∈ U , the Maximum
Coverage problem is to find a subset of S of size k (fixed) such that
a maximal number of elements inU are ‘covered’. Our equivalence
proof is sufficient because it is known that the Maximum Coverage
problem is NP-hard, and that the best possible approximation is the
greedy algorithm [12], achieving an approximation factor of 1− 1

e
.

The SSCoverage algorithm proceeds as follows. To compute
the first recommendation f1, it executes the SQL query in Figure 3,
with the NOT EXISTS clause and previous ← ∅. This is equiv-
alent to SSAccuracy’s first recommendation because the Max-
Accuracy and Max-Query-Coverage formulas are equivalent when
k = 1. For its second suggestion, SSCoverage executes the Fig-
ure 3 query again, but with previous ← {f1}. This effectively
removes all the queries covered by f1 (i.e., potential goals(q ∪
{f1})), and finds the feature with the highest coverage (i.e., condi-
tional probability) in the remaining set. In terms of the workload
DAG, this step discards the whole subgraph rooted at f1, and then
finds the best feature among the remaining DAG. It repeats this pro-
cess k times in order to collect k features. Algorithm 1 describes
SSCoverage in detail (if we pass it t = SSCov).

3.3 Query Elimination
All queries, correct or incorrect, are logged by the Query Logger.

This is problematic for SnipSuggest because a large workload can
deteriorate its response time. The Query Eliminator addresses this
problem; it periodically analyzes the most recent queries and drops
some of them. The goal is to reduce the workload size, and the
recommendation time, while maintaining recommendation quality.

For the Query Eliminator, we introduce the notion of a query ses-
sion. A query session is a sequence of queries written by the same
user as part of a single task. The Query Eliminator eliminates all
queries, except those that appear at the end of a session. Intuitively,
queries that appear near the end of the session are of higher quality,
since the user has been working on them for longer. Since many
users write a handful of queries before reaching their intended one,
this technique eliminates a large fraction of the workload. We show
in Section 4.3 that the Query Eliminator reduces the response time,
while maintaining, and often improving, the average precision.

SnipSuggest extracts query sessions in two phases (as shown in
Figure 4). First, SnipSuggest segments the incoming query log.
It does so by monitoring changes between consecutive queries in
order to detect starts of new revision cycles. A revision cycle is
the iterative process of refining and resubmitting queries until a
desired task is complete. When it detects a new cycle, SnipSuggest
labels, as query segment, the set of all queries since the beginning
of the previous cycle. We call this phase segmentation. Second,
SnipSuggest stitches multiple segments together, if they are part of
a single, larger revision cycle. For example, when a user is stuck
on a difficult task A, they often move to a different task B and
later return to A. In this scenario, A will produce multiple query
segments, because the queries for task B will separate the later
queries of A from the earlier ones. Via stitching, the segments are
concatenated together to create a large session for A.

Both phases require an expert to provide some training data, in
the form of a query log with labeled sessions. SnipSuggest lever-
ages machine learning techniques to learn the appropriate thresh-
olds for the segmentation and stitching. We present a more detailed
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Figure 4: Extracting query sessions from the query log.
description of the two algorithms in Appendix E. We also show
that our technique is able to more accurately segment a query log
into sessions, in comparison to a time-interval-based technique.

4. EVALUATION
We evaluate SnipSuggest over two datasets. The first consists

of queries from the Sloan Digital Sky Survey. The SDSS database
logs all queries submitted through public interfaces including web
pages, query forms, and a web services API. Thus, query authors
vary from bots, to the general public, and real scientists. We down-
loaded 106 million queries from 2002 to 2009. Removing queries
from bots, ill-formed queries, and queries with procedural SQL or
proprietary features, left us with approximately 93 million queries.
For our evaluation, we use a random sample of 10,000 queries, in
which there are 49 features for tables, views and table-valued func-
tions, 1835 columns and aggregates, and 395 predicates.

The second dataset consists of SQL queries written by stu-
dents in an undergraduate database class, which were automati-
cally logged as they worked on nine different problems for one
assignment. All queries are over a local copy of the Internet Movie
Database (IMDB), consisting of five tables and 21 columns. To
evaluate, we use a sample consisting of ten students’ queries, which
results in a total of 1679 queries. For each student, we manually la-
bel each query with the assignment problem number that it was
written for, which gives us ground truth information about query
sessions and thus serves as training data for the Query Eliminator.

We aim to answer four questions: Is SnipSuggest able to ef-
fectively recommend relevant snippets? Does its recommendation
quality improve as the user adds more information to a query? Can
it make suggestions at interactive speeds? Is the Query Elimina-
tor effective at reducing response times, while maintaining recom-
mendation quality? We evaluate the first three questions on both
datasets. The fourth is answered on only the IMDB dataset because
we do not have the ground truth for the SDSS query sessions.
4.1 Evaluation Technique

Neither query log includes “partial queries”; they only include
full SQL queries that were submitted for execution. Therefore, in
order to evaluate SnipSuggest on a given query, we remove some
portion of the query, and the task is to recommend snippets to add
to this new partial query. We denote by fullQuery(q), the full
SQL query from which the partial query q was generated. For this
setting, we define correctness for a partial query q, and feature f .

DEFINITION 9. A suggestion f is correct for partial query q if
and only if f /∈features(q) and f∈features(fullQuery(q)).
To measure the recommendation quality of SnipSuggest, we use a
measure called average precision [3]. It is a widely-used measure
in Information Retrieval for evaluating ranking techniques. Snip-
Suggest returns a ranked list of snippets, Lq , for query q.

DEFINITION 10. Average precision at k for suggestions Lq is

AP@k(q, Lq) =

∑k
i=1(P (q, Lq , i) · rel(q, Lq [i]))

|features(fullQuery(q))− features(q)|

where P (q, Lq, k) is the precision of the top-k recommendations
in Lq and rel(q, Lq[i]) = 1 ifLq[i] is correct, and 0 otherwise.

Precision is defined as P (q, Lq, k) =
∑k

i=1 rel(q,Lq [i])

k

This measure looks at the precision after each correct snippet is
included, and then takes their average. If a correct snippet is not
included in the top-k, it contributes a precision of zero. The ben-
efit of using this approach, instead of recall or precision, is that it
rewards the techniques that put the correct snippets near the top of
the list. For an example, we refer the reader to Appendix G.

4.2 SDSS Dataset
We first evaluate SnipSuggest on the real SDSS dataset.

4.2.1 Quality of Recommendations
We evaluate several aspects of SnipSuggest: its ability to rec-

ommend relations, views and tables-valued functions in the FROM

clause, predicates in the WHERE clause, columns and aggregates in
the SELECT clause, and columns in the GROUP BY clause. We evalu-
ate only the SSAccuracy algorithm here because it is able to achieve
an interactive response time, and it is the algorithm that aims to
solve the Max-Accuracy problem, which corresponds to achieving
high average precision. We compare the SSAccuracy and SSCov-
erage algorithms in Section 4.2.3.

We do a 10-fold cross-validation, with the queries ordered ran-
domly; we use 90% of the queries as the past query workload and
test on the remaining 10%. We repeat the experiment 10 times,
each time selecting a different set of test queries, so that all queries
are part of the test set exactly once. We measure the mean average
precision for each of the ten experiments at top-1 through top-10.

Figures 5(a) - (c) show the results for predicting snippets in the
FROM clause. For this experiment, we consider queries with at least
three tables, views or table-valued functions in the FROM clause. Fig-
ure 5(a) shows how accurately SnipSuggest recommends snippets,
if an empty query is presented. It achieves the same average pre-
cision as the Popularity-based algorithm (and thus, SnipSuggest’s
points are not visible in the graph). This is expected, because with
no information, SnipSuggest recommends the most popular snip-
pets across all queries. As soon as the user adds one table to the
query (out of three), SnipSuggest’s AP@5 jumps from 0.49 to 0.77
(nearly a 60% increase). In contrast, the other two techniques’ aver-
age precisions degrade, because once we add one table to the query,
the number of correct snippets has decreased from 3 snippets per
query, to only 2 snippets per query. The Popularity approach’s av-
erage precision, for example, drops from 0.49 to 0.46. This trend
continues when we add two tables to the FROM clause. SnipSug-
gest’s average precision jumps to 0.90 (an 84% increase from 0
tables), and Popularity drops to 0.42 (a 16% decrease from 0 ta-
bles). In brief, Figures 5(a)-(c) show that SnipSuggest’s average
precision improves greatly as the user makes progress in writing
the SQL query, whereas the other two techniques degrade.

Figures 5(d) - (e) show how accurately SnipSuggest recommends
predicates in the WHERE clause, for queries with at least one predi-
cate (d), and with at least two predicates (e). In our sample, 75%
of the queries have exactly one predicate, and 23% have more. We
see that the Popularity approach performs well (AP@5 = 0.81).
This is because all the techniques recommend only valid snippets,
and so the Popularity approach restricts its recommended predi-
cates to only those which reference tables that are already in the
partial query, and then suggests them in popularity order. Many
predicates are join predicates, but the ForeignKey approach still
lags because many of the join predicates involve table-valued func-
tions, and thus are not across foreign-key connections. SnipSuggest
remains the top approach, achieving an average precision (AP@5)
of 0.94. Once we consider the less common case, when the query
has multiple predicates, Figure 5(e) shows a larger difference be-
tween the techniques. The ForeignKey technique’s performance
degrades drastically because we are now looking at mostly non-
join predicates. The Popularity approach and SnipSuggest’s aver-
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Figure 6: Average times to recommend snippets.

age precisions also drop (because the queries contain rarer predi-
cates), but now there is a significant discrepancy between the two.
In summary, Figures 5(d)-(e) show that both the Popularity and
SnipSuggest approaches recommend predicates with high average
precision. However, if we consider only queries with multiple pred-
icates, SnipSuggest outperforms the Popularity approach by 29%.

Figures 5(f) - (g) show SnipSuggest’s performance for recom-
mending columns in the GROUP BY clause, given the FROM clause (f)
and given both FROM and WHERE clauses (g). We see a similar trend
to recommending snippets in the FROM and WHERE clauses. Snip-
Suggest, once again, outperforms the Popularity approach, with
AP@5 = 0.86 versus 0.55. We also see that SnipSuggest’s AP@5

increases from 0.74 to 0.86 between Figures 5(f) and (g). From
Figures 5(f)-(g), we learn that, for suggesting snippets in the GROUP
BY clause, SnipSuggest’s average precision increases by 16% when
the WHERE clause is provided in addition to the FROM clause, and
that SnipSuggest outperforms, by 56%, the Popularity approach.

For suggesting columns in the SELECT clause (not shown), we
learn that the Popularity and SnipSuggest approaches perform sim-
ilarly because most queries select many columns (the average num-
ber of columns selected is 12.5), and that the benefit of leveraging
the WHERE clause, in addition to the FROM clause, is small.

4.2.2 Efficiency
Past research shows that a response time of up to 100ms is con-

sidered interactive [6]. In the experiments above, SnipSuggest
achieves a mean response time of 14ms, and an interactive response
time for 94.21% of the partial queries. Figure 6 shows the mean re-
sponse time for different numbers of features in the partial query.
The response time can not be determined by the number of features
alone; the popularity of the features plays a large role. If the fea-
tures are popular, there are more relevant queries, and thus more
data to process. Therefore, there is no clear trend in the results. We
see, however, that the response time increases when we reach 9-10
features. This is because there are often no queries in the workload
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Figure 7: SSAccuracy vs. SSCoverage.
which contain all 9-10 features, and thus SnipSuggest needs to run
the SQL in Figure 3 multiple times. We exclude partial queries with
over 10 features, because there are fewer than 25 such queries.

4.2.3 SSAccuracy versus SSCoverage
Now, we compare the SSAccuracy and SSCoverage algorithms.

We use a small dataset of only 2000 queries because the SSCov-
erage algorithm is slow. Since the aim of SSCoverage is different,
we use a different measure to evaluate recommendation quality. We
define the utility of a ranked list of suggestions to be 1 if there is
any correct suggestion in the top-k, and 0 otherwise. We report the
mean utility across the queries. This is equal to the percentage of
queries for which there is a correct suggestion in the top-k.

Figure 7 shows the results for predicting columns in the SELECT
clause, given the FROM clause. The difference in the percentage
between i and i+1 represents the average additional coverage pro-
vided by the i+1th suggestion. We see that this difference is mono-
tonically decreasing in Figure 7, which indicates that SSCoverage
suggests the features with the most additional coverage earlier in
its ranking. Figure 7 shows that the mean utility of SSCoverage is
15.13% higher than SSAccuracy at the top-5.

The trend continues for the FROM and WHERE clauses, though not
to the same extent. For the FROM clause, given an empty query, SS-
Coverage achieves a 2% improvement for top-5. Most queries have
only one or two tables in the FROM clause, so SSAccuracy is guar-
anteed to suggest features from different queries in the top-5, thus
already achieving high coverage. For the WHERE clause, SSCover-
age outperforms SSAccuracy by 3% in the top-3 (75% of queries
contain only one predicate). For queries with multiple predicates,
the difference increases to 4%. Although these differences appear
small, SSAccuracy already achieves 87% utility at top-3 for the
FROM clause, and 96% for the WHERE clause. Given the little room
for improvement, these increases are significant.

4.3 IMDB Dataset
We utilize the IMDB dataset for three tasks. First, we study the
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Task Decrease in Time Increase inAP@3

FROM → WHERE 74.49% 8.12%
∅ → FROM 9.17% 4.67%
1 table in FROM → FROM 79.76% 0.74%
2 tables in FROM → FROM 79.47% -0.71%
FROM → SELECT 88.87% 15.80%
FROM, WHERE → SELECT 79.37% 2.72%
FROM → GROUP BY 77.04% 7.11%
FROM, WHERE → SELECT 60.91% 5.37%

Table 1: The benefits and drawbacks of the Query Eliminator.

Query Eliminator’s effect on the response time and average pre-
cision. Second, we evaluate SnipSuggest over a second dataset.
Third, we measure the Query Eliminator’s ability to correctly de-
tect end-of-session queries. We present the results of the first task
here, and the remaining two are discussed in Appendix F.2.

We summarize the benefits and drawbacks of the Query Elimina-
tor in Table 1. From 1679 queries, the Query Eliminator maintains
only 7%, or a total of 117 queries. The goal here is to decrease
the response time, while maintaining a similar average precision.
Table 1 shows that the technique decreases the response time by
up to 89%. For this dataset, it also increases the average precision
(AP@3) for all tasks but one. Even in the worst case, the average
precision decreases by less than 1%!

5. RELATED WORK
There are various efforts toward making databases easier to use.

Jagadish et al. [16] present six challenges in using databases today.
Nandi et al. [21] present a technique for phrase autocomple-

tion for keyword search over structured databases. Another similar
tool [20] allows users to construct search queries without knowl-
edge of the underlying schema. As the user types in the search
box, the tool starts suggesting elements of the schema, followed
by fragments of text from the database content. This tool supports
standard conjunctive attribute-value queries. Although both papers
are related to SnipSuggest, they focus on keyword and key-value
queries, which make the problems different from suggesting rele-
vant snippets for a structured SQL query.

QueRIE [8] analyzes a user’s query log, finds other users who
have executed queries over similar parts of the database, and rec-
ommends new queries to retrieve relevant data. SnipSuggest differs
in several aspects. It provides assistance based on the user’s partial
query, does not require the user to have written previous queries,
and only recommends small snippets at a time.

Annotating a query with a description can increase its under-
standability, but users can not be expected to annotate every query
they write. Koutrika et al. [17] present methods for automatically
translating SQL into natural language. This work is complementary
to ours, and we hope to extend SnipSuggest with this capability.

Several commercial tools aim to ease the SQL composition pro-
cess, through autocomplete for tables and columns [2], and visual
querying [4, 7, 15, 19]. Similarly, SnipSuggest also supports au-
tocomplete. However, it supports autocomplete for snippets (ver-
sus only table and column names [2]), and provides suggestions
that are context-aware. We view the visual query building work
as complementary to ours. Extending SnipSuggest with these vi-
sual techniques would enrich its usability. To enable such features,
SnipSuggest would need the capability to map a SQL query to a
state of visual query composition.

Many projects mine past query logs. Most focus on keyword
search logs [5, 10, 11, 18], for goals ranging from predicting the
next user action to designing a taxonomy of searches. One paper
mines SQL query logs [9], in order to rank the result tuples of a
query. Though these projects are similar to SnipSuggest since they
leverage query workloads, they do so for a different goal.

6. CONCLUSION
In this paper, we presented SnipSuggest, a context-aware, SQL-

autocomplete system. SnipSuggest is motivated by the growing
population of non-expert database users, who need to perform com-
plex analysis on their large-scale datasets, but have difficulty with
SQL. SnipSuggest aims to ease query composition by suggesting
relevant SQL snippets, based on what the user has typed so far. We
have shown that SnipSuggest is able to make helpful suggestions, at
interactive speeds for two different datasets. We view SnipSuggest
as an important step toward making databases more usable.
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APPENDIX
A. SMALL-SCALE SURVEY

To better understand how scientists use DBMSs today and, in
particular, how they query these databases, we carried out a small-
scale, informal, online survey. Our survey included 37 questions,
mostly multiple-choice ones and took about 20 minutes to com-
plete. We paid respondents $10 for their time. Seven scientists from
three domains responded to our survey (four graduate students, one
postdoc, and two research scientists); these scientists have worked
with either astronomical, biological, or clinical databases.

Of interest to this paper, through this survey, we learned the fol-
lowing facts. All respondents had at least one year experience us-
ing DBMSs, while some had more than three years. Three scien-
tists took a database course, whereas the other four were self-taught
DBMS users. Four participants have been working with the same
dataset for over a year, while three of them acquired new datasets
in the past six months. The data sets ranged in size from less than
one gigabyte (one user), to somewhere between one gigabyte and
one terabyte (five users), to over a terabyte (one user). The reported
database schemas include 3, 5, 7, 10, 30, and 100 tables. One re-
spondent did not report the number of tables in his/her database. All
respondents reported using a relational DBMS (some used other al-
ternatives in addition).

More interestingly, three of the participants reported writing
SQL queries longer than 10 lines, with one user reporting queries
of over 100 lines! All users reported experiencing difficulties in
authoring SQL queries. Two participants even reported often not
knowing which tables held their desired data.

Five respondents reported asking others for assistance in com-
posing SQL queries. All but one reported looking at other users’
queries. Five participants reported looking “often” or even “al-
ways” at others’ queries, whereas all participants either “often” or
“always” look for sample queries online. Three participants men-
tioned sharing their queries on a weekly to monthly basis. Finally,
all but one user save their own queries/scripts/programs primarily
in text files and reuse them again to write new queries or analyze
different data.

The findings of this informal survey thus indicate that many sci-
entists could potentially benefit from tools to share and reuse past
queries.

B. QUERY REPOSITORY DETAILS

B.1 Repository Schema
The Query Repository component stores the details of all the

queries logged by the Query Logger, along with the features which
appear in each query. The Query Repository contains the following
three relations:

1. Queries(id, timestamp, user, database name, query

text, running time, output size)

2. Features (id, feature description, clause)

3. QueryFeatures(query, feature)

The first relation, named Queries, stores the details of each logged
query. The second relation, Features, consists of all the fea-
tures that have been extracted from these queries. Note that fea-
ture descriptions are parameterized if there is some constant in-
volved (e.g., the predicate PhotoPrimary.objID = 55 is trans-
lated into the parameterized predicate PhotoPrimary.objID =

#). Finally, the third table, QueryFeatures, maintains the infor-
mation about which feature appears in which query.

In addition to these two tables, for the optimization of SSAc-
curacy, SnipSuggest’s Query Logger also maintains the following
tables:

1. MarginalProbs(featureID, probability)

2. CondProbs(feature1, feature2, probability)

The first table stores the marginal probability for each feature
across the whole workload. The second contains the conditional
probability of feature1 given feature2, for every pair of fea-
tures that have ever appeared together. We discuss how these tables
are used below, in Appendix C.

B.2 Features Supported
The current implementation of SnipSuggest supports the follow-

ing classes of features:

1. F from
T for every table, view and table-valued function T

in the database, representing whether T appears in the FROM

clause of the query.
2. F select

C , Fwhere
C , and F groupby

C , for every column C in the
database, representing whether this column appears in the
SELECT, WHERE, or GROUP BY clause of the query, respectively.

3. F select
aggr(C1,...Cn), for every aggregate function and list of

columns, representing whether this aggregate and list of
columns appear in the SELECT clause.

4. Fwhere
C1 op C2

for every pair of columns C1, C2, and every oper-
ator which appears in the database, representing whether this
predicate appears in the WHERE clause of the query.

5. Fwhere
C op for every column C in the database, and for every

operator, representing whether there is a predicate of the form
C op constant in the WHERE clause of the query.

6. F subquery
ALL , F subquery

ANY , F subquery
SOME , F subquery

IN , and
F subquery
EXISTS representing whether there is a subquery in the

WHERE clause, of the form ALL(subquery), ANY(subquery),
SOME(subquery), IN(subquery), EXISTS(subquery), respec-
tively.

C. SSACCURACY OPTIMIZATIONS
SnipSuggest materializes two relations to improve the SSAccu-

racy algorithm’s recommendation time.
The first is MarginalProbs, which contains P (f) for every

feature f . When the user’s partial query q is the empty query
(i.e., features(q) = ∅), or if q consists of only features that have
never before appeared in the workload, SnipSuggest can execute
an order by query over MarginalProbs, instead of the more
complex SQL in Figure 3. (When q contains only unseen features,
SnipSuggest traverses up to the root vertex since it is the largest
subset of q that appears in the workload. So, SnipSuggest makes
its suggestions for ∅, and thus exploits MarginalProbs.)

The second isCondProbs, which contains the conditional prob-
ability P (f1|f2) for every pair of features f1, f2. It is indexed on
the f2 column. It is leveraged when the user’s partial query q con-
tains just one feature f , or it contains multiple features, but only
one feature f has appeared in the workload. In these cases, Snip-
Suggest can execute a simple query over CondProbs with filter
f2 = f , and order by the conditional probability, instead of execut-
ing the slower SQL in Figure 3.

D. Max-Query-Coverage PROBLEM
In this section, we show that the Max-Query-Coverage problem

is NP-hard, and that the SSCoverage algorithm is the best possible
approximation algorithm for it (up to lower order terms).
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Remember, the Max-Query-Coverage problem, as presented in
Section 3.2.3, is defined as follows. Given a workload DAG G and
a partial query q, recommend a set of k outgoing edges, e1, . . . , ek,
from q that maximizes

P (addlFeature(e1) ∨ . . . ∨ addlFeature(ek)|q)

For shorthand, denote by fi the feature addlFeature(ei). To make
our next step easier, we want to show that the features f1, . . . , fk
that maximize the formula above are the ones that maximize the
number of queries covered, under the q vertex.

Consider P (f1 ∨ . . . ∨ fk|q). If we select some random query
whose feature set is a superset of features(q) (i.e. any query in
potential goals(q)), then this is the probability that it also has
feature f1, f2, . . ., or fk. So, P (f1 ∨ . . .∨ fk|q) can be written as:

∑
u∈potential goals(q)

Pr(f1 ∨ . . . ∨ fk|q ∧ u) · Pr(u|q)

Pr(f1 ∨ . . .∨ fk|q ∧ u) is 1 if u contains f1, f2, . . ., or fk, and
0 otherwise (because q does not contain any of f1, . . . , fk either).

Hence this is equal to: ∑
u∈potential goals(q):(f1∈u∨...∨fk∈u)

Pr(u|q)

Therefore, we can now rewrite the Max-Query-Coverage prob-
lem to maximize:∑

v∈ U

P (v|q), where U =

k⋃
i=1

potential goals(q ∪ {fi})

Next, we define the Maximum Coverage Problem. The problem
is known to be NP-hard [12].

DEFINITION 11. Given a set of elements U , a number k and a
set of sets S = S1, . . . Sn, where each Si ⊆ U , the maximum
coverage problem is to find a subset of sets S′ ⊆ S such that
|S′| ≤ k and the following is maximized:

|
⋃

Si∈S′

Si|

i.e., the number of elements covered is maximized.

In his paper [12], Feige proves the following theorem.

THEOREM D.1. The maximum coverage problem is NP-hard to
approximate within a factor of 1− 1

e
+ ε, for any ε > 0.

Moreover, the greedy algorithm achieves an approximation factor
of 1 − 1

e
. The analysis of the greedy algorithm was well-known,

and is reproved in Feige’s paper [12].
We prove our results by showing Max-Query-Coverage’s equiv-

alence to the Maximum Coverage Problem.

THEOREM D.2. The Max-Query-Coverage is equivalent to the
Maximum Coverage problem.

In particular, there are polynomial time reductions between the
two problems, which preserve the values of all solutions. With this
theorem, and the known results described above, we can conclude
that Max-Query-Coverage is NP-hard to approximate within any
factor substantively better than 1− 1

e
, and that SnipSuggest’s greedy

algorithm, SSCoverage, achieves this bound.

PROOF OF THEOREM D.2. We show two mappings. First, we
show that an instance of the Maximum Coverage Problem can be

mapped to an instance of the Max-Query-Coverage problem, and
that there is a bijection between the set of solutions to each. Second,
we show the reverse.

Consider an instance I1 of the Maximum Coverage Problem,
where U is the set of elements and S = S1, . . . , Sm is the col-
lection of sets. We translate I1 into an instance I2 of the Max-
Query-Coverage problem as follows. U is the set of queries, S is
the set of features. Denote by fT the feature that corresponds to the
set T . T represents the set of queries which contain the feature fT .
For a given element/query q ∈ U , features(q) = {fT : q ∈ T}.
The input partial query is the empty query, and so the problem is to
suggest the top-k features given the empty query. Next, we show
that there is a bijection between the solutions for I1 and I2.

Given any solution S′ = {S′1, . . . , S′k} to I1 (not necessar-
ily an optimal solution), the equivalent solution in I2 is to sug-
gest the features F ′ = {fS′

1
, . . . , fS′

k
}. Of course, conversely,

given a solution F ′ = {f ′1, . . . , f ′k} to I2, the equivalent in I1 is
S′ = {S′i : f ′Si

∈ F ′}. Clearly, the number of elements of U
covered by S′ is the same as the number of queries covered by F ′

(which is the mass covered by F ′ multiplied by |W |).
Now, consider an instance I1 of the Max-Query-Coverage prob-

lem, where the query workload is W , the set of all features is
F , and the partial query is q. We translate this into the Maxi-
mum Coverage Problem as follows. First, scan through W to find
potential goals(q) (i.e., all the blue vertices under q). For each
potential goal q′, if it is a leaf node, add P (q′) × |W | elements to
U . If it is not a leaf, add (P (q′)−

∑
f∈F P (q′ ∪ {f}))× |W | el-

ements. This represents the number of queries in the workload that
have exactly this set of features. Note that the number of elements
added to U is at most the number of queries in W . Add to S, one
set per feature f ∈ F , consisting of all queries that contain f . Let’s
denote this by queries(f).

Given any solution F ′ = {f1, . . . , fk} to I1 (not necessar-
ily optimal), the equivalent solution in I2 is to select the sets
S′ = {queries(f1), . . . , queries(fk)}. Conversely, a solution
S′ = {S′1, . . . , S′k} to I2 can be translated to the following solu-
tion for I1: F ′ = {f ′i : queries(f ′i) = S′i}. If we consider the
number of queries covered by F ′, this is equal to the number of
elements of U covered by S′.

We have successfully shown that we can translate an instance
of the Maximum Coverage Problem into an instance of the Max-
Query-Coverage problem, and the reverse, in time polynomial in
|W |. We’ve also shown that given an instance of one problem, and
its corresponding instance in the other, there is a bijection between
the solutions for the two instances.

E. QUERY ELIMINATION: DETAILS
In this section, we describe the segmentation and stitching al-

gorithms in more detail. The two algorithms extract query ses-
sions from the query log, then the Query Eliminator eliminates all
queries except those that appear at the end of a session. Using this
technique, the Eliminator aims to dispose of a large fraction of the
queries, while maintaining the high-quality ones.

The goal of the segmentation phase is to take a pair of consecu-
tive queries P ,Q, and decide whether the two queries belong to the
same query session or not. The algorithm proceeds in three steps.
First, it constructs the Abstract Syntax Tree (AST) for each query
and transforms it into canonical form, which includes, for exam-
ple, removing any constants, and alphabetically ordering the list of
tables in the FROM clause (this process is also used by the Query
Logger). Second, it extracts a set of segmentation features from P
and Q as well as extra information such as timestamps of queries
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and the query output of the preceding query P . Unlike SnipSuggest
features, the segmentation features capture the difference between
two queries. Some examples include the time interval between the
queries, the cosine similarities between their different clauses, and
the relationship between ASTs. In the third step, using these seg-
mentation features, our technique uses a perceptron-based classifi-
cation algorithm to decide whether the queries belong in the same
segment. For this final step, as training data, SnipSuggest requires
some labeled data in the form of queries labeled with the identifier
of the task that the queries are intended for.

The most significant segmentation feature is AST inclusion type.
This feature represents whether the relationship between the two
queries’ ASTs is the Same, Add, Delete, Merge, Extract or None.
This feature captures the following intuition. Within a query seg-
ment, the user incrementally adds or removes terms from the query
after seeing the query result of the previous query. Such incremen-
tal edits are captured by the values Same, Add, or Delete. Oc-
casionally, the user may introduce a subquery written in the past
or copied from some sample query to compose a more complex
query. The user may also pull-out a subquery to debug or analyze
unexpected results. In both these cases, the user may start to work
towards a different purpose when the change involves subqueries;
this signals a new query segment. Merge and Extract captures
such changes involving subqueries. Table 2 summarizes these five
AST inclusion types.

Although the AST inclusion type may be a strong indicator of
continuing or breaking a query segment, it does not capture the
amount of change. Thus, the other segmentation features that we
described above, which capture the degree of change, are necessary
for better accuracy.

Label Description Expect a new segment?

Same Q is canonically the same asQ No
Add Q is based on P and has more terms No
Delete Q is based on P and has fewer terms No
Merge P is a subquery ofQ Yes
Extract Q is a subquery of P Yes
None All other types of changes Unknown

Table 2: Summary of AST inclusion type. Each feature value has
an expected decision on segmentation discussed in the text. P and Q

denote preceding query and following query, respectively.

Query segments are useful because of the coherency among the
queries in the same segment. However, in order to extract more
complete query sessions, SnipSuggest often needs to stitch together
multiple segments.

The stitching phase tests whether two segments create a single
revision cycle, smooth transitions via small changes, when they are
concatenated in time order. To perform stitching, SnipSuggest iter-
ates over each segment s in the input and all its time-wise successor
segments. It runs the core of the segmentation algorithm between
the last query of s and the first query of a time-wise successor seg-
ment t, with a modification. Since SnipSuggest is now considering
segments that are separated by multiple segments, the time interval
between the queries becomes less meaningful. Thus, the algorithm
treats the time interval as a missing attribute. Then, if the segmenta-
tion algorithm outputs that the last query of s and the first query of
t belong in the same segment and this does not contradict to value
of AST inclusion type, SnipSuggest concatenates the two segments.

In Appendix F.2, we show that the Query Eliminator is able to
accurately perform segmentation and stitching for a workload of
queries written over the movie database.
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Figure 8: Average precision-recall for the Query Eliminator algorithm
versus the time interval based algorithm.

F. EVALUATION OVER IMDB DATASET

F.1 Recommendation Quality
First, for SnipSuggest’s recommendation quality over this

dataset, we saw similar patterns to the SDSS dataset. Namely, the
SnipSuggest approach outperforms the other approaches (e.g., by
5 to 20% in average precision in the top-3, in comparison to the
Popularity approach), and the recommendation quality improves as
the user gives more information (e.g., if there are no tables in the
FROM clause, SnipSuggest is able to recommend a correct table with
0.62 average precision in the top 2, which increases to 0.91 after a
table is added). Although, the general trends still hold, the benefit
of the SnipSuggest approach is less significant in the IMDB dataset
simply due to the magnitude difference in the schema size (and thus
the number of possible features). This schema consists of only five
tables and 21 columns.

F.2 Query Eliminator Accuracy
We study the session extraction accuracy for only the IMDB

dataset. We were able to manually label the session information
for this dataset because we have the ground truth in the form of
problem numbers from the course assignment. In other words, we
can determine which problems (from the assignment) that queries
are written for.

F.2.0.1 Segmentation.
To quantify the segmentation algorithm’s performance, we mea-

sure the precision and recall with which it identifies segment
boundaries. We compare its performance against using only the
time interval between queries. The time interval technique is a
common method for extracting sessions from web search logs [5,
10, 11, 18]. The procedure is to set a threshold for the time inter-
val, say 30 minutes, and consider a query to be part of a new session
if the time interval between it and the last query is more than the
threshold.

Figure 8 shows the average precision-recall for the two different
segmentation algorithms. We show the average results across 10-
fold cross validation. Overall, for SnipSuggest’s approach, the area
under the curve is 0.930. It is only 0.580 for the time-interval based
technique. Our approach significantly outperforms the time-based
segmentation technique.

F.2.0.2 Stitching.
As mentioned above, the most significant segmentation feature

for session extraction, is what we call the AST inclusion type.
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Threshold µ µ+ σ µ+ 2σ ∞
Precision 0.707 0.656 0.628 0.578

Recall 0.801 0.893 0.934 1.000
F-measure 0.751 0.756 0.751 0.733
# of Edges 714 896 993 1165

Table 3: Precision-recall of stitched edges for different thresholds.

This feature represents whether the relationship between the two
queries’ ASTs is the Same, Add, Delete, Merge, Extract or None
(as defined in Table 2). We said that two queries are in the same
session if this feature has a value of Same, Add, or Delete, with
some threshold on the amount of change. We examine how this
threshold can affect the performance of the stitching algorithm. Ta-
ble 3 shows the results. µ is the mean difference amount in the
training data, among those queries that lie on a session boundary,
while σ is the standard deviation. We see that, as expected, smaller
thresholds yield better precision while larger thresholds yield bet-
ter recall. The F-measure, however, remains approximately con-
stant. The mean threshold already recalls 80% of session bound-
aries, while achieving a precision of 70.7%.

G. EXAMPLE OF AVERAGE PRECISION
In this section, we present a toy example of the Average Pre-

cision measure in action. The aim is to give the reader a better
understanding of Average Precision.

Suppose that Carol has an empty query, and has requested the
top-5 suggestions for the FROM clause. Her intended query in-
cludes two snippet features in the FROM clause: PhotoPrimary

and fGetNearbyObjEq(). Suppose that SnipSuggest has sug-

gested the following snippets, in this order: PhotoPrimary,
SpecObjAll, fGetNearbyObjEq(), PhotoObjAll, Columns.

Consider the following table, which will help us calculate the
Average Precision of these suggestions.

Rank Suggestion Correct? Precision
1 PhotoPrimary true 1.0
2 SpecObjAll false 0.5
3 fGetNearbyObjEq() true 0.67
4 PhotoObjAll false 0.5
5 Columns false 0.4

The Precision column at rank i indicates the precision of the
first i snippet recommendations. With this table, we collect the
ranks where the suggestion is correct. In this example, these are
ranks 1 and 3. Then, we take the sum of the precisions at these
ranks and divide by two (i.e., the number of ground truth features).
For this example, the Average Precision is (1.0+0.67)

2
= 0.83.

Note how this measure rewards correct suggestions that appear
early in the ranking more than those that appear later. For exam-
ple, if fGetNearbyObjEq() had appeared second in the ranking,
then the average precision would be (1.0+1.0)

2
= 1.0. Whereas if

fGetNearbyObjEq() appeared fourth in the ranking, the Average
Precision would be (1.0+0.5)

2
= 0.75.

Now, suppose Carol’s intended query also includes the RunQA ta-
ble, but that SnipSuggest still suggests the same recommendations
as listed above. In this case, the Average Precision drops down
to (1.0+0.67)

3
= 0.56. We divide by 3 (instead of 2) because the

number of ground truth features is now 3.
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