
Fast Incremental and Personalized PageRank

Bahman Bahmani
∗

Stanford University
bahman@stanford.edu

Abdur Chowdhury
Twitter Inc.

abdur@twitter.com

Ashish Goel
†

Stanford University
ashishg@stanford.edu

ABSTRACT
In this paper, we analyze the efficiency of Monte Carlo meth-
ods for incremental computation of PageRank, personalized
PageRank, and similar random walk based methods (with
focus on SALSA), on large-scale dynamically evolving social
networks. We assume that the graph of friendships is stored
in distributed shared memory, as is the case for large social
networks such as Twitter.

For global PageRank, we assume that the social network
has n nodes, and m adversarially chosen edges arrive in a
random order. We show that with a reset probability of
�, the expected total work needed to maintain an accurate
estimate (using the Monte Carlo method) of the PageRank
of every node at all times is O(n lnm

�2
). This is significantly

better than all known bounds for incremental PageRank.
For instance, if we naively recompute the PageRanks as
each edge arrives, the simple power iteration method needs

Ω(m2

ln(1/(1−�))) total time and the Monte Carlo method needs

O(mn/�) total time; both are prohibitively expensive. We
also show that we can handle deletions equally efficiently.

We then study the computation of the top k personal-
ized PageRanks starting from a seed node, assuming that
personalized PageRanks follow a power-law with exponent
α < 1. We show that if we store R > q lnn random walks
starting from every node for large enough constant q (us-
ing the approach outlined for global PageRank), then the
expected number of calls made to the distributed social net-
work database is O(k/(R(1−α)/α)). We also present experi-
mental results from the social networking site, Twitter, ver-

∗Work done while interning at Twitter
†Work done while at Twitter. This research was supported
in part by NSF award IIS-0904325, and the Army Re-
search Laboratory, and was accomplished under Cooper-
ative Agreement Number W911NF-09-2-0053. The views
and conclusions contained in this document are those of the
authors and should not be interpreted as representing the
official policies, either expressed or implied, of the Army
Research Laboratory or the U.S. Government.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 37th International Conference on Very Large Data Bases,
August 29th - September 3rd 2011, Seattle, Washington.
Proceedings of the VLDB Endowment, Vol. 4, No. 3
Copyright 2010 VLDB Endowment 2150-8097/10/12... $ 10.00.

ifying our assumptions and analyses. The overall result is
that this algorithm is fast enough for real-time queries over
a dynamic social network.

1. INTRODUCTION
Over the last decade, PageRank [30] has emerged as a very

effective measure of reputation for both web graphs and so-
cial networks (where it was historically known as eigenvector
centrality [12]). Also, collaborative filtering has proved to
be a very effective method for personalized recommendation
systems [9,28]. In this paper, we will focus on fast incremen-
tal computation of (approximate) PageRank, personalized
PageRank [14,30], and similar random walk based methods,
particularly SALSA [22] and personalized SALSA [29], over
dynamic social networks, and its applications to reputation
and recommendation systems over these networks. Incre-
mental computation is useful when edges in a graph arrive
over time, and it is desirable to update the PageRank values
right away rather than wait for a batched computation.

Surprisingly, despite the fact that computing PageRank
is a well studied problem [5], some simple assumptions on
the structure of the network and the data layout lead to
dramatic improvements in running time, using the simple
Monte Carlo estimation technique.

In large scale web applications, the underlying graph is
typically stored on disk, and either edges are streamed [10]
or a map-reduce computation is performed. The Monte
Carlo method requires random access to the graph, and has
not found widespread practical use in these applications.

However, for social networking applications, it is crucial
to support random access to the underlying network, since
messages flow on edges in a network in real-time, and ran-
dom access to the social graph is necessary for the core func-
tionalities of the network. Hence, the graph is usually stored
in distributed shared memory, which we denote as “Social
Store”, providing a data access model very similar to Scal-
able Hyperlink Store [27]. We use this feature strongly in
obtaining our results.

In this introduction, we will first provide some background
on PageRank and SALSA and typical approaches to com-
puting them, and then outline our results along with some
basic efficiency comparisons. The literature related to the
problem studied in this paper is really vast, and in the body
of the paper, due to space constraints, we only compare
our results with some of the main previous results in the
literature. A detailed review of the related literature and
comparisons with our method is given in Appendix A.

173

1.1 Background and Related Work
In this paper, we focus on (incremental) computation of

PageRank [30], personalized PageRank [14,30], SALSA [22],
and personalized SALSA [29]. So, in this subsection, we pro-
vide a quick review of these methods. Here and throughout
the paper, we denote the number of nodes and edges in the
network by, respectively, n and m.

PageRank is the stationary distribution of a random walk
which, at each step, with a certain probability � jumps to
a random node, and with probability 1 − � follows a ran-
domly chosen outgoing edge from the current node. Per-
sonalized PageRank is the same as PageRank, except that
all the jumps are made to the seed node for which we are
personalizing the PageRanks.

SALSA, just like HITS [17], associates two scores with
each node v, called hub score, hv, and authority score av.
These scores represent how good a hub or authority each
node is. The scores are related as follows:

hv =
�

(v,x)∈E

ax

indeg(x)
, ax =

�

(v,x)∈E

hv

outdeg(v)

where E is the set of edges of the graph, and indeg(x) and
outdeg(v) are, respectively, the in-degrees and out-degrees
of the nodes. Notice that SALSA corresponds to a forward-
backward random walk, where the walk alternates between
forward and backward steps. The personalized version of
SALSA, that we consider, allows random jumps (to the seed
node) at forward steps. Thus, personalizing over node u
corresponds to the following equations:

hv = �δu,v +(1− �)
�

(v,x)∈E

ax

indeg(x)
, ax =

�

(v,x)∈E

hv

outdeg(v)

Notice that in our setting, hub scores and authority scores
can be interpreted, respectively, as similarity measures and
relevance measures. Hence, we obtain a simple system for
recommending additional friends to a user: just recommend
those with the highest relevance. We will now outline two
broad approaches to computing PageRank and SALSA; a
more detailed overview is presented in Appendix A. The
first approach is to use linear algebraic techniques, the sim-
plest of which is the power iteration method. In this method,
the PageRank of node v is initialized to π0(v) = 1/n and
the following update is repeatedly performed:

∀v,πi+1(v) = �/n+
�

{w| (w,v)∈E}

πi(w)(1−�)/outdeg(w). (1)

This gives exponential reduction in error per iteration, re-
sulting in a running time of O(m) per iteration and O(m/
ln(1/(1− �)) for getting the total error down to a constant.
The other broad approach is Monte Carlo, where we directly
do random walks to estimate the PageRank of each node. In
the simplest instantiation, we do R “short random walks”
of geometric lengths (with mean 1/�) starting at each node.
Each short random walk simulates one continuous session by
a random surfer who is doing the PageRank random walk.
While the error does not decay as fast as in the power it-
eration method, R = ln(n/�) or even R = 1 give provably
good results, and have running time of O(nR/�), which, for
non-sparse graphs, is much better than that of power itera-

tion. SALSA can be computed using obvious modifications
to either approach.

1.2 Our Results
We study two problems. First, efficient incremental com-

putation of PageRank (and its variants) over dynamically
evolving networks. Second, efficiently computing personal-
ized PageRank (and its variants) under the power-law net-
work model. Both of these problems are considered to be
among the most important problems regarding PageRank
[20]. Below, we overview our results in more detail.

We present formal analyses of incremental computation
of random walk based reputations and collaborative filters
in the context of evolving social networks. In particular, we
focus on very efficiently approximating both global and per-
sonalized variants of PageRank [30] and SALSA [22]. We
perform experiments to validate each of the assumptions
made in our analysis, and also study the empirical perfor-
mance of our algorithms.

For global PageRank, we show that in a network with
n nodes, and m adversarially chosen edges arriving in ran-
dom order, we can maintain very accurate estimates of the
PageRank (and authority score) of every node at all times
with only O(n lnm

�2
) total expected work. This is a dramatic

improvement over the näıve running time Ω(m2

ln(1/(1−�))) (e.g.,
by recomputing the PageRanks upon arrival of each edge,
using the power iteration method) or Ω(mn

�) (e.g., using the
Monte Carlo method from scratch each time an edge ar-
rives). Similarly, we show that in a network with m edges,
upon removal of a random edge, we can update all the
PageRank approximations using only O(n/m�2) expected
work. Our algorithm is a Monte Carlo method [2] that
works by maintaining a small number of short random walk
segments starting at each node in the social graph. The
same approach works for SALSA. For global SALSA, the
authority score of a node is exactly its in-degree as the reset
probability goes to 0, so the primary reason to store these
random walk segments is to aid in computing personalized
SALSA scores. It is important to note that it is only the
efficiency analysis of our algorithms that depends on the
random order assumption; it is also important to note that
the random order assumption is weaker than assuming the
well-known generative models for power-law networks, such
as Preferential Attachment [4].

We then study the problem of finding the k nodes with
highest personalized PageRank values (or personalized au-
thority scores). We show that we can use the same building
blocks used for global PageRank and SALSA, that is, the
stored walk segments at each node, to very efficiently find
very accurate approximations for the top k nodes. We prove
that, assuming that the personalized scores follow a power-
law with exponent 0 < α < 1, if we cache R > q lnn random
walk segments starting at every node (for large enough con-
stant q), then the expected number of calls made to the

distributed social network database is O(k/R
1−α
α). This is

significantly better than n and even k. Notice that with-
out the power-law assumption, in general, one would have
to find the scores of all the nodes and then find the top k
results (hence, one would need at least Ω(n) work).

Remark 1. While the algorithms we consider do not de-
pend on the assumption 0 < α < 1, and it is only in our
analysis that we use this assumption, it should be noted that

174

all of our analyses go through similarly for α > 1. However,
in our experiments, we observed that only 2 percent of the
nodes in our network have α > 1. So, we omit the case
α > 1 in the analyses and experimental results presented in
this paper.

We present the results of the experiments we did to val-
idate our assumptions and analyses. We used the network
data from the social networking site Twitter. The access to
this data was through a database, called FlockDB, stored in
distributed shared memory. Our experiments support our
random order assumption on edge arrivals (or at least the
specific claim that we need for our results to go through).
Also, we observe that not only do the global PageRank
scores and in-degrees follow the same power-laws (as previ-
ously proved under mild assumptions in the literature [24]),
but also the personalized PageRanks follow power-laws with
average exponent roughly equal to the exponent for PageR-
ank and in-degree. Finally, our experiments also support
the proved theoretical bounds on the number of calls to the
social network database.

Random walk based methods have been reported to be
very effective for the link prediction problem on social net-
works [23]. We also did some preliminary experiments to ex-
plore this further. The results are presented in appendix B
and indicate that random walk based algorithms (i.e., per-
sonalized PageRank and personalized SALSA) significantly
outperform HITS as a recommendation system for twitter
users; we present this comparison not as significant original
research but as an interesting data point for readers who are
interested in practical aspects of recommendation systems.

2. INCREMENTAL COMPUTATION OF
PAGERANK

In this section, we explain the details of the Monte Carlo
method for approximating the (global) PageRank values.
Then, we will prove our surprising result on the total amount
of work needed to keep the PageRank estimates updated all
the time. Even though we will focus on PageRank, our
results will extend (with some minor modifications that will
be pointed out) to other random walk based methods, such
as SALSA.

2.1 Approximating PageRank
To approximate PageRank, we do R random walks start-

ing at each node of the network. Each of these random walks
is continued until its first reset (Hence, each one has average
length 1/�). We store all these walk segments in a database,
where each segment is stored at every node that it passes
through. Assume for each node v, Xv is the total number
of times that any of the stored walk segments visit v. Then,
we approximate the PageRank of v, denoted by πv, with:

�πv =
Xv

nR/�

Then, we have the following theorem:

Theorem 1. �πv is sharply concentrated around its expec-
tation, which is πv.

The fact that E[�πv] = πv is already proved in [2]. The
proof of the sharp concentration is straightforward and is
presented in Appendix C. The exact concentration bounds

follow from the proof. But, to summarize, as pointed out
in [2], the obtained approximations are quite good even for
R = 1. Thus, the defined �πv’s are accurate approximations
of the actual PageRank values πv.

2.2 Updating the Approximations
As the underlying network evolves, the PageRank values

of the nodes also change. For a lot of applications, we would
like to have updated approximations of the PageRank values
all the time. Thus, here we analyze the cost of keeping the
approximations updated at all times. To keep the approx-
imations updated, we only need to keep the random walk
segments stored at the network nodes updated. Thus, we
analyze the amount of work in keeping these walks updated.

We first prove the following proposition:

Proposition 2. Assume (ut, vt) is the random edge ar-
riving at time t (1 ≤ t ≤ m). Define Mt to be the number
of random walk segments that need to be updated at time t
(1 ≤ t ≤ m). Then, we have:

E[Mt] ≤
nR
�

E[
πut

outdegut
(t)

]

where the expectation on the right hand side is over the ran-
dom edge arrival at time t (i.e., E[·] = E(ut,vt)[·]), and
outdegu(t) is the outdegree of node u after t edges have ar-
rived.

Proof. The basic intuition in this proposition is that
most random walk segments miss most network edges. More
precisely, a walk segment needs to change only if it passes
through the node ut and the random step at ut picks vt
as the next node in the walk. In expectation, the num-
ber of times each walk segment visits ut is

πut
� . For each

such visit, the probability for the walk to need a reroute is
1

outdegut
(t)

. Hence, by a union bound, the probability that

a walk segment needs an update is at most
πut
�

1

outdegut
(t)

.

Also, there is a total of nR walk segments. Therefore, by
linearity of expectation:

E[Mt] ≤
�

u

nR
�

πu
1

outdegu(t)
Pr[ut = u]

=
nR
�

E[
πut

outdegut
(t)

]

which proves the lemma.

In the above proposition, E[
πut

outdegut
(t)

] depends on the

exact network growth model. The model that we assume
here is the random permutation model, in which m adver-
sarially chosen directed edges arrive in random order. Notice
that this is a weaker assumption on the network evolution
model than most of the popular models, such as the Pref-
erential Attachment model [4]. We also experimentally val-
idate this model, and present the results, confirming that
this is actually a very good assumption, later in this paper.

For this model, we have the following lemma:

Lemma 3. If (ut, vt) is the edge arriving at time t (1 ≤
t ≤ m) in a random permutation over the edge set, then:

E[
πut

outdegut
(t)

] =
1
t

175

Proof. For random arrivals, we have:

Pr[ut = u] =
outdegu(t)

t

Hence,

E[
πut

outdegut
(t)

] =
�

u

πu
1

outdegu(t)
Pr[ut = u]

=
�

u

πu
1

outdegu(t)
outdegu(t)

t

=
�

u

πu

t
=

1
t

�

u

πu =
1
t

From Lemma 3 and Proposition 2, we get the following
theorem:

Theorem 4. The expected amount of update work as the
tth network edge arrives is at most nR/t�2, and the expected
total amount of work needed to keep the approximations up-
dated over m edge arrivals is at most nR

�2
lnm.

Proof. Defining Mt as in Proposition 2, we know from
the same proposition that

E[Mt] ≤
nR
�

E[
πut

outdegut
(t)

]

Also, from Lemma 3, we know:

E[
πut

outdegut
(t)

] =
1
t

Hence,

E[Mt] ≤
nR
�

1
t

For each walk segment that needs an update, we can redo
the walk starting at the updated node, or even more simply
starting at the corresponding source node. So, for each such
walk segment, in average we need at most 1/� work (equal to
the average length of the walk segment). Hence, the average
work needed at time t is at most nR

�2
1
t , as stated in the

theorem.
Summing up over all time instances, we get that the ex-

pected total amount of work that we need to do over m edge
arrivals (to keep the approximations updated all the time)
is:

nR
�2

m�

t=1

1
t
=

nR
�2

Hm ≤ nR
�2

lnm

where Hm is the mth harmonic number. Therefore, the total
amount of expected work required is at most nR

�2
lnm, which

finishes the proof.

The above theorem bounds the amount of update work as
new edges arrive. Similarly, we can show that we can very
efficiently handle edges leaving the graph:

Proposition 5. When the network has m edges, if a ran-
domly chosen edge leaves the graph, then the expected amount
of work necessary to update the walk segments is at most
nR/m�2.

Proof. If M is the number of walk segments that need
to be updated, and (u∗, v∗) is the random edge leaving the
network, then exactly as in Proposition 2, one can see that:
E[M] ≤ nR

� E[πu∗

outdegu∗
], and exactly as in Lemma 3, one

can see E[πu∗

outdegu∗
] = 1/m. Finally, as in Theorem 4, the

proof is completed by noticing that for each walk segment
needing an update, the expected amount of work is 1/�.

The result in Theorem 4 (and similarly Proposition 5) is
quite surprising (at least to the authors). Hence, we will now
discuss various aspects of it. First, notice that the amount
of work needed to keep the approximations updated all the
time is only logarithmically larger than the cost to initialize
the approximations (i.e., nR/�). Also, it is clear that the
marginal update cost for not-so-early edges (say edges after
the Ω(n) first ones) is so small, that we can do the updates
in real time even per social interaction (e.g., clicks, etc.)

Also, notice that in applications in networks such as the
web graph, we can not do the real time updates. That is
because there is no way to figure out the changes in the
network, other than recrawling the network which is not
feasible in real time. Also, random access to edges in the
network is expensive. However, in social networking appli-
cations, the network and all the events happening on it are
always available and visible to the network provider. There-
fore, it is indeed possible to do the real time updates, and
hence this method is very well suited for social networking
applications.

It should be mentioned that the update cost analyzed
above is the extra cost due to updating the PageRank ap-
proximations. In other words, as a new edge is added to
the network it should be added to the database containing
the network. We can keep the random walk segments in
another database, say PageRank Store. For each node v,
we also keep two counters: one, denoted by W (v), keeping
track of the number of walk segments visiting v, and one,
denoted by d(v), keeping track of the outdegree of v. Then,
when a new edge arrives at node v, first we add it to the
Social Store. Then, with probability 1 − (1 − 1/d(v))W (v)

we call the PageRank Store to do the updates, in which case
the PageRank Store will incur an additional cost as analyzed
above in Theorem 4. We are assuming that the preprocess-
ing (to generate the random number) can be done for free,
which is reasonable, as it does not require any extra network
transmissions or disk accesses; without this assumption, the
running time would be O(m + n lnm

�2
), which is still much

better than the existing results.
In Theorem 4, we analyzed the update costs under the

random permutation model. Another model of interest is
the Dirichlet model, in which Pr[ut = u] = [outdegu(t−1)+
1]/[t− 1+ n]. Following the same proof steps as in Theorem
4, we can again prove that the total expected update cost
over m edge arrivals in this model is nR

�2
ln(m+n

n). Again,
the total updates cost is only logarithmically growing, and
the marginal update costs are small enough to allow real
time updates.

Furthermore, the same ideas work to give a 16nR
�2

lnm to-
tal expected amount of update work for SALSA (over m
edge arrivals in random order). The details are given in
Appendix D.

176

Algorithm 1 Personalized PageRank Walk Using Walk
Segments

Input: Source node w, required length L of the walk
Output: A personalized PageRank walk Pw for source
node w of length at least L

Start the walk at w: Pw ← [w]
while length(Pw) < L do

u ← last node in Pw

Generate a uniformly random number β ∈ [0, 1]
if β < � then

Reset the walk to w: Pw ← Pw · append(w)
else

if u has an unused walk segment Q remaining in
memory then

Add Q to the end of Pw: Pw ← Pw · append(Q)
Then, reset the walk to w: Pw ← Pw · append(w)

else

if u was previously fetched then

Take a random edge (u, v) out of u
Add v to the end of Pw: Pw ← Pw · append(v)

else

Do a fetch at u
end if

end if

end if

end while

3. APPROXIMATING PERSONALIZED
PAGERANK AND SALSA

In the previous section, we showed how we can approx-
imate PageRank and SALSA by keeping a small number
of random walk segments per each node. In this section,
we show how we can reuse the same stored walk segments
to also approximate the personalized variants of PageRank
and SALSA. Again, we will focus the discussion on (person-
alized) PageRank. All the results also extend to the case of
SALSA.

We start by explaining the algorithm. Here, the basic idea
is that we will perform the personalized PageRank random
walk, but opportunistically use the R stored random walk
segments (described in Section 2) for each node, where pos-
sible. To access these walk segments, we have to query the
database containing them. A query to this database for a
node u returns all R walk segments starting at u as well as
all the neighbors of u. We call such a query a “fetch” oper-
ation. Then, taking a random walk starting from a source
node w, based on the stored walk segments, can be done as
presented in Algorithm 1.

The main cost in this algorithm is the fetch operations it
does. Everything else is done in main memory which is very
fast. Thus, we would like to analyze the number of fetches
made by this algorithm.

But, unlike the case of global PageRank and SALSA, we
notice that in applications of personalized PageRank and
SALSA, what we are interested in is the nodes with the
largest values of the personalized score. For instance, in a
recommendation system based on personalized SALSA or
personalized PageRank, we are only interested in the nodes
with the largest authority scores, because the system is even-
tually going to find and recommend only those nodes any-

way. Thus, our objective here is to find the k nodes (for
some suitably chosen k) with the largest personalized scores.
We show that, under a power-law network model, the above
algorithm does this very efficiently.

We start with first exactly explaining our network model.

3.1 Network Model
If −→π is the vector of the scores of interest (e.g., person-

alized PageRanks), we assume that −→π follows a power-law
model. That is, if πj is the jth largest entry in −→π , then we
assume:

πj ∝ j−α (2)

for some 0 < α < 1. This is a very well-motivated model.
First, it has been proved [24] that (under some assumptions),
in a network with power-law indegrees, the PageRank vec-
tor also follows a power-law, which has the same exponent
as the one for indegrees. Our experiments with the Twit-
ter social network, whose results are presented in Section 4,
not only confirm this result, but also show that personal-
ized PageRank vectors also follow power-laws, and that the
average exponent for the personalized PageRank vectors is
roughly the same as (yes, you guessed it!) the one for inde-
gree and global PageRank.

By approximating summation with integration, we can
approximately calculate the normalizing factor in Equation
2, denoted by η:

1 =
n�

j=1

πj = η
n�

j=1

j−α � ηnα−1
� 1

0

x−αdx =
ηnα−1

1− α

Hence η = (1− α)/n1−α, and:

πj =
(1− α)j−α

n1−α
(3)

So, we will assume that the values of πj ’s are given by
Equation 3 (i.e., we ignore the very small error in estimat-
ing the summation with integration). This completes the
description of our model.

3.2 Approximating the top k nodes
Fixing a number c, we do a long enough random walk

(with resets to the seed node) that for each of the top k
nodes, we expect to see that node at least c times. Then,
we will return the k nodes most visited in this random walk.
To this end, we first give a definition and prove a small
technical lemma, whose proof is presented in Appendix E:

Definition 1. Xs,v is the number of times that we visit
node v in a random walk of length s.

Lemma 6.
�

v |E[Xs,v]− sπv| ≤ 2/�

The above lemma shows that if sπv is not very small (e.g.,
compared to 1/�), we can approximate E[Xs,v] (and because
of sharp concentration of Xs,v, even Xs,v itself) with sπv.
This is what we will do in the rest of this section.

Therefore, in order to see each of the top k nodes c times
in expectation, the minimum length of the walk that we
need to take is determined by sπk = c, which gives:

sk =
c

1− α
k(

n
k
)1−α (4)

177

This gives us the length of the walk that we need to do
using our algorithm. So, now we can analyze the algorithm.
We prove the following theorem, whose proof is presented in
Appendix F:

Theorem 7. If we store R > q lnn walk segments at each
node for a large enough constant q, then the expected number
of fetches done to take a random walk of length s is at most:

1 + (2(1− α)/nR)
1
α−1s1/α

Remark 2. We defined a fetch operation to return all
the stored walk segments as well as all the outgoing edges
of the queried node. While the number of stored walks per
each node is small, the outdegree of a node can be very large
(indeed as large as Ω(n)). For instance, in the Twitter so-
cial network, @BarackObama has more than 750, 000 outgo-
ing edges. Thus, a fetch at such nodes may cause memory
problems. However, one can see that if we change the fetch
operation for node w to either return all R stored walk seg-
ments starting at w or just one randomly sampled outgoing
edge from w, then in the analysis in Theorem 7 we will only
get at most a factor 2 more fetches (because, denoting the
number of fetches by F , as in Appendix F, we will have
F ≤ 2

�
v(Xs,v −R)+). So, we will just stick with our orig-

inal definition of a fetch operation.

Using the value of sk from Equation 4 in the result of
Theorem 7, directly gives the following corollary:

Corollary 8. Storing R > q lnn walk segments per node
for a large enough constant q, the expected number of fetches

needed to find the top k nodes is at most 1+ c1/α

(1−α)(R/2)
1
α

−1
k.

It should be noted that the bounds given in Theorem

7 and Corollary 8 are, respectively, O
�
s/(nR/s)

1−α
α

�
and

O
�
k/R

1−α
α

�
. Also, as our experiments (described later)

show, the theoretical bounds are fairly accurate for values
of R as small as 5.

Remark 3. To compare the bounds from Equation 4 and
Corollary 8, let α = 0.75, c = 5, R = 10, k = 100, and n =
108. Then, 4 bounds the number of required steps (also equal
to number of database queries, if done in the crude way) with
632k = 63200, while 8 bounds the number of required fetches
with the much smaller number 20k = 2000. Also, notice how
significantly smaller than n = 108 both these bounds are.
This is because we are taking advantage of the power-law
assumption/property for the random walks we are interested
in. Without this assumption, in general, even to find the
top k nodes, one would need to calculate all n entries of the
stationary distribution, and then return the top-k values.

4. EXPERIMENTS
In this section, we present the results of the experiments

that we did to test our assumptions and methods.

4.1 Experimental Setup
We used data from the social networking site, Twitter,

for our experiments. This network consists of directed edges.
The access to data was through Twitter’s Social Store, called
FlockDB, stored in distributed shared memory. We emu-
lated the PageRank Store on top of FlockDB. We used the

reset probability � = 0.2 in our experiments. For the per-
sonalized experiments, we picked 100 random users from the
network, who had a reasonable number of friends (between
20 and 30).

4.2 Verification of the Random Permutation
Assumption

Given a single permutation (i.e., the one that we actually
observed on twitter), it is impossible to validate whether
edges do arrive in random order. However, we can validate
some associated statistics, and as it turns out, these will also
provide a sufficient precondition for our analysis to hold:

1. Let X denote the expected value of πv/outdegv for an
arriving edge (v, w). We assumed that mX = 1 in our
proof; this is the only assumption that we need in order
for our proof to be applicable. In order to validate this
assumption, we looked at 4.63 Million edges arriving
between two snapshots of the social graph (we removed
edges originating from new nodes). The average ob-
served value of mX for these 4.63 Million arrivals was
0.81. This validates the running time we obtained in
this paper (in fact, this is a little better than what
we assumed since smaller values of mX imply reduced
computation time).

2. While not strictly required for our proof, another inter-
esting consequence of the random permutation model
is that the probability of an edge arriving out of node
v is proportional to the out-degree of v1. We verified
this as well; details are omitted for brevity and will be
presented in the full version of this paper [3].

4.3 Network Model Verification
As we explained in Section 3.1, we assumed a power-law

model on the personalized PageRank values. In addition to
considerable literature [24], this assumption was also based
on our experiments, showing the following results:

1. Our network has power-law indegrees and global PageR-
ank, with exponent roughly 0.76.

2. Personalized PageRank vectors follow power-laws. Aro-
und 2% of the nodes had α > 1. Our analysis is eas-
ily adapted to this case, but we omit the results for
brevity.

3. There is a variation in the exponents of the power-laws
followed by personalized PageRank vectors of different
users. However, the mean of these exponents is almost
the same as the exponent for in-degree and PageRank.
In our experiment, the average exponent was 0.77 and
the standard deviation was 0.08.

Further details of the experiments for this section are pre-
sented in the extended version of this paper [3].

4.4 A Few Random Steps Go a Long Way
As we showed in Section 3.2, a relatively small number

of random walk steps (e.g., as calculated in Equation 4) are
enough to approximately find the top k personalized PageR-
ank nodes. We experimentally tested this idea. To do so,

1In fact, 1+ the out degree, but that distinction will not be
empirically important.

178

0 0.2 0.4 0.6 0.8 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

In
te

rp
ol

at
ed

 A
ve

ra
ge

 P
re

ci
si

on

Figure 1: 11 point interpolated average precision for

top 1000 results.

notice that the stationary distribution of a random walk is
the limit of the empirical walk distribution as the length of
the walk approaches ∞. Thus, to accurately find the top
k nodes, we can theoretically do an infinite walk, and find
the top k most frequently visited nodes. Based on this idea,
we did the following experiment: For each of the 100 ran-
domly selected users, we did a random walk, personalized
over that user, with 50000 steps. We calculated the top
100 most visited nodes, and considered them as the “true”
top 100 results. Then, we did a 5000 step random walk for
each user, and retrieved the top 1000 most visited nodes.
For both experiments, we excluded nodes that were directly
connected to the user. Then, we calculated the 11 point in-
terpolated average precision curve [25]. The result is given
in Figure 1. Notice that the curve validates our approach.
For instance, the precision at recall level 0.8 is almost equal
to 0.8, meaning that 80 of the top 100 “true” results were
returned among the top 100 results of the short (5000 step)
random walks. Similarly, precision of almost 0.9 at recall
level 0.7 means 70 of the top 100 “true” results were re-
trieved among the top 77 results. This shows that even
short random walks are good enough to find the top scoring
nodes (in the personalized setting).

4.5 Number of Fetches
In Theorem 7, we gave an upperbound on the number of

fetches needed to compose a random walk out of the stored
walk segments. We did an experiment to test this theoretical
bound. In our experiments we found the average (over 100
users) number of fetches actually done to make a walk of
length s, for s between 100 and 50000, when we store R walk
segments per node, for each of the cases with R ∈ {5, 10, 20}.
These are the thin lines in the plots in Figure 2. We also
calculated the corresponding theoretical upperbound on the
number of fetches for each user (using its own power-law
exponent), and then calculated the average over the 100
users. The results are the thick lines in the plots in Figure 2.

As can be seen in this figure, our theoretical bounds ac-
tually give an upperbound on the actual number of fetches

0 1 2 3 4 5
x 104

0

500

1000

1500

2000

2500

3000

3500

4000

4500

number of random walk steps

nu
m

be
r o

f f
et

ch
es

 to
 F

lo
ck

D
B

R = 5

0 1 2 3 4 5
x 104

0

500

1000

1500

2000

2500

3000

3500

number of random walk steps

nu
m

be
r o

f f
et

ch
es

 to
 F

lo
ck

D
B

R = 10

0 1 2 3 4 5
x 104

0

500

1000

1500

2000

2500

3000

3500

number of random walk steps

nu
m

be
r o

f f
et

ch
es

 to
 F

lo
ck

D
B

R = 20

Figure 2: Number of fetches (thin line: observed,

thick line: theoretical bound).

179

in our experiments. Also, we see that the number of
fetches that we make is not much sensitive to the number of
stored random walks per node (i.e., R). Note that the the-
oretical guarantees are only valid for R > q lnn for a large
enough constant q; hence the theoretical bound appears to
be robust well before the range where we proved it.

5. CONCLUSIONS
We showed how PageRank, Personalized PageRanks, and

related random walk based measures can be computed very
efficiently in an incremental update model if the graph is
stored in distributed memory, under mild assumptions on
edge arrival order. We validated our assumptions using the
social graph of Twitter. It would be an interesting result
to extend our running time guarantees to adversarial edge
arrival. We also presented empirical results indicating that
the collaborative filtering algorithm, SALSA, performs much
better than another well know collaborative filtering algo-
rithm, HITS, for the link prediction problem in social net-
works.

6. REFERENCES
[1] A. Altman and M. Tennenholtz. Ranking systems: the

PageRank axioms. In Proceedings of the 6th ACM
conference on Electronic commerce, pages 1–8, 2005.

[2] K. Avrachenkov, N. Litvak, D. Nemirovsky, and
N. Osipova. Monte carlo methods in PageRank
computation: When one iteration is sufficient. SIAM
J. Numer. Anal., 45(2):890–904, 2007.

[3] B. Bahmani, A. Chowdhury, and A. Goel. Fast
incremental and personalized PageRank,
http://arxiv.org/abs/1006.2880, 2010.

[4] A.-L. Barabási and R. Albert. Emergence of scaling in
random networks. Science, 286(5439):509–512, 1999.

[5] P. Berkhin. Survey: A survey on PageRank
computing. Internet Mathematics, 2(1), 2005.

[6] A. Borodin, G. O. Roberts, J. S. Rosenthal, and
P. Tsaparas. Link analysis ranking: algorithms,
theory, and experiments. ACM Trans. Internet
Technol., 5(1):231–297, 2005.

[7] M. Brand. Fast online SVD revisions for lightweight
recommender systems. In SDM, 2003.

[8] S. Chien, C. Dwork, S. Kumar, and D. Sivakumar.
Towards exploiting link evolution, 2001.

[9] A. S. Das, M. Datar, A. Garg, and S. Rajaram. Google
news personalization: scalable online collaborative
filtering. In Proceedings of the 16th international
conference on World Wide Web, pages 271–280, 2007.

[10] A. Das Sarma, S. Gollapudi, and R. Panigrahy.
Estimating PageRank on graph streams. In
Proceedings of the twenty-seventh ACM
SIGMOD-SIGACT-SIGART symposium on Principles
of database systems, pages 69–78, 2008.

[11] D. Fogaras, B. Rácz, K. Csalogány, and T. Sarlós.
Towards scaling fully personalized PageRank:
Algorithms, lower bounds, and experiments. Internet
Mathematics, 2(3), 2005.

[12] R. A. Hanneman and M. Riddle. Introduction to social
network methods, chapter 10. published in digital form
at http://faculty.ucr.edu/ hanneman/, 2005.

[13] T. H. Haveliwala. Topic-sensitive PageRank. In
WWW, pages 517–526, 2002.

[14] G. Jeh and J. Widom. Scaling personalized web
search. In WWW, pages 271–279, 2003.

[15] S. Kamvar, T. Haveliwala, C. Manning, and G. Golub.
Exploiting the block structure of the web for
computing PageRank. Technical report, Stanford
University, 2003.

[16] S. D. Kamvar, T. H. Haveliwala, C. D. Manning, and
G. H. Golub. Extrapolation methods for accelerating
PageRank computations. In WWW, pages 261–270,
2003.

[17] J. M. Kleinberg. Authoritative sources in a
hyperlinked environment. J. ACM, 46(5):604–632,
1999.

[18] A. N. Langville and C. D. Meyer. Updating PageRank
using the group inverse and stochastic
complementation. Technical report, North Carolina
State University, Mathematics Department, 2002.

[19] A. N. Langville and C. D. Meyer. Updating the
stationary vector of an irreducible markov chain.
Technical report, North Carolina State University,
Mathematics Department, 2002.

[20] A. N. Langville and C. D. Meyer. Deeper inside
PageRank. Internet Mathematics, 1:2004, 2004.

[21] A. N. Langville and C. D. Meyer. Updating PageRank
with iterative aggregation. In Proceedings of the 13th
international World Wide Web conference on
Alternate track papers & posters, pages 392–393, 2004.

[22] R. Lempel and S. Moran. SALSA: the stochastic
approach for link-structure analysis. ACM Trans. Inf.
Syst., 19(2):131–160, 2001.

[23] D. Liben-Nowell and J. Kleinberg. The link prediction
problem for social networks. In CIKM ’03, pages
556–559, 2003.

[24] N. Litvak, W. R. W. Scheinhardt, and Y. Volkovich.
In-degree and PageRank: Why do they follow similar
power laws? Internet Math., 4(2-3):175–198, 2007.

[25] C. D. Manning, P. Raghavan, and H. Schutze.
Introduction to Information Retrieval. Cambridge
University Press, 2008.

[26] F. McSherry. A uniform approach to accelerated
PageRank computation. In Proceedings of the 14th
international conference on World Wide Web, pages
575–582, 2005.

[27] M. A. Najork. Comparing the effectiveness of HITS
and SALSA. In CIKM, pages 157–164, 2007.

[28] Netflix cinematch. http://www.netflix.com.
[29] A. Y. Ng, A. X. Zheng, and M. I. Jordan. Stable

algorithms for link analysis. In Proceedings of the 24th
annual international ACM SIGIR conference on
Research and development in information retrieval,
pages 258–266, 2001.

[30] L. Page, S. Brin, R. Motwani, and T. Winograd. The
PageRank citation ranking: Bringing order to the
web. Technical report, Stanford InfoLab, 1999.

[31] T. Sarlós, A. A. Benczúr, K. Csalogány, D. Fogaras,
and B. Rácz. To randomize or not to randomize:
space optimal summaries for hyperlink analysis. In
WWW, pages 297–306, 2006.

[32] H. Tong, S. Papadimitriou, P. S. Yu, and C. Faloutsos.
Proximity tracking on time-evolving bipartite graphs.
In SDM, pages 704–715, 2008.

180

APPENDIX
A. DETAILED REVIEW OF THE RELATED

WORK
Any PageRank computation or approximation method on

social networks is desired to have the following properties:

1. Ability to keep the values (or approximations) updated
all the time as the network evolves

2. Large scale full personalization capability

3. Very high computational efficiency

Also, as briefly mentioned in Section 1, in social network-
ing applications, the data access model is dictated by the
need for random access to the network, and implemented us-
ing a Social Store. Therefore, a desirable PageRank compu-
tation (or approximation) scheme should achieve the above
mentioned features in this data access model.

A simple way to keep the PageRank values updated is to
just recompute the values for each incremental change in
the network. But, this can be very costly. For instance,
the simple power iteration method [30] to approximate (to
a constant precision) PageRank values (with reset probabil-
ity �) takes Ω(x

ln(1/(1−�))) time over a graph with x edges.

Hence, over m edge arrivals, this takes
�m

x=1 Ω(
x

ln(1/(1−�)))

= Ω(m2

ln(1/(1−�))) total time, which is many orders of magni-

tude larger than our approach. Similarly, the Ω(n/�) time
complexity of the Monte Carlo method results in a total
Ω(mn/�) work over m edge arrivals, which is also very inef-
ficient. So, we need more efficient ways of doing the compu-
tations.

There have been a lot of methods proposed for computa-
tion or approximation of PageRank and similar measures [5].
Broadly speaking, these methods can be categorized into two
general categories, based on the core techniques they use:

1. Linear algebraic methods: These methods mainly use
techniques from linear and matrix algebra, perhaps with
some application of structural properties of the net-
works of interest (e.g., the world wide web) [8, 13–16,
18, 19,21, 26,31, 32].

2. Monte Carlo methods: These methods use a small num-
ber of simulated random walks per node to approximate
PageRanks (or other variants) [2, 10,11, 31].

A great survey of many of the methods in the first cat-
egory is done by Langville and Meyer [20]. However, for
completeness and also to compare the state of the art with
our own results, we provide an overview of the methods and
results in this category here.

A family of the methods proposed in this category deal
with accelerating the basic power iteration method for com-
puting PageRank values [15, 16]. However, they all provide
only very modest (i.e., small constant factor) speed ups. For
instance, Kamvar et al. [16] propose a method to accelerate
the power iteration, using an extrapolation based on Aitken
∆2 method for accelerating linearly convergent sequences.
However, as discussed in their paper, the time complexity
of their method is Ω(n), which is prohibitively large for a
real-time application. Also, their experiments show only a
25− 300% speed up compared to the crude power iteration.
So, the method does not perform well enough for our appli-
cations.

Another family of the methods in the first category deal
with efficiently updating the PageRank values using the “ag-
gregation” idea [8, 18, 19, 21]. The basic idea behind these
methods is that when an incremental change happens in the
network, the effect of this change on the PageRank vector is
mostly local. That is, only the PageRanks of the nodes in
the vicinity of the change may change significantly. To uti-
lize this observation, these methods partition the set of the
network nodes to two subsets G, Ḡ, where G is a subset of
nodes close to where the incremental change happened, and
Ḡ is the set of all other nodes. Then, all the nodes in Ḡ are
lumped/aggregated into a single hyper-node, so a smaller
network (composed of G and this hyper-node) is formed.
Then, the PageRanks of the nodes in G are updated using
this network, and finally the result is translated back to the
original network.

None of these methods seem well suited for real time ap-
plications. First, the performance of these methods heavily
depends on the partitioning of the network, and as pointed
out in [21], a bad choice of this partitioning can cause these
methods to be as slow as the power iteration. It is not known
how to do this partitioning; while a number of heuristic
ideas have been proposed [8, 19], there is also considerable
evidence that these networks are expanders, and no such
partitioning is possible. Further, it is easy to see that in-
dependent of how the partitioning is done, partitioning and
aggregation together will need Ω(n) time. Also, notice that
this work is in addition to the actual PageRank computa-
tion that needs to be done on the aggregated network, and
this computational load is also not negligible. For instance,
as reported by Chien et al. [8], for a single edge addition
to a network with 60M nodes, they need to do a PageRank
computation on a network with almost 8K nodes. After
all, these methods start with a precise PageRank vector and
give an approximate PageRank vector for the network after
the incremental change. Therefore, even if these methods
were run for a real-time application, the approximation er-
ror would potentially accumulate, and the estimations would
drift away from the true PageRanks [18]. Of course, we
should mention that there exist exact aggregation based up-
date methods, but all of those methods are more costly than
power iteration [19]!

A number of other methods in the first category also deal
with updating PageRanks [26, 32]. However, the method
in [32] does not scale well for the large scale social network-
ing applications. It achieves O(l2) update time for random
walk based methods on an n× l bipartite graph. This may
work well when the graph is very skewed (i.e., l << n).
But, for instance, in the friend recommendation application
on social networks, l = n, so this gives only O(n2) update
time, and hence O(mn2) total time over m edge arrivals,
which is very bad. Also, McSherry [26] combines a number
of heuristics to provide some improvement in computation
and updating of PageRank, using a sequential implemen-
tation of the power iteration. The method works in the
streaming model where edges are stored and then streamed
from the disk. No guarantee is given about the tradeoff
between precision and the time complexity of the method.

Another family of methods in the first category [13–15]
deals with personalization. In this family, Haveliwala’s work
[13] achieves personalization only to the level of few (e.g.,
16) topics and provides no efficiency improvement over the
power iterations.

181

Kamvar et al. [15] use the host-induced block structure of
the web link graph to speed up computation and updating of
PageRank and also provide personalization. However, first,
in social networks, there is no equivalent of a web host, and
more generally it is not easy to find a corresponding block
structure (even if such a structure actually exists). There-
fore, it is not even clear how to apply this idea to social
networking applications. Also, they use the block structure
only to come up with a better initialization for a standard
PageRank computation, such as power iteration. There-
fore, even though, after an incremental change, the local
PageRank vectors (corresponding to unchanged hosts) may
be reused, doing the power iteration alone would need Ω(m)
work per each change (and hence a total Ω(m2) work over
m edge arrivals). Finally, on the personalization front, their
method achieves personalization only at the host level.

Jeh and Widom [14] achieve personalization only over a
subset of the network nodes, denoted as the “Hub Set”.
Even though, the paper provides no precise time complexity
analysis, it is easy to see that, as mentioned in the paper,
the time performance of the presented algorithm heavily de-
pends on the choice of the hub set. In our application where
we wish to have full personalization, the hub set needs to be
simply the set of all vertices, in which case the algorithms
in [14] reduce to a simple dynamic programming which pro-
vides no performance improvement over power iteration.

Another notable work in the first category is [31]. It uses
deterministic rounding or randomized sketching techniques
along with the dynamic programming approach proposed
in [14] to achieve full personalization. However, the time
complexity of their (rounding) method, to achieve constant
error, is O(m/�), while, the time complexity of the simple
Monte Carlo method to achieve constant error with high
probability is just O(n lnn/�). Therefore, if m = ω(n lnn),
which is expected in our applications of interest, then the
simple Monte Carlo method is asymptotically faster than the
method introduced in [31]. Also, it is not clear how would
one be able to efficiently update this method’s estimations
as the network changes.

The methods in the second category above, namely Monte
Carlo methods, have the advantage that they are very effi-
cient and can achieve full personalization on a large scale
[2, 11]. However, all the literature in this category deals
with static networks. Of course, it has been mentioned in [2]
that one can keep the approximations updated continuously.
However, they neither provide any details of how exactly to
do this nor give any analysis about the efficiency of doing
these updates. For instance, the method in [2] uses Ω(n�)
work in each computation. So, if we naively recompute the
PageRank using this method for each edge arrival, then over
m edge arrivals, we will have Ω(mn

�) total work.
In contrast, in this paper, we show that one can use the

Monte Carlo techniques to achieve very cheap incremental
updates. Indeed, we prove a surprising result, stating that
up to a logarithmic factor, the total work required to keep
the approximations updated all the time is the same as the
work needed to just initialize the approximations! More
precisely, we prove that over m edge arrivals in a random
order, we can keep the approximations updated using only
O(n lnm

�2
) total work. This is significantly better than all the

previously proposed methods for doing the updates.
Another issue with the methods in the second category is

that if we want to directly use the simulated random walk

segments to approximate personalized PageRank, we would
get a limited precision. For instance, if we store R random
walks per node (and use only the end points of these walks
for our estimates) the approximate personalized PageRank
vectors that we get would have at most R non-zero entries,
which is significantly fewer than what we need in all applica-
tions of interest; previous works [10, 11] do not explore this
tradeoff in any detail.

In this paper, we present a formal analysis of this trade
off in the random access model, and prove that under the
power-law model for the network, one can do long enough
walks (and hence get desirable levels of precision) very ef-
ficiently. Indeed, Das Sarma et al. [10] achieve time per-
formance O(m/

√
�), and hence using their method for each

incremental change in the network would need O(m2/
√
�)

total work over m edge arrivals. While, this is better than
the naive power iteration O(m2/ ln(1/(1−�))) time complex-
ity, it is still very inefficient. But, we show that in our model,
we can achieve an O(n lnm/�2) time complexity, assuming a
power-law network model, which is significantly better, and
good enough for real-time incremental applications.

Collaborative filtering on social networks is very closely
related to the Link Prediction problem [23], for which the
random walk based methods have been reported to work
very well [23] (we also verified this experimentally; the re-
sults are given in Appendix B). Most of the literature on
Link Prediction deals with static networks. But, there are
some proposed algorithms which deal with dynamic evolv-
ing networks [32]. However, none of these methods scale to
today’s very large scale social networks.

We would also like to mention that there are incremental
collaborative filtering methods based on low-rank SVD up-
dates. For instance, refer to [7] and references therein. How-
ever, these methods also do not scale very well. For instance,
the method proposed in [7] requires a total O(pqr) work to
calculate the rank-r SVD of a p×q matrix. But, for instance,
for the friend recommendation application, p = q = n, and
hence this method needs a total Ω(n2) work, while we only
need a total O(n lnm

�2
) work, as mentioned above, which is

significantly better.

B. EFFECTIVENESS OF RANDOM WALK
BASED METHODS FOR LINK PREDIC-
TION

As mentioned in the Introduction section, random walk
based methods have been reported to be very effective for
the link prediction problem on social networks [23]. We
also did some experiments to explore this further. These
are somewhat tangential to the rest of this paper, and by
no means exhaustive. We present them not as significant
original research but as an interesting data point for readers
who are interested in practical aspects of recommendation
systems.

We picked 100 random nodes from the Twitter social net-
work. To select these users, we considered the network for
two different dates, with 5 weeks of difference. Then, we se-
lected random users who had a reasonable number of friends
(between 20 and 30) on the first date, and increased the
number of their friends by a factor between 50% and 100%
by the second date. For the second date, we only counted the
friends who already existed (and were reasonably followed,
i.e., had at least 10 followers) on the first date (because,

182

HITS COSINE PageRank SALSA
Top 100 0.25 4.93 5.07 6.29
Top 1000 0.86 11.69 12.71 13.58

Table 1: Link Prediction Effectiveness

otherwise there is no way for a collaborative filter or link
prediction system to find these users).

The reason we enforced the above criteria was that these
users are among the typical reasonably active users on the
network. Also, because they are increasing their friends set,
they are good targets for a recommendation system.

For each of the 100 users, we used the network data from
the first date to generate a personalized list of predicted
links. We considered four link prediction methods: person-
alized PageRank, personalized SALSA, personalized HITS,
and COSINE. We already explained personalized PageRank
and personalized SALSA in the paper. Personalized HITS
and COSINE also assign hub and authority scores to each
node. For personalized HITS, when personalizing over node
u, these scores are related as follows:

hv = (1− �)(
�

{x| (v,x)∈E}

ax) + �δu,v

ax =
�

{v| (v,x)∈E}

hv

For the COSINE method, the hub score hv is defined as
the cosine similarity of the neighbor sets of u and v (consid-
ered as 0-1 vectors). Then, the authority score, similar to
HITS, is defined by:

ax =
�

{v| (v,x)∈E}

hv

We performed 10 iterations for each method to calculate
the hub and authority scores. After generating the lists of
predicted links, we calculated how many of the new friend-
ships that were made by each user between the two dates
were captured by the top 100 or top 1000 predictions. Fi-
nally, we averaged these numbers over the 100 selected users.
The results are presented in Table 1.

Notice that we do not expect these numbers to be large,
because they are the number of friendships out of the pre-
diction/recommendation list that the user made without be-
ing exposed to the recommendations at all. Also, in our
experiments, each user had only 10-30 new friends, which
is an upper bound on these numbers. This number would
presumably be very different (i.e., much larger) if the user
first received the recommendations and then decided which
friendships to make. Nonetheless, the relative values of these
numbers for different algorithms are good indicators of the
predictive ability of those algorithms, specially when the
differences are as pronounced as in our experiments. As
we see from Table 1, the systems based on random walks
(i.e., Personalized PageRank and SALSA) perform the best:
they significantly outperform HITS, and they also do bet-
ter than the cosine similarity based link prediction system.
These results are in accordance with the previous literature
indicating the effectiveness of random walk based methods
for the link prediction problem [23]. Moreover, it should

be mentioned that there is also axiomatic support for this
outcome [1, 6].

C. PROOF OF THEOREM 1
It is already proved in [2] that E[�πv] = πv. So, we only

need to prove the sharp concentration result. First, assume
R = 1. Fix an arbitrary node v. Define Xu to be � times
the number of visits to v in the walk stored at u, Yu to be
the length of this walk, Wu = �Yu, and xu = E[Xu]. Then,

Xu’s are independent, �πv =
�

u Xu

n (hence πv =
�

u xu

n),
0 ≤ Xu ≤ Wu, and E[Wu] = 1. Then, it is easy to see that:

E[etXu] ≤ xuE[etWu] + 1− xu ≤ e−xu(1−E[etWu])

Thus:

Pr[�πv ≥ (1 + δ)πv] ≤
E[etn�πv]

etn(1+δ)πv

=

�
u E[etXu]

etn(1+δ)πv
≤

�
u e−xu(1−E[etWu])

etn(1+δ)πv

=
e−nπv(1−E[etW])

etn(1+δ)πv
≤ e−nπvδ

�

where W = �Y is a random variable with Y having geo-
metric distribution with parameter �, and δ

�
is a constant

depending on δ (and �), found by an optimization over t.
Therefore, we see that if πv = Ω(lnn/n) (i.e. if πv is

slightly larger than the average PageRank value 1/n), then
we already get a sharp concentration with R = 1 (the anal-
ysis for Pr[�πv ≤ (1− δ)πv] is similar, and hence we omit it
here).

Now, assume we have R walk segments stored at each
node, where we do not necessarily have R = 1. Then, similar
to the above tail analysis, we get:

Pr[�πv ≥ (1 + δ)πv] ≤ e−nRπvδ
�

Therefore, choosing R = Ω(lnn
nπv

) we get exponentially de-
caying tails. Notice that this means even for average values
of πv (i.e., for πv = Θ(1/n)), we have sharp concentration
with R as small as O(lnn).

This finishes the proof of the theorem.

D. EXTENSION OF INCREMENTAL
COMPUTATION BOUNDS TO SALSA

To approximate the hub and authority scores in SALSA,
we need to keep 2R random walk segments per node; R
random walks starting with a forward step from the seed
node, and R walks starting with a backward step. Then, the
approximations are done similar to the case of PageRank,
and the sharp concentration of the approximations can be
proved in a similar way.

For the update cost, we notice that if (ut, vt) is the edge
arriving at time t, then, unlike the PageRank case where
only ut could cause updates, both ut and vt can cause walk
segments to need an update. Again, we assume the random
permutation model for edge arrivals. Then:

Pr[ut = u] =
outdegu(t)

t
, Pr[vt = v] =

indegv(t)
t

and we get the following theorem:

183

Theorem 9. The expected amount of work needed to keep
the approximations updated over m edge arrivals is at most
16nR
�2

lnm.

Rather than presenting the complete proof, which follows
exactly the same steps as the one for Theorem 4, we just ex-
plain from where the extra factor 16 is appearing: Instead
of R walks we are storing 2R walks per node, introducing
a factor of 2. Rather than 1/�, each walk segment has av-
erage length 2/� (because we only allow resets at forward
steps), introducing a factor of 4 (as � appears in the bound
as �2). Also, each time an edge (ut, vt) arrives, both ut and
vt can cause updates, hence twice as many walks need to be
updated at each time. These three modifications, together
cause a factor 16 difference.

E. PROOF OF LEMMA 6
If �Xs,v is the number of times that we visit v when we take

a random walk starting at the stationary distribution, then
by coupling our walk with this stationary walk at the first
reset time ts and all the steps afterwards, we can see that
Xs,v − �Xs,v = Xts,v − �Xts,v. Since

�
v Xts,v =

�
v
�Xts,v =

ts, we get:

�

v

|E[Xs,v]− sπv| =
�

v

|E[Xs,v]− E[�Xs,v]|

=
�

|E[Xts,v]− E[�Xts,v]| ≤ 2E[ts] =
2
�

which proves the lemma.

F. PROOF OF THEOREM 7
A fetch is made at node v only if we arrive at u from

a parent node v which ran out of unused walk segments.
In other words, each fetch at a node u can be charged to
an extra visit to one of u’s parents. Therefore, denoting the
number of fetches made during the algorithm by F , we have:

F ≤
�

v

(Xs,v −R)+

Hence,

E[F] ≤
�

v

E[(Xs,v −R)+]

=
�

v

E[Xs,v −R|Xs,v ≥ R]Pr(Xs,v ≥ R)

≤ n
�

{v|E[Xs,v]<R/2}

Pr(Xs,v ≥ R) +
�

{v|E[Xs,v]≥R/2}

E[Xs,v]

≤ 1 +
�

{v| sπv>R/2}

E[Xs,v]

Where the second to last inequality holds because (due
to the memoryless property of the random walk) E[Xs,v −
R|Xs,v ≥ R] ≤ E[Xs,v], and the last inequality holds be-
cause with R > q lnn for large enough q, if E[Xs,v] < R/2
then Pr(Xs,v > R) = o(1/n) using Chernoff bounds (and
if E[Xs,v] ≥ R/2 then E[Xs,v] is almost equal to sπv, as
mentioned after Lemma 6).

But, sπv > R/2 if and only if v ≤ τ where τ is such that
sπτ = R/2. This gives:

τ =
(1− α)1/α

n
1
α−1

(
2s
R

)1/α

and E[F] ≤ 1+
�τ

j=1 sπj . Upperbounding the summation
with integration, we get:

E[F] ≤ 1 + (1− α)

� τ/N

0

x−αdx = 1 + s(τ/n)1−α

= 1 + (
2(1− α)

nR
)

1
α−1s1/α

which finishes the proof.

184

