
Exploration of Deep Web Repositories

Nan Zhang
George Washington University

nzhang10@gwu.edu

Gautam Das
University of Texas at Arlington

gdas@uta.edu

ABSTRACT
With the proliferation of online repositories (e.g., databases or
document corpora) hidden behind proprietary web interfaces,
e.g., keyword-/form-based search and hierarchical/graph-based
browsing interfaces, efficient ways of exploring contents in such
hidden repositories are of increasing importance.

There are two key challenges: one on the proper understanding
of interfaces, and the other on the efficient exploration, e.g.,
crawling, sampling and analytical processing, of very large
repositories. In this tutorial, we focus on the fundamental
developments in the field, including web interface
understanding, crawling, sampling, and data analytics over web
repositories with various types of interfaces and containing
structured or unstructured data. Our goal is to encourage
audience to initiate their own research in these exciting areas.

OUTLINE OF TUTORIAL
The following is an outline of topics that shall be covered.

1. INTRODUCTION
The tutorial shall begin with a series of real-world examples of
deep web repositories hidden behind web interfaces (see Figure
1 for a typical architecture). Specifically, a repository with
structured data is Yahoo! Autos (http://autos. yahoo.com), while
an unstructured one is the document corpus of Wikipedia.

Figure 1. System Architecture.

We shall then use these examples to motivate the importance of
efficient exploration over hidden web repositories. In particular,
we shall show that many repositories only support a very
restrictive set of search queries. To provide full (SQL) search
support, one may need to crawl all elements from a repository
and then execute the search locally. We shall also discuss the
need of mining over hidden repositories. To support mining
without incurring as many web accesses as crawling, one needs

the ability to efficiently perform sampling and analytical
processing over a hidden repository. We shall note that this
tutorial focuses on deep web repositories with given URLs.
Resource discovery - i.e., how to find URLs of deep web
repositories (e.g., for a given topic) - is an orthogonal problem.
Taxonomy of Web Interfaces: We shall describe four types of
interfaces commonly present for web repositories: keyword
search (e.g., Google), form-like search (e.g., Yahoo! Autos),
hierarchical browsing (e.g., Amazon’s drop-down menu for
product browsing), and graph-based browsing (e.g., Wikipedia).

Exploration Tasks: We shall describe three important tasks
commonly desired for the deep web: crawling, sampling, and
data analytics (e.g., the efficient processing of aggregate
queries). We shall argue that while samples may also support
aggregate (e.g., AVG) estimation, performing data analytics
directly may be more efficient as its design can be made aligned
with the specific aggregates to be estimated. On the other hand,
sampling is more “versatile”, as a collected sample may later
support analytical tasks not yet known at the time of sampling.

2. CHALLENGES
Our tutorial shall next discuss why the three tasks outlined
above are difficult to accomplish over deep web repositories.
We summarize two key challenges, one on understanding the
interface - e.g., how to model web query interfaces and perform
schema matching - and the other on the efficient exploration of
data - e.g., how to determine which queries/browsing requests to
issue, especially given the extremely restrictive input and output
interfaces of a hidden web repository. We devote the rest of our
tutorial to addressing the second (i.e., exploration) challenge.
For the first one, we shall briefly review it and point audience to
recent tutorials covering the topic.

3. CRAWLING
In this part of the tutorial, our focus is on discussing the
crawling of a deep web repository after its interface is properly
understood. We shall start with illustrating the motivations for
crawling, and then discuss existing crawling techniques for
repositories with search and browsing interfaces, respectively.

Search Interfaces: We shall identify two main prerequisites for
efficient crawling over search interfaces: One is how to generate
“legitimate” values for populating into input fields (e.g., query
phrases as keywords). The other is how to input values such that
each combination returns a large number of distinct elements.
Since solutions to both depend upon the repository’s content,
most existing techniques feature a bootstrapping process which
starts with a small number of probing search queries, then uses
the returned results to refine the selection of input keywords or
attribute value combinations to quickly achieve high coverage.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 37th International Conference on Very Large Data Bases,
August 29th - September 3rd 2011, Seattle, Washington.
Proceedings of the VLDB Endowment, Vol. 4, No. 12
Copyright 2011 VLDB Endowment 2150-8097/11/08... $ 10.00.

1506

Browsing Interfaces: The problem of crawling here is often
reduced to the traversal of vertices in a tree (for hierarchical
browsing) or a graph (for graph-based browsing). The common
technique is breadth-first search (aka snowball method). While
the technique itself is relatively straightforward, we shall point
out to the audience that the main challenge is the
comprehensiveness of crawling, as the graph is not necessarily
connected. We shall discuss techniques used by existing
crawlers to address this issue.

We shall conclude this part of the tutorial with discussions of the
system-related issues (e.g., using a cluster of machines for
crawling) that apply to both types of interfaces.

4. SAMPLING
In this portion, we discuss sampling techniques which aim to
draw representative elements (e.g., documents, tuples) from an
online repository while minimizing the number of web accesses.
We shall start the discussion with motivating applications for
sampling, and then review existing techniques for keyword
search, form-like/hierarchical browsing, and graph browsing
interfaces, respectively

Keyword-Search Interface: We begin by showing that a key
problem facing the “sampling” process in many existing
techniques is that the returned elements have an unknown but
often significant skew, i.e., certain elements are sampled with
much higher probability than others. We shall then discuss a
skew-correction technique through rejection sampling.

Form-like Search or Hierarchical Browsing Interface: Skew
reduction remains a challenge here. In particular, the main
source of skew is the scoring function used by the interface to
determine which top-k elements to return. We shall discuss two
ideas of skew removal: One is to avoid the influence of scoring
function by finding queries that return <k elements. The other
idea assigns a one-to-many mapping from queries to elements in
the repository, such that even if a highly scored tuple is returned
by more queries, it can only be sampled from one.

Graph Browsing Interface: We shall describe two types of
existing techniques for sampling over a graph browsing
interface: (1) the early work which uses BFS/snowball sampling
to produce sample elements with an unknown skew; and (2) the
random walk based techniques which has roots in the theory of
finite Markov chains to produce known (and thus removable)
skew over connected graphs.

5. DATA ANALYTICS
We shall now discuss analytics techniques for online
repositories. We shall first argue that the key enabler for data
analytics is the ability to approximately answer aggregate
queries over an online repository, and then describe a few
motivating examples of aggregate queries. After that, we shall
discuss bias and variance, two complementary measures for the
accuracy of aggregate estimations, and then review the existing
techniques for the three types of interfaces, respectively.

Keyword-Search Interfaces: We shall focus on two types of
data analytics techniques over keyword search interfaces. One is
a two-step process which first calls upon the above-discussed
sampling techniques to produce sample elements, and then use
the sample to extract aggregate information for analytics. The
other type of technique directly estimates aggregates without the

middle step of sample generation. A key advantage here is that
unlike in the sampling case where many retrieved elements may
have to be rejected for skew removal, all retrieved elements may
be used, albeit in a weighted fashion, for aggregate estimations.

Form-like Search or Hierarchical Browsing Interfaces: We
shall first demonstrate that a direct estimation of aggregates over
form-like or hierarchical browsing interfaces avoids the costly
process of rejecting elements for eliminating sample skew.
Then, we shall explain why SUM and COUNT queries can be
easily estimated without bias, while doing so for AVG queries is
extremely difficult if not impossible. After that, we focus on
variance-reduction techniques for improving estimation
accuracy. Before concluding this part, we shall briefly discuss a
few recent works which have the exact opposite objective – i.e.,
to prevent aggregate queries from being estimated (accurately)
through a form-like interface, in order to protect the privacy of
aggregate information for repository owners.

Graph Browsing Interfaces: We shall start by arguing that data
analytics over graph browsing interfaces is closely related to the
problem of graph testing, as the latter assumes an access cost to
learning whether an edge exists in the graph, resembling the web
access cost for a graph browsing interface, and aims to learn
certain (aggregate) information of the graph while minimizing
the access cost. Nonetheless, we shall argue that the cost models
of real-world interfaces are much more diverse than what have
been studied in graph testing, leading to vastly different
solutions and calling for further research on the cost models. We
shall then discuss the existing work for aggregate estimation
using random walks, random BFS, etc.

6. CONCLUSIONS
We shall summarize how the challenging problems of crawling,
sampling and analytics over hidden web repositories require
expertise in traditional query processing, IR, social networks,
data mining as well as algorithms. We shall conclude by
identifying open challenges.

TARGET AUDIENCE
The anticipated audience will consist of database, WWW, IR,
data mining, and algorithms researchers, web developers, as
well as information systems designers. No specific prerequisite
other than general knowledge of databases is required.

BIOGRAPHICAL SKETCH
Nan Zhang is an Assistant Professor of Computer Science at the
George Washington University, Washington, DC. His research
on databases, data mining and information privacy is supported
by NSF, including an NSF CAREER award in 2008.

Gautam Das is a Professor and Head of the Database
Exploration Laboratory (DBXLAB) at the CSE department of
the University of Texas at Arlington. He graduated with a PhD
in computer science from the University of Wisconsin, Madison.
Dr. Das's research interests span data mining, information
retrieval, databases, algorithms and computational geometry.

ACKNOWLEDGEMENT
Nan Zhang is partially supported by NSF grants 0852674,
0915834 and a GWU Research Enhancement Fund. Gautam Das
is partially supported by NSF grants 0812601, 0915834 and
grants from Microsoft Research and Nokia Research.

1507

