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ABSTRACT
Flash devices are emerging as a replacement for disks. How
does this evolution impact the design of data management
systems? While flash devices have been available for years,
this question is still open. In this tutorial, we share two
views on the development of data management systems for
flash devices. The first view considers that flash devices
introduce so much complexity that it is necessary to recon-
sider the strictly layered approach between storage system,
operating system and data management system. The sec-
ond view considers that data management systems should
recognize the complexity of flash devices and leverage the
characteristics of different classes of devices for different us-
age patterns. Throughout the tutorial, we will cover the
data management stack: from the fundamentals of flash
technology, through storage for database systems and the
manipulation of flash-resident data, to query processing.

1. SYSTEM CO-DESIGN
Since the advent of Unix, the stability of disks characteris-

tics and interface have guaranteed the timelessness of major
database system design decisions, i.e., pages are the unit of
IO; random accesses are avoided.

Today, the quest for energy proportional systems and the
growing performance gap between processors and magnetic
disk performance are pushing flash devices as replacements
for disks. Indeed, flash devices rely on tens of flash chips
wired in parallel that together can deliver hundreds of thou-
sands accesses per second with low energy consumption.
Flash devices embed a complex software called Flash Trans-
lation Layer (FTL) in order to hide flash chip constraints
(erase-before-write, limited number of erase-write cycles, se-
quential page-writes within a flash block). A FTL provides
address translation, wear leveling and strives to hide the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 37th International Conference on Very Large Data Bases,
August 29th - September 3rd 2011, Seattle, Washington.
Proceedings of the VLDB Endowment, Vol. 4, No. 12
Copyright 2011 VLDB Endowment 2150-8097/11/08... $ 10.00.

impact of updates and random writes based on observed
update frequencies, access patterns, temporal locality.

This trend towards flash devices has created a mismatch
between the simple disk model that underlies the design of
today’s database systems and the complex flash devices of
today’s computers. This mismatch results in sub-optimal
IO performance, which is costly both in terms of through-
put and energy consumption. In fact, a tension exists be-
tween the design goals of flash devices and DBMS. Flash
device designers aim at hiding the constraints of flash chips
to compete with hard disks providers. They also compete
with each other, tweaking their FTL to improve overall per-
formance, and masking their design decision to protect their
advantage. Database designers, on the other hand, have
full control over the IOs they issue. What they need is a
clear and stable distinction between efficient and inefficient
IO patterns to produce a stable (re)design of core database
techniques. They might even be able to trade increased com-
plexity for improved performance and stable behavior across
devices.

The goal of the first part of this tutorial is to offer database
researchers and practitioners an insight into flash chip man-
agement as well as a survey of the constraints and opportu-
nities it creates for database system or algorithm designers.
We will stress the need for a tighter form of collaboration
between database system, operating system and FTL to rec-
oncile the complexity of flash chip management with the
performance goals of a database system.

2. DATA MANAGEMENT
In the near future, commodity and enterprise-level hard-

ware is expected to incorporate both flash Solid State Drives
(SSDs) and magnetic disks as storage media. In light of this,
fundamental principles of data management need to be re-
visited, as all existing database systems and algorithms have
been designed for disks consisting of rotating platters.

However, the term SSD incorporates multiple classes of
device. The only major common characteristic of all these
devices is their excellent random read performance. The
remaining characteristics range within more than two orders
of magnitude across different devices. Some SSDs are more
than an order of magnitude slower than disks at random
writes, while other SSDs dominate disks in both random
read and write throughput and latency. The most important
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question to be answered is what is the best use of each class
of device in a DBMS. Equally important is how this question
can be answered automatically, by the DBMS itself, without
administrator intervention. The answer also depends on the
amount of main memory available and the number, size,
rotational speed and RAID configuration of the underlying
disks. Possible answers are (a) using the SSD as persistent
storage, either in combination with disks or only by itself,
(b) using the SSD as a read cache for the HDDs, as a write
cache or as a combined read-write cache, (c) using the SSD
as a transactional log, (d) using the disk as a log-structured
write cache for the SSD, (e) using the SSD as a temporary
buffer for specific query evaluation algorithms (e.g., sorting),
and, of course, (f) any combination of the above.

The aim of the second part of the tutorial is to present the
challenges that arise when flash technology is introduced in
a database system context; the recent results in this fresh re-
search area; and an outlook of existing problems and things
to come.
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