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ABSTRACT 
Current database technology has raised the art of scalable 
descriptive analytics to a very high level. Unfortunately, what 
enterprises really need is prescriptive analytics to identify optimal 
business, policy, investment, and engineering decisions in the face 
of uncertainty. Such analytics, in turn, rest on deep predictive 
analytics that go beyond mere statistical forecasting and are 
imbued with an understanding of the fundamental mechanisms 
that govern a system’s behavior, allowing what-if analyses. The 
database community needs to put what-if models and data on 
equal footing, developing systems that use both data and models 
to make sense of rich, real-world complexity and to support real-
world decision-making. This model-and-data orientation requires 
significant extensions of many database technologies, such as data 
integration, query optimization and processing, and collaborative 
analytics. In this paper, we argue that data without what-if 
modeling may be the database community’s past, but data with 
what-if modeling must be its future. 

1. INTRODUCTION 
In the beginning, there were data transactions and simple reports. 
Then came the relational model, SQL, and high-performance 
relational DBMSs to run transactions and generate simple reports 
in an elegant manner. This primeval form of descriptive analytics 
was enhanced with OLAP, data mining, and other business-
intelligence technologies as enterprises realized that there was 
valuable information to be extracted from transactional data. 
Since then, DBMSs have expanded their capabilities to handle 
semi-structured data, unstructured text, web-based data, semantic 
data, uncertain data, and streaming data at scales approaching the 
Exabyte range. DBMS functionality has expanded to include 
simple programming within the database, various statistical 
analyses, and even more recently, machine learning techniques. 

These are tremendous achievements, and we are justifiably proud 
of what we have accomplished as a database community. We can 
perform all kinds of descriptive analytics over all kinds of data at 
scale. But with a combined total of more than eight decades in the 
field of database research, the authors have come to a set of 
realizations, leading us to the conclusion that our focus on data is 
much too narrow and must be expanded dramatically.  

2. DATA-CENTRISM IS WRONG  
Enterprises need to make decisions, typically related to allocating 
scarce resources, such as money, equipment, food, medicine, 
people, or time, and usually in the face of uncertainty. The 
science of better decision-making has traditionally been the 
domain of Operations Research and related fields, where a wide 
variety of technologies for deterministic and stochastic 
optimization have been developed. The Institute for Operations 
Research and Management Science (INFORMS) recently 
promoted the term prescriptive analytics to describe such 
optimization methods  [14]. Prescriptive analytics methods need to 
assess the consequences of alternative design, investment, or 
policy choices on the system of interest, and hence rest on “deep” 
predictive analytics that allow such what-if analyses. Arguably, 
most of the analytics technology developed by the database 
community—from simple querying to scalable machine 
learning—has been driven by the need to support enterprise 
decisions. But how far have we come in satisfying this need?  

This brings us to our realizations about data.  

Realization #1: Data is dead. By definition, data reflects facts or 
assertions of facts that are already in existence: the world as it is 
or was. Pat purchased red shoes for $50 on January 31. A 
newspaper article describes President Obama’s speech to the 
United Nations on May 2. The sky telescope traversed a section 
of a galaxy and recorded a set of images. This is history, 
accomplished and recorded. Data just lies passively. Applications 
can look at this data, add it up, roll it up, cube it, summarize it, 
compare it, filter it, or join it with other data, but it is still a record 
of history, done deeds.   

Being dead is not necessarily bad. Many very useful things are 
dead (or non-living, anyway) but extremely valuable—houses, 
books, soup, and so on. We learn from the past; we leverage what 
we have built and what we know. But that doesn’t change the fact 
that data is a record, not a conclusion or an insight or a solution. 

Realization #2: Descriptive analytics (including shallow 
predictive analytics) are last resorts for decision-making. 
Descriptive analytical techniques, including simple querying, 
OLAP, data mining, and machine learning, are powerful tools for 
finding important patterns and relationships in existing data. They 
help us build insight into the real world. We can use analytics to 
find clusters of disease, to identify possible drug side effects and 
interactions, or to determine which stores sold more produce in 
March. Analytic processing, both within and outside the database 
engine itself, can make businesses more efficient, medical 
treatments safer and more effective, and so on. As discussed, the 
database community has an excellent record of developing 
technology for descriptive analytics.  

But data alone—even with very powerful descriptive analytics—
tells us about the world as it is, and was, but cannot tell us much 
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about the world as it might be. To deal with an uncertain future, 
decision makers sometimes resort to “shallow” predictive 
analytics, by which we mean statistical techniques that simply 
extrapolate into the future the patterns and relationships observed 
in historical or training data. Examples include time-series 
forecasting models for home values or neural-network classifiers 
that predict whether a borrower will default on a home mortgage. 
Such predictions work well only if the future is fundamentally 
like the past, e.g., if historical home-value trends continue or if 
home-loan borrowers continue to behave as they have in the past. 
This approach is notoriously brittle: shallow predictive models do 
not allow reliable extrapolation to scenarios other than those that 
produced the historical or training data, and this lack of what-if 
capability can result in disastrous consequences when used as a 
basis for decision making. We resort to descriptions and 
extrapolations only when we lack access to domain experts. 

Realization #3: We can understand so much more if we move 
from descriptive to deep predictive analytics that are model-
and data-driven.  Robust decisions are based on a thorough 
understanding of first principles, causes, and interconnections 
between system elements. This goal of understanding is the 
province of deep predictive analytics, and usually requires 
domain expertise. Take weather prediction. Descriptive analytics, 
such as time-series modeling, can tell us about historical weather 
patterns and perhaps be used to forecast the amount of rainfall 
over the next couple of days. Such techniques alone cannot help 
us predict the effects of, say, changes in air pollution laws upon 
climate. Analysis of such complex what-if questions calls for the 
sorts of weather models and simulations developed over decades 
by experts in hydrology, atmospheric science, and so on. These 
dynamic models are built from first principles (the equations of 
Newtonian mechanics, thermodynamics, radiative transfer, etc.), 
and embody deep knowledge and expertise. In general, good 
decision making rests on what-if models built from an 
understanding of causes and effects. 

Many systems, such as sales, weather, transportation, biology, 
and healthcare, have been studied individually by domain experts 
using first-principles simulation models. This is all really a part of 
a bigger life cycle: data and information feed experts who form 
hypotheses, create models based on domain knowledge (science 
and engineering, economics, etc.) and data, validate the models 
against data, and use the models for prediction. Modeling 
exercises, in turn, provide guidance and direction in obtaining 
further data. Expert models developed via this cycle yield better 
accuracy than just statistical methods against plain data. We could 
not, for example, derive a weather prediction model by merely 
analyzing weather data, nor should we try, because weather 
experts already have tremendous knowledge that can be exploited. 

Of course, data analysis can point the way for experts to look 
deeper; e.g., spot pancreatic cancer clusters so that experts can 
explore whether they are caused by groundwater chemicals, 
genetic components of disease, or other factors. But experts know 
so much more than can be discovered in the data or represented 
by even the best semantic descriptions and ontologies. Looking at 
data alone is a last resort, an admission that we have no other 
knowledge. Projecting sales of red shoes in Tucson in May via 
analytics may be made even more accurate and even more 
understandable if combined with the psychology of buying habits 
through agent-based modeling or a deep model of the impact of 
media and advertising.  

So the data work we’ve all focused on for 30+ years is just half 
the story.  As a community, we must incorporate models—not 
merely R scripts and user-defined functions—into our thinking, 
aiming ultimately to provide a more complete picture of how 
things work. 

Realization #4: This is especially true when trying to solve 
complex problems involving systems of systems. No one expert 
understands the workings of large complex systems that emerge 
from the interactions of already complex systems. A prime 
example is the health system, which includes not only healthcare 
and treatments but also advertising, education, agriculture, 
transportation, economics, government policies, and so on  [6]. 
Perhaps the best way to make sense of these is to combine models 
into larger composite system models (e.g.,  [4]), just as today we 
combine data in joins, subqueries, mashups, cubes, and so on. 

To do this, the key challenge is to facilitate integration of 
datasets, along with existing heterogeneous simulation models, 
statistical models, and optimization models, for the type of what-
if analysis that underlies prescriptive analytics. One research 
question is whether such models-and-data integration can be made 
feasible, practical, flexible, cost-effective, and usable. The Splash 
research prototype under development at IBM is our first attempt 
to address this question more broadly. 

3. THE MODELS-AND-DATA APPROACH 
Splash is a platform for integrating multiple deep domain models 
(especially dynamic simulation models) and data sources, making 
it easy to perform what-if analyses on a complex system of 
systems  [2]. Splash differs from standard simulation inter-

operability techniques  [2] [9], in which models are simultaneously 
executed and tightly coupled. For these, detailed knowledge of 
the participating models, and sometimes significant changes to the 
code, are required to achieve interoperability. In contrast, models 
in Splash are loosely coupled, meaning they can execute 
independently and communicate mainly via data, either through 
files, databases, or web-service calls.  

Consider a hypothetical policymaking scenario in which 
policymakers must understand which combination of 
interventions is most cost-effective for reducing obesity in the 
population. Specifically, the goal is to reduce population body-
mass index (BMI) by a certain percentage. The possible 
considerations to reduce BMI include: 

1. What if the transportation infrastructure in a certain 
neighborhood is improved?  

2. What if a supermarket that sells healthy and reasonably- 
priced food is built at a specific location? 

3. What if more exercise facilities are built in certain 
neighborhoods? 

Clearly, these what-if questions involve diverse factors—
transportation, shopping, and exercise facilities—and they are 
difficult to answer without deep predictive analytics  [11]. In fact, 
even with these three types of interventions, many combinations 
of parameters are possible, and they must be analyzed 
systematically to identify effective strategies for reducing obesity. 
Splash can be used to help determine the right combination—all 
the way from constructing a system of interacting models and 
data to analyzing what-if scenarios.  
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For the obesity scenario above, we created a composite model in 
Splash that takes account of individual food and activity choices, 
neighborhood traffic patterns, and the relationship between 
calorie intake and BMI (see Figure 1). Specifically, the composite 

model integrates (a) VISUM  [13], a commercial traffic flow 
simulation software package that can simulate different modes of 
public and private transport to determine the impact of traffic 
demand; (b) an agent-based model that simulates the grocery-

store shopping behavior of households over time  [1], taking 
account of food preferences, travel times to the grocery stores, 
and social factors, such as where neighbors shop; (c) a stochastic 
discrete-event simulation model of the use of exercise facilities; 
and (d) a Hall-Chow differential equation model of changes in 

BMI  [12] based on daily food consumption and physical activity. 
The output of the composite model is a time series of BMI values 
for each population member. These time series can be aggregated, 
visualized, and subjected to statistical analysis. 

In addition, we incorporated disparate data sources to feed the 
models for our what-if analyses.  Specifically, we used: (a) GIS 
data for a specific urban area, including road networks and zone 
configurations; (b) demographic data containing information 
about each person in a household, including age, weight, height, 
as well as nutritional characteristics of the food sold at each store; 
and (c) facility data containing information about types of 
exercise facilities that are used by the exercise model.  

 
 

Figure 1. Our integration of four obesity-related models with 
three datasets in an effort to help policymakers understand 
how one should invest—in transportation, store incentives, 
exercise facilities, in order to reduce obesity. 

 
In building the composite obesity model, we had to create a 
workflow of model execution and data flow, along with two 
specific data mappings to put the models and data sources 
together. (Simulation models can produce huge amounts of data, 
so scalability is an issue here—the prototype uses Hadoop to 
combine model outputs and demographic data.) To design data 
mappings in general, Splash currently relies on Clio++, an 
extension of the Clio  [5] mapping-design tool. Clio was originally 
developed in the context of data integration and data exchange to 
generate a mapping between source and target schemas through a 
visual interface. The Clio enhancements were needed to generate 
simulation-specific mappings that can handle mismatches in time 

and space that commonly occur between different simulation 
models. For example, the BMI model expects a time series where 
each simulation tick means one day has passed, but in the output 
of the shopping model, each simulation tick means two days have 
passed. Clio++ therefore generates a mapping that performs a 
time interpolation of the shopping-model output. Similarly, a 
geospatial alignment is performed between the zones in the 
VISUM model and the grid coordinates of the shopping model.  

To understand the semantics of models and to support both 
design-time model composition and run-time model execution, 
Splash uses metadata about models and datasets. Each model and 
data in the Splash repository is associated with a description. The 
description of a data source includes the schema, where the data is 
located, and other metadata such as ownership. The description of 
a model includes the type of simulation model, the input and 
output schemas of the model, the interpretation of time and space 
in the model, the invocation command, and so forth. 

 The Splash approach leverages the power of a community of 
experts and a range of individual modeling techniques, such as 
discrete-event modeling  [10], agent-based modeling  [3], or 
system dynamics modeling  [15], to deal with complex systems of 
systems. There have actually been a couple of efforts in the 
database community to combine what-if models and data in a 
fundamental way  [8] [17], but these have focused on individual 
models and not composite modeling, and indeed could be 
integrated into the Splash framework. 

4. RESEARCH CHALLENGES 
Putting models and data on equal footing opens up many 
directions for research. Indeed, we see many basic research 
problems for creating models-and-data-oriented “databases” that 
natively support what-if analyses: 

Searching for compatible models, data, and mappings. For 
different domain experts to collaborate on solving complex 
problems involving systems of systems, Splash must make it easy 
for each expert to search for models, data, and mappings that 
complement his or her area of expertise. Such a feature is crucial 
for the reuse of models, data, and mappings previously developed 
by the broad scientific and engineering communities. How can we 
help a domain expert easily find models, data, and mappings that 
are relevant and compatible, both functionally and semantically? 
The answers involve enhancements to (semantic) search 
technologies and repository management. Privacy and security 
issues are also relevant here. 

Simulation-oriented mapping generation. Simulation models 
are usually dynamic, evolving over space and time, and are often 
stochastic as well. Integrating such models and data requires 
techniques that go well beyond traditional algorithms for data 
integration and mapping generation. We know how to describe 
ordinary datasets through schemas and how to semi-automatically 
generate mappings between schemas. Can we extend this 
technology to simulation-specific mappings? Such mapping 
systems would need to deal with issues such as time and space 
alignment, automatic matching of measurement units, hierarchical 
models with data at different resolutions, and complex data 
transformations—e.g., converting raw stochastic simulation 
outputs to histograms that represent a steady-state probability 
distribution of a system characteristic of interest. 
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Simulation-experiment optimization. The problem of efficiently 
performing a simulation experiment—executing models, 
transforming data, and analyzing results—can be viewed as a 
significant generalization of the query-optimization problem.  
Techniques are needed for automatically reconfiguring parts of a 
simulation-experiment workflow among (possibly distributed) 
data and models, factoring common operations across different 
mappings in the workflow, and avoiding redundant computations 
over different experimental runs. Dealing with statistical issues, 
such as management of pseudo-random numbers and Monte Carlo 
replications, adds additional complexity  [18]. As discussed, 
scalability is a key issue as well. 

Deep collaborative analytics. Different outcomes that are 
produced by integrating deep domain models and data must be 
visualized, analyzed, and discussed to build trust in the results. A 
key question is how to explain our visualizations to ourselves and 
others. For example, can we reasonably explain why average BMI 
for high-income households does not decrease over time? Can we 
extend technologies for collaborative data analytics such as 
ManyEyes  [16] to handle collaborative modeling and analytics?  

Causality. Another fundamental challenge is dealing with 
bidirectional causality between models. For instance, it may be 
feasible to approximate such causality by running models 
independently but periodically exchanging data, in the spirit of 
 [17]. Providing (and justifying) such functionality poses both 
theoretical and system-design challenges. 

5. CONCLUSION 
Modern database technology effectively supports descriptive 
analytics. But deep predictive analytics—beyond statistical 
forecasting and based on understanding of mechanisms governing 
system behavior—are needed for complex decision-making, 
supporting prescriptive analytics and what-if analyses. Data plus 
models are what’s needed today. And this requires significant 
extensions of database technologies. There is a clear opportunity 
now for the data community to redefine itself as the models and 
data community, reflecting the entire process of solution 
discovery and integration. Data is dead… without what-if models. 
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