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ABSTRACT

Cloud-computing is transforming many aspects of data man-
agement. Most recently, the cloud is seeing the emergence of
digital markets for data and associated services. We observe
that our community has a lot to offer in building success-
ful cloud-based data markets. We outline some of the key
challenges that such markets face and discuss the associated
research problems that our community can help solve.

1. INTRODUCTION

New types of data markets are emerging. Facilitated by
cloud-computing, these data markets offer a convenient sin-
gle, logically centralized point for buying and selling data [4,
12]. Close behind are data “after markets”, enabled by
value-added services that derive data products (visualiza-
tions [16], dashboards [19]). These markets, however, are
still in their infancy. The economic and algorithmic prin-
ciples guiding the pricing of data, data products, and the
services that deliver them are largely unexplored. Exist-
ing pricing frameworks are simplistic and can exhibit unex-
pected and undesirable properties leading to, for example,
arbitrage situations, fairness violations, and unpredictabil-
ity. Further, the technology to facilitate these cloud-based
data markets and enforce pricing policies is underdeveloped.

There are two types of challenges in building a success-
ful cloud-based data market. One is related to the behav-
ior of agents (sellers and buyers) and the rules for success-
fully selling and buying data. This challenge belongs to our
colleagues in economics departments. There is, however, a
second challenge related to (1) deeply understanding how
the value of data is modified during data transformations,
integration, and usage, and (2) developing pricing models,
supporting tools, and services for facilitating a cloud-based
data market. This second challenge is of the competence of
the database community and is the challenge that we dis-
cuss in this paper. Our conjecture is that the lessons of data
modeling, management, and query processing developed by
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the database community over the last 40 years are necessary
and sufficient for overcoming this challenge.

It is important for the database community to be in-
volved because a cloud-based data market can have a sig-
nificant economic effect by incentivizing investment in high-
risk research and development. Indeed, such investments
frequently produce valuable information, but less frequently
proven, tangible products. A cloud-based data market fa-
cilitates monetization of such experimental data, benefiting
academic research and encouraging federal research funding.

A cloud-based data market can also democratize and
streamline the existing unmanaged data market. Most data
products today are purchased through offline negotiations
between providers and consumers, with only a small frac-
tion of data being sold online (e.g., [2, 7]). A cloud-based
data market provides access to “one stop shopping” for com-
panies, end-users, and application developers. Systems such
as Google Fusion Tables [9] and Many Eyes [16] have demon-
strated that ordinary users can take advantage of accessing,
correlating, and analyzing each other’s data. A cloud-based
data market can help these users find and acquire data. It
can also simplify the creation of value-added services by ap-
plication developers. Consider the market for weather fore-
cast data products — all such websites use the same handful
of sources for weather forecast simulations, yet collectively
constitute a $1.5 billion industry [14].

In this paper, we set a research agenda for the data man-
agement community to help in the creation of a successful
cloud-based data market.

2. MOTIVATION AND RELATED WORK

There already exist independent vendors selling data on-
line [2, 7]. Similarly, Amazon cloud users can already sell
their S3 data for a profit [3]. These autonomous vendor ap-
proaches give most flexibility to sellers in terms of pricing
models, but an organized market can facilitate data discov-
ery and the logistics of selling and buying data.

Multiple digital markets for data have recently emerged
in the cloud [4, 12]. These data markets enable content
providers to upload their data and make it available either
freely or for a fee through a query interface. In the case of In-
fochimps [12], the cloud provider sets prices: data consumers
pay monthly subscriptions that enable a maximum number
of queries (i.e., API calls) per month. Alternatively, data
providers set prices for users to download entire datasets.
The Azure DataMarket [4] also uses data subscriptions with
query limits: i.e., a group of records returned by a query
and that can fit on a page (currently 100) is called a trans-



action and each subscription is associated with a maximum
number of transactions per month. In this market, however,
content providers set the prices and query limits for sub-
scriptions. In both cases, the cloud provider takes a percent
cut of the content provider’s income.

There are several weaknesses with these existing market
pricing models:

First, per-query (or per-transaction) costs are irrelevant
when charging for the data itself; this model provides no
easy method to purchase data updates and forces data con-
sumers to cache the purchased data as they will be charged
repeatedly for accessing the same data.

Second, the pricing model can inadvertently lead to arbi-
trage situations, where using multiple smaller subscriptions
through different accounts is less expensive than using one
larger account. A class project at the University of Washing-
ton [1] found multiple arbitrage opportunities in the current
offerings in the Azure Data Market.

Third, the model assumes all tuples are of equal value.
When this assumption does not hold, savvy users can game
the query interface to earn more value than “fair” users.

Fourth, a provider can emulate different prices by parti-
tioning one logical dataset into multiple physical datasets,
each with different pricing tiers. However, data providers
have no principled way to set the pricing tiers, and the sys-
tems provides no guidance.

Today’s markets’ pricing models are thus inflexible, hard
to use correctly, and have undesirable properties. Existing
data markets also lack services such as an advisor for setting
prices, a market-enabled query processing engine that could
correlate independently-owned datasets, and more.

While the interaction between data management and eco-
nomics has been studied in the database research community
in occasional papers [8, 18], our community is currently not
involved in the creation of cloud-based data markets.

There is a rich literature on pricing information prod-
ucts [13, 17], which will certainly guide the pricing of data
in the cloud, and is complementary to our goal of providing
data management tools in support of a cloud data market.

3. MODELING DATA MARKETS

A variety of different candidate data models and pricing
models exist that may be suitable for reasoning about a data
market. Consider the following:

Simple Digital media is often sold under a model where the
market consists of a set of independent digital artifacts D,
where prices are assigned by a pricing function f : D — R.
This model is used, for example, by iTunes or the app stores
offered by mobile phone providers. This model does not dis-
tinguish derived data products from “raw” data, which pre-
vents the assertion of properties about their relative value.
Derived Data Product To capture the dependency re-
lationship between digital artifacts, we can adopt a model
(D, S, f), where D is a set of digital artifacts, S is a set of
services D x D x --- x D — D, and f is a pricing func-
tion D — R. With this model, we might assert the con-
dition that buying “raw materials” is always less expensive
than buying the derived data product — that services al-
ways add value. That is, given s € S, if z = s(xo, z1, ..., Tn),
then f(z) > f(zo) + f(z1) + -+ + f(xn). With this model,
we can, for example, express pricing schemes that recover
the cost of the computing resources required to execute the
service (e.g., using Amazon EC2). We can also express the
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r=380.01 t = 80.03 r+qg=30.03

s =805 u=80.04 p(0) = $0.15

Figure 1: Query price derivation for a tuple-based
pricing scheme using the pricing semiring formalism.

value-added visualizations and graphics used by the weather
forecasting industry. In that case, the raw data is free, but
the derived data products sometimes require a cost. This
model, however, includes no concept of time, and cannot
therefore express subscription-based pricing.

Subscription Users purchase N digital artifacts (tuples,
blog posts, updates, images) per unit time. The number
N may be infinite to model unlimited access (e.g., the Hulu
Plus television service [11]). The time period might typically
be a month, but might be as short as minutes to model cloud
computing services (e.g. CloudSigma [6]). The Azure Data
Market uses this model with the extension of tiered pricing
— different values of IV result in different prices per unit.
Relational If the digital artifacts are tuples arranged into
relations, we might wish to reason about the prices of query
results given the prices of the base data. No current data
markets offer such a capability.

4. RESEARCH OPPORTUNITIES

We present some of the key challenges for the database
community related to a relational cloud data market.

4.1 Enabling Fine-grained Data Pricing

An initial challenge for the database community is to de-
rive a pricing model that can capture all of the above models.
By doing so, one gives content providers maximum flexibility
to explore pricing strategies for the cloud data market. The
goal is not to impose how pricing should be done but rather
to develop tools that will help content providers price their
data in a principled fashion with properties and side-effects
that can be verified. For example, consider buying a sub-
scription to a real estate map showing commercial properties
that were renovated. The price could reflect the visualiza-
tion service that created the map (Derived Data Product
model), the value-added from joining disparate sources to
create the map (Relational model), and a monthly fee to
access the site (Subscription model).

One possible pricing model is for the content provider to
specify four items: (1) the structural granularity at which
prices are attached to data (cell, tuple, relation, schema, col-
lection), (2) a base data pricing function assigning a price to
each element at the chosen granularity in the base data, (3)
a derived data pricing method specifying how query result
prices are calculated from base data and propagated through
query operations, and, optionally, (4) a subscription model
specifying how updates to query results are priced (e.g., does
the user receive free continuous updates or not).

Based on this pricing scheme, the system will objectively
compute the value of derived data. A data consumer reads
data by issuing SQL queries, and is charged for the result.



Figure 1 illustrates an example pricing calculation (we de-
scribe the figure further below).

For example, a microbiologist charges for access to her ge-
nomic data for a particular organism. The value of this data
corresponds to the value of the genes found within it, so the
provider sets prices at the structural granularity of the tuple,
and assigns a pricing function that determines price based
on the existence of the sequence in a public database. Tuples
not present in the database command a higher price, corre-
sponding to their higher utility. The subscription model is
one-time access, meaning that the charges are incurred on
a per-query basis. The derived pricing method assigns a
fixed cost to all COUNT results, and an average cost for all
other aggregates. Further, use of a custom sequence simi-
larity function incurs a charge for each invocation, since it
incorporates IP-protected knowledge about the quality of
the reads produced by the sequencer.

We still must consider how to define the pricing functions.
We assume each tuple is assigned an individual price. The
task is to automatically derive the price of any query result.

Pricing as provenance One approach is to use lineage
(i.e., provenance) of data to compute the price of each out-
put tuple. First, we model the price of a base tuple as a
provenance annotation. Then, we can compute the price
of the result of each operator: The join of two tuples is
the sum of their two prices, and we take the minimum
price during duplicate elimination. For example, the price
of each item returned by the query select distinct lon,
lat from sensor is the smallest price of all sensor records
at a given longitude and latitude. This pricing scheme is
captured elegantly in the framework of provenance semir-
ings [10]: the price semiring is (R", min, 4, 00,0). Other
pricing semirings are possible. An example price calculation
using the pricing semiring is illustrated in Figure 1.

Submodular pricing The semiring formalism does not
capture all pricing functions we would like to support. One
example is a submodular pricing function: Given two output
results D; and Dz, a function price : D — R is submodu-
lar if when D; C Dy then price(D; U {t}) — price(D1) >
price(D2 U {t}) — price(D2).

In summary, several options are possible for Fine-grained
Data Pricing that require a systematic investigation by the
data management community.

4.2 Making Fine-Grained Pricing Efficient

Supporting the above model in the cloud raises multiple
systems challenges. The basic challenge is how to efficiently
compute the price of a query result. One approach is to
compute the provenance expressions for all result tuples.
The benefit of this approach is that the system can combine
these expressions with additional pricing functions if needed
before computing the final query result price. For example,
an additional pricing function could give a discount on the
base data prices when a query touches more than a certain
number of base tuples. A challenge, however, is to achieve
high efficiency as the provenance expressions grow. An al-
ternate, more efficient approach, is to develop an extended
relational algebra that is price-aware. With this approach,
all base tuples are first annotated with their individual per-
tuple prices. Second, each operator combines the price of its
input tuples to derive the price of the corresponding output
tuples. For example, using the pricing semiring above, a join
operator adds the prices of the two joined input tuples to

produce the price of the output tuple. With this extended
relational algebra approach, we are incrementally evaluating
the provenance expression for each result tuple. This sec-
ond approach, however, works well only when prices are set
at the granularity of tuples or cells and does not allow for
complex pricing schemes such as submodular pricing.

4.3 Reasoning about Pricing Properties

Another contribution that the database community can
make is to study the properties of various pricing models
such as efficiency and fairness [15] in the context of a re-
lational data market. Consider fairness. Economically, the
fair value of a product is the amount at which it could be
bought or sold in a current transaction between willing par-
ties, or transferred to an equivalent party, other than in
a liquidation sale.® A fair pricing model should price all
query outputs at their fair values, but designing a fair pric-
ing scheme for data is far from trivial: e.g., if an owner sells
her data in bulk, but the buyer can resell it item by item at
a higher profit, then the prices are unfair, and will destabi-
lize the market in the long term. Even the current pricing
of Web services (in particular Amazon’s pricing scheme) has
been shown in a recent study to be unfair [20]. The database
community can help in studying the inter-play of pricing and
query processing: perhaps the base-data prices do not allow
for arbitrage but the latter can occur with savvy purchase
of specific query outputs.

4.4 Making Pricing Models Usable

Models that are general and expressive may have good
market properties but they may be difficult to understand.
Complex pricing models negatively impact content providers
who must figure out how to price their data using these mod-
els and consumers who want to purchase that data. There
is evidence that simple pricing models are more attractive
to buyers (e.g., the iTunes flat price per song model).

We identify two properties that pricing models must have
in order to be usable. Other properties may also be needed
The first property is comprehensibility: a content provider
must understand the income that he is making from selling
his data and a data consumer must understand the pay-
ments she is asked to make. To ensure comprehensibility,
just as cell phone companies send users detailed listings of
the calls they made and text messages they sent, the cloud
provider will have to send detailed usage reports to both
data consumers and providers. Data lineage is the natural
answer to explain the price paid for each query result tu-
ple. The challenge will be in summarizing and presenting
lineage information to non-database experts in the context
of possibly large numbers of data purchase operations.

The second property is predictability. Content providers
want the ability to estimate monthly incomes. Content con-
sumers want to estimate monthly charges. Predictability is
at odds with fine-grained pricing: A flat subscription rate
(e.g., unlimited calling for $25/month) leads to much more
predictable charges than a pay-as-you-go (e.g., $0.01 per
minute) approach. Unpredictability can be especially high
in a data market where consumers are not only charged for
the number of records that they purchase but for the record
values and how these values were derived. One approach to
addressing this challenge is to develop price-tuning advisors
similar in spirit to physical-tuning advisors [5]. For a data
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provider, a price-tuning advisor can help determine what
pricing model to adopt to maximize profit given a workload
description in the form of queries and associated expected
frequencies. The tuning advisor can also produce income
estimates. For a consumer, a price-tuning advisor can com-
pute estimated charges based on given data pricing models
and a predicted workload on that data. In case of parameter-
ized queries, the advisor could provide error bars to capture
price uncertainties due to different query parameter values.

Another usability challenge is to help a content provider
specify the functions for pricing base and derived data. One
approach to facilitate this task is a statistical one. Let the
content provider specify a number of concrete query tem-
plates and the prices of their results, and have the system
automatically compute the cost of other query outputs: e.g.,
the owner specifies $0.50 for the output to a query tem-
plate select * from OceanProbe where depth = $d and
another price $0.15 for select * from OceanProbe where
long = $lon and lat = $lat. If the user issues a query
that matches these templates, then the system will charge
accordingly. If the user issues a different query, say select *
from OceanProbe where month = ’May’, then the system
will have to compute the price through interpolation. One
approach is to reverse-engineer base-data prices and the
functions for computing derived data prices from the query
templates (through curve fitting), and use these reverse-
engineered prices to price other query results.

4.5 Building Data Market Services

A data market will require a battery of services to support
content providers and consumers. Due to space constraints,
we only sketch four such services here as examples:

A price-aware query optimizer. As the number of con-
tent providers and the overlap in available data will grow,
price-aware query optimization will become possible. Unlike
the Mariposa [18] system, which put a price on resources and
query latencies, here the price is on the data, which raises
several new challenges. First, query prices need to be esti-
mated with the potential for errors. These estimates may
involve manipulating complex lineage expressions, yet they
must be performed fast when they are on the critical path
of a query optimizer. An interesting related challenge will
be to study the robustness of different pricing schemes to
estimation errors and the possibility to associate error bars
to capture price uncertainty for different query results.

A property checker. As content providers price their base
and derived data products, they may benefit from tools that
can check important properties of their pricing scheme, such
as whether the scheme is arbitrage-free or not.

A price-tuning advisor. As described above.

Data transforming services. In addition to data, users
may be interested in purchasing services that transform the
data in various ways: e.g., a content provider could use a
data anonymization service before making her data avail-
able. A data consumer could use a data cleaning service af-
ter purchasing and integrating data from multiple sources.
In general, many data management services that our com-
munity has already developed or has the ability to develop
can be useful in the context of cloud-based data markets.

4.6 Additional Challenges

There are other challenges that we do not have space to
discuss. For instance, while a cloud-based data market is
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well-suited for selling data en masse, there will always be
a need for negotiating custom data products. How can
such private negotiations co-exist with the data market?
As developers build new services (e.g., data anonymiza-
tion services), what pricing models are most appropriate
for such services? If content providers elect to use simple,
coarse-grained pricing models (in the spirit of the iTunes
pricing model), can our price-tuning advisor help convert
fine-grained prices with good efficiency, fairness, and other
properties into coarser-grained ones with similar properties?
Can we develop techniques to account for properties such as
cleanliness or degree of anonymization when pricing data?

5. CONCLUSION

We discussed the implications of the emerging cloud-based
data markets on the database research community. Our
community has a great opportunity in making a significant
impact on these data markets, while solving exciting data
management research challenges.
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