
Guided Interaction:
Rethinking the Query-Result Paradigm

Arnab Nandi
Dept. of EECS

University of Michigan, Ann Arbor

arnab@umich.edu

H. V. Jagadish
Dept. of EECS

University of Michigan, Ann Arbor

jag@umich.edu

ABSTRACT
Many decades of research, coupled with continuous increases
in computing power, have enabled highly efficient execution
of queries on large databases. In consequence, for many
databases, far more time is spent by users formulating queries
than by the system evaluating them. It stands to reason
that, looking at the overall query experience we provide
users, we should pay attention to how we can assist users in
the holistic process of obtaining the information they desire
from the database, and not just the constituent activity of
efficiently generating a result given a complete precise query.

In this paper, we examine the conventional query-result
paradigm employed by databases and demonstrate challenges
encountered when following this paradigm for an informa-
tion seeking task. We recognize that the process of query
specification itself is a major stumbling block. With cur-
rent computational abilities, we are at a point where we can
make use of the data in the database to aid in this process.

To this end, we propose a new paradigm, guided interac-
tion, to solve the noted challenges, by using interaction to
guide the user through the query formulation, query execu-
tion and result examination processes. The user can be given
advance information during query specification that can not
only assist in query formulation, but may also lead to aban-
donment of an unproductive query direction or the satisfac-
tion of information need even before the query specification
is complete. There are significant engineering challenges to
constructing the system we envision, and the technological
building blocks to address these challenges exist today.

1. INTRODUCTION
The explosion of information in today’s world has made

direct human interaction with data a common occurrence.
Unlike the past where a domain-specific application layer
was responsible for the communication between the user and
the database, today’s users commonly consume data in its
raw form, e.g. through spreadsheets, keyword search en-
gines, music libraries and social networking websites, each

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 37th International Conference on Very Large Data Bases,
August 29th - September 3rd 2011, Seattle, Washington.
Proceedings of the VLDB Endowment, Vol. 4, No. 12
Copyright 2011 VLDB Endowment 2150-8097/11/08... $ 10.00.

Interact	   Op+mize	   Execute	  

Query	   Query	  Plan	   Result	  Intent	  

Rapid Iteration 

“frontend” tasks: O(mins) typical database system: O(seconds) 

Figure 1: Construction of a database query is of-
ten challenging for the user, commonly takes longer
than the execution of the query itself, and does not
use any insights from the database. We propose
(shown in dashed lines) that this process be consid-
ered as a fundamental part of the database query
paradigm, enabled by guided interaction.

of which surface a plethora of rich, heterogenous structured
data. Given the wide variety of ways in which users may
want to access these pieces of data (e.g. a user may want to
search their social network for friends with common tastes
in music,) it is intractable to conceive an application layer
for each intent. Further, as the rate of interaction with data
increases, the heterogeneity of the information need and the
expectations of time efficiency also increase. These patterns
are not just restricted to the end-user: ad hoc querying and
querying with diverse or approximate intents is also becom-
ing an increasingly popular use case in data warehouses,
where unfamiliarity with data is a significant challenge.

Since the inception of databases, the model has constantly
been that of a query and a response. The query has typically
been assumed to be precise and unambiguous, and running
it on a database produces an expected answer. We observe
that this is only one part of the data interaction process.
Often, more time is spent constructing the query and famil-
iarizing oneself with the data, schema and query language
than actually executing the query (we will see an example
of this in Sec 2.) Further, despite being declarative, queries
are typically highly iterative and incremental in construc-
tion. In Fig. 1, we articulate the traditional process of going
from Query to Query Plan by using an optimizer, followed
by execution of the plan to generate Results. In the same
figure, we point out that while the latter steps are well ar-
ticulated and researched, the process of going from a user’s
Intent to an unambiguous structured Query has typically
been considered a “front-end” or query modeling task, de-
picted by the dashed box. Even if one were to put user
convenience aside, even purely from a system performance
perspective, we note that bad queries (e.g. searching against
the wrong table) often cost much more (too many results,
scan of an unindexed table, etc.) than the correct query.

1466



Databases are now part of a rapidly changing landscape.
Query execution is typically fast enough that a significant
part of data interaction is expected to be done in real time,
at least for databases of moderate size. The increased avail-
ability of computational resources now allow us to process
and digest data in a much more comprehensive manner than
before. Given these changes, it is clear that we are at a point
where we can make use of data and computational power
not only to execute queries efficiently, but also help the user
form these queries in the first place.

In traditional database systems deployment, the solution
to the query specification problem is either to have a human
expert database administrator (DBA) or to have a carefully
constructed application interface. While a DBA is usually
knowledgable about the schema, data and indexes in the
database, it can be expensive and time-consuming to con-
sult such an expert for each user query intent. Application
interfaces, on the other hand, suffer from providing a very
limited access to underlying databases. There is usually no
support for users with queries that were not envisaged by
the application designer. Neither solution supports direct
interaction of the user with the data.

Given this scenario, there is a pressing need for systems
that enable direct user interaction with databases. However,
based on the challenges presented in the next section, we
need to approach this problem in a principled manner such
that all challenges are dealt with. To this end, we describe
a paradigm called guided interaction, a tractable solution
that can be incorporated into existing database systems.

Contributions: In this paper, we propose a framework for
interaction with the database that assists users to form pre-
cise queries from vague query intent. We observe that the
data itself can be used to support this interaction paradigm.
We describe guided interaction, comprising three principles
for efficient data interaction, requiring that database inter-
faces be guided, responsive and intuitive for the end user.

2. AN EXAMPLE
We use an often-encountered situation to better explain

the challenges associated with interacting with databases:

Alex and Bob are new employees. Alex is new to comput-
ers, while Bob is an expert at databases. They met a senior
person at the company orientation who would make a great
mentor, but they have unfortunately forgotten what her name
was; all they remember is that she was manager of a small
group of researchers. While they both have full access to a
corporate social network “LinkedBook”, and the company’s
employee database, finding her name and contact informa-
tion still seems to be a daunting task.

We will use this scenario to explore two possible use cases:
one where Alex is new to computers, and one where Bob is
an expert at SQL. In both these use cases, we will demon-
strate that there are challenges common to both scenarios.

Naive user Alex: Alex logs in to the social network Linked-
Book, and is presented with a wide variety of pages, sections
and “advanced search” forms, each with a large number of
fields. He skims each of them, trying to piece together all
the information he has and determining which form is most
applicable. After a few minutes of browsing around, he finds
a faceted search interface [8] and naively issues a query for

everyone in his company: this yields an unhelpful set of
thousands of results, which he reformulates by looking at
the facets. He then realizes that he cannot find a facet to
drill down by “seniority”, but there is an “age” facet. Not
knowing what the proper age for a manager is, Alex has
to go back to a different “Birthday Search” form which al-
lows him to search for people’s birth dates. He uses this
to browse through some employee profiles, gauging that the
average manager is around 50 years old. He uses this infor-
mation to drill down to a small set of managers, and selects
“Databases” and “Theory” as two departments to further
look into, resulting in a successful search.

As we can see, performing a simple employee search took
a large number of refinement steps, including one where the
user had to abandon a query session to look up external
information (relation between seniority and age.) Clearly,
regardless of how efficient the end-user interface was, the
lack of complete information made it impossible to find this
information in a single step.

Database Expert Bob: Bob preferred to express his in-
formation need in SQL. Given that the employee database
is large and comprises about 50 tables, he must first list all
the tables and inspect the schema:

SHOW tables;

And then for each table, he inspects the columns (there are
10-100 columns in each):

DESC tables; // assume this lists schema for all tables

After a little reading, he gains enough familiarity with the
database to construct some SQL queries. He executes them
carefully, worrying about bogging down the server with an
investigative query that involves more data than he expects.
After many minutes of trial-and-error, he solves the problem
by performing two SQL queries:

SELECT emp.project, COUNT(*) as c, AVG(emp.age) AS a

FROM emp JOIN dept ON (emp.deptID = dept.ID)

GROUP by emp.project ORDER BY c ASC,a DESC LIMIT 3

SELECT emp.name,emp.cubicleID

FROM emp JOIN dept ON (emp.deptID = dept.ID)

WHERE dept.name=‘Research’ AND emp.project=’DatabasePrj’

AND emp.designation=’Manager’

He uses the first query to identify which project the man-
ager was on by browsing the list of projects. Then, he picks
the most plausible project from the first query and adds it
as a predicate to the second query, which performs the join
again. Initially he tries “TheoryPrj”, but notices that the
employees are all on a different campus, and decides to try
the next project, “DatabasePrj”, resulting in a successful
search. As we can see, performing a single final SQL query
took more than a few intermediate SQL queries. It was not
possible to fold all of them into a single declarative step. In
addition to the user challenges, let us consider the execu-
tion times. The employee database is comprised of a few
hundred million tuples in its entirety, consuming less than
15GB with all possible indexes built. Such a database was
easy to store completely in memory even with a medium-
grade server (i.e. sub-2000$) machine, and even expensive
JOIN queries took less than 30 seconds. Much of Alex and
Bob’s time was spent constructing the right query in
an incremental fashion, and running several queries that re-

1467



turned irrelevant answers, some of which involved wasteful
scans of the entire database.

3. CHALLENGES
Both our users faced similar hurdles in their querying

process, regardless of their skill level. The challenges they
faced resulted in a time-consuming query session and waste-
ful querying of the database. To understand the challenges
better, we categorize them into four classes:

Lack of Knowledge: The primary challenge encountered
when dealing with data is the knowledge required to query
it. First, the user needs to be familiar with the query lan-
guage at hand. Second, the user needs to be aware of the
schema, to be able to construct the right query. Third,
awareness of the values of the database, i.e. the data is also
important; so as to provide the right set of predicates in the
query. In our example, the user was required to construct a
JOIN on two tables and filter on “Research”, which requires
knowledge of all three. In the absence of this knowledge, the
user has to resort to trial-and-error, issuing wasteful and re-
dundant queries just to understand the database.

Dependency of Information: An important observation
is that the construction of the query itself often requires in-
formation from the database. While there are cases where
this can be declaratively specified as a subquery (represented
either as an outer JOIN, a nested query or even a conditional
IF/THEN expression in a scripting language wrapped around
SQL,) the intermediate information may be in a form that
cannot be represented as a subquery. For example, Alex’s
decision that age is a good representative of employee senior-
ity is possible only by looking at the data and corroborating
with current knowledge about coworkers, an expensive in-
termediate step.

Iterative and Incremental Querying: An important
consideration is that the cognitive capacity of the user is
in fact limited [5]. While it may be possible to construct
a single declarative query for many complex tasks, the hu-
man in the loop has a small finite memory. This limita-
tion is overcome by rapid iteration and incremental con-
struction of the query at hand. First, a simple query is
constructed and executed on the database. Then, more
complex predicates are added and the query re-executed,
until the desired query is constructed and a satisfactory
result is achieved. This paradigm of querying is both in-
cremental and iterative: the query is constantly evolving
during the query session, and the user is going through the
intent→query→execution→result process many times. Due
to the independence of queries, any notion of state is com-
pletely ignored, resulting in expensive requerying.

Imprecise Query Intent: The first three challenges make
it harder for the user to express his intent. Another chal-
lenge is that the user may not have precisely expressed intent
in the first place. In our example, when mapping concepts
to elements in the schema, Bob has no way to map the fact
that a group of people is represented by people who share the
same emp.project, even after reading the schema documen-
tation. The only way to confirm this is to actually execute
the query and assess the results, and ensure that they are
satisfactory (in our case, we execute the query and ensure
that projects usually comprise 10-100 people.) Again, the

database has to execute various trial-and-error queries that
test various hypotheses for the user.

4. PRINCIPLES OF GUIDED INTERACTION
Based on these challenges, it is clear that we need to

rethink the query-result paradigm for today’s data-related
tasks. As we have seen with interactions on the Web, end-
users benefit heavily from responsive, interactive applica-
tions, such as instant web search and maps. We recognize
these advantages and believe that they will prove just as use-
ful in the database setting. By aiding the user in navigating
the database, and by providing fluid and instantaneous feed-
back on their actions, it is possible to solve the challenges at
hand. As a result, in this section we propose guided interac-
tion, which is comprised of three complementary principles
to follow when designing a database system. These princi-
ples hold true irrespective of the interaction mode, whether
SQL, form-based, or imprecise keyword search.

Enumeration: The database is responsible for effectively
enumerating possible valid interactions with the data.
By enumerating all possible queries to the user, we replace
the burden of database (schema, data and query language)
knowledge with a set of options presented in friendly ways to
the user. In our example, prefix-matched column:value pairs
from the database could be presented on each keystroke, en-
abling a successful search for “DatabasePrj” using automatic
query completion (autocompletion.)

Insights: The database must attempt to surface as many
insights from the data as possible.
In order to remove the informational dependencies observed
in the previous section, the system should prompt the user
with unsolicited insights into the data, such as value dis-
tributions or information mined from the data (association
rules, template patterns, data clusters.) Like query frag-
ment suggestions, the goal of these insights is to aid the
user in expressing their original information need. Thus,
the presentation of the insights needs to be done so as not
to overwhelm the user, but at the same time present in-
formation most likely to be useful. We refer the reader of
a wide body of prior work in the area of mixed-initiative
models [11] that solves this problem. In our example, sur-
facing the correlation between age and seniority to the users
would have helped them pick the right column to search for.

Responsiveness: All interactions must be instantaneous
even if inaccurate.
Traditional query processing generates correct and complete
answers, however long that takes. During query formula-
tion, the user needs a sense of the data (“insights”,) but
these are useful only if they come quickly, i.e. while the user
is actually entering the query. Therefore, we require that
the database system be constantly responsive, even at the
price of accuracy. The introduction of a finite time limit
(100ms has been shown [3] to be an acceptable threshold for
perceptibly instantaneous interactions) forces us to rethink
many of the computations performed. In our example, the
users may trigger an expensive query (e.g. complex JOIN on
all employees) that could run for hours with no indication
or guarantee of success. We propose to augment existing
systems with summary data structures that can provide ap-
proximate answers quickly to the user, deferring to the ac-
tual database for a more accurate answer when it is ready.

1468



5. RELATED WORK
Database Usability: While there is a body of work on
making database systems usable [12], ranging from in schema
summarization to query interfaces, it still conforms to the
existing query-result paradigm. Guided interaction blurs
the line between query and result, in order to satisfy the
user’s information need more effectively.

Query Construction: A large variety of interfaces have
been built to aid construction of database queries; e.g. Query-
By-Example [18], which allows the user to express the query
using examples of what a result might look like. These sys-
tems require the user to be familiar with the data model they
are querying against, which may not be true for the naive
user. An alternative approach is to eschew all structure in
the input query and assume that the query is a bag of words.
Systems implementing keyword search in databases [17] ac-
cept a set of keywords as a query, and heuristically generate
a collection of results. This paradigm fails to surface insights
such as the data and the schema to the user, and forces the
user to perform trial-and-error queries. To aid the user in
constructing queries, web search engines provide query com-
pletion based on past query logs. In [16], autocompletion is
used to suggest predicates to the user in order to create con-
junctive SELECT-PROJECT-JOIN queries. In a similar light,
work has also been done to use mine SQL query logs to de-
rive and suggest reusable query templates [13].

Iterative Querying: In contrast to autocompletion, the
concept of find-as-you-type allows the user to quickly iter-
ate through the query process by providing results on each
keystroke. In Completesearch [4], Bast et al. modify the in-
verted index data structure to provide incrementally chang-
ing search results for document search. In the information
retrieval area, Anick et al. [2] achieve interactive query re-
finement by extracting key concepts from the results and
presenting them to the user. Faceted search [8] extends this
to present the user with multiple facets of the results, allow-
ing for mixing of search and browse steps.

Online, Adaptive and Approximate Querying: The
work done in the AQUA [1], CONTROL [9] and Telegraph
projects [10] focus on surfacing approximate answers to the
user in an online fashion using sampling-based techniques.
This aligns well with the responsiveness requirement de-
scribed in Sec. 4, and can be considered be an excellent ex-
ecution of this requirement. However, in addition to being
unfamiliar with the results, guided interaction posits that
the user is also unfamiliar with the data, schema and the
query language itself, motivating the need for enumeration
of all possible interactions with the database. This is in con-
trast to the traditional approach of using a distance metric
to infer a best-effort exact relational query from approxi-
mate queries [15].

Presentation of Results and Insights: The principles
of insights and enumeration pose an important challenge:
how does one combine and present feedback from each iter-
ation to the user? This issue has been discussed at length in
the context of mixed-initiative user interfaces [11], by em-
ploying multiple agents, where each agent can contribute
to the task that it does best. This approach can be used
to expose insights from the data based on the expectation
of each query. In addition to prioritization, the need for
visualization of results is an important component, espe-

cially for analytical queries [6] . Interactive data mining
has been approached by implementing query languages and
combining them with an easier-to-use visualization layer [7].
Tableau [14] performs this by translating VizQL queries to
SQL, leveraging the query optimizer to remove inefficiencies.
These platforms are excellent candidates for guided interac-
tion, since we can incorporate the enumeration and insights
as visual cues.

6. CONCLUSION
In this paper, we propose guided interaction as a paradigm

for data interaction. We point out shortcomings with the ex-
isting query-result model, extracting challenges encountered
that can be addressed by adhering to three core principles.
We mandate that databases be responsive to the user, that
all possible actions be enumerated so as to allow discovery
and exploration, and that the database preemptively deliver
insights to aid in query construction. These principles are of
value independent of user capability and the specific inter-
action interface, whether that be SQL-writing, form-filling,
keyword-typing or any other interface. We suggested how
information in the database can be leveraged to guide a user
during query construction by following these core principles.

7. REFERENCES
[1] S. Acharya, P. Gibbons, and V. Poosala. AQUA: A Fast

Decision Support Systems using Approximate Query
Answers. VLDB, pages 754–757, 1999.

[2] P. Anick et al. The Paraphrase Search Assistant:
Terminological Feedback for Iterative Seeking. SIGIR,
pages 153–159, 1999.

[3] B. Bailey et al. The Effects of Interruptions on Task
Performance in the User Interface. INTERACT, pages
593–601, 2001.

[4] H. Bast and I. Weber. Completesearch: Interactive,
Efficient, & Towards IR/DB Integration. CIDR, 2007.

[5] B. Britton et al. Effects of Prior Knowledge on Use of
Cognitive Capacity. Verbal Learning & Behavior,
21(4):421–436, 1982.

[6] U. Fayyad, G. Grinstein, and A. Wierse. Info. Vis. in Data
Mining & Knowledge Discovery. M. Kaufmann, 2002.

[7] M. Ferreira de Oliveira and H. Levkowitz. Visual Data
Exploration to Visual Data Mining. Visualization &
Computer Graphics, pages 1–8, 2003.

[8] M. Hearst. Design Recommendations for Hierarchical
Faceted Search Interfaces. ACM Faceted Search, 2006.

[9] J. Hellerstein, R. Avnur, et al. Interactive Data Analysis:
the Control Project. Computer, 32(8):51–59, 2002.

[10] J. Hellerstein et al. Adaptive Query Processing: Technology
in Evolution. TCDE, pages 7–18, 2000.

[11] E. Horvitz. Principles of Mixed-Initiative User Interfaces.
Human Factors, pages 159–166, 1999.

[12] H. Jagadish et al. Making Database Systems Usable.
SIGMOD, pages 13–24, 2007.

[13] N. Khoussainova et al. SnipSuggest: A Context-Aware
SQL-Autocomplete System. PVLDB, 4(1):22–33, 2011.

[14] J. Mackinlay, P. Hanrahan, and C. Stolte. Automatic
Presentation for Visual Analysis. IEEE TVCG, pages
1137–1144, 2007.

[15] A. Motro. VAGUE: A user interface to relational databases
that permits vague queries. TOIS, 6(3):187–214, 1988.

[16] A. Nandi and H. Jagadish. Assisted Querying Using
Instant-Response Interfaces. SIGMOD, page 1156, 2007.

[17] M. T. Ozsu, L. Chang, and J. Yu. Keyword Search in
Databases. Morgan & Claypool Publishers, 2010.

[18] M. Zloof. Query-By-Example: a Data Base Language. IBM
Systems Journal, 16(4):324–343, 1977.

1469


