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ABSTRACT
Computing architectures change towards massively paral-
lel environments with increasing numbers of heterogeneous
components. The large scale in combination with decreas-
ing feature sizes leads to dramatically increasing error rates.
The heterogeneity further leads to new error types. Tech-
niques for ensuring resiliency in terms of robustness regard-
ing these errors are typically applied at hardware abstraction
and operating system levels. However, as errors become the
normal case, we observe increasing costs in terms of com-
putation overhead for ensuring robustness. In this paper,
we argue that ensuring resiliency on the data management
level can reduce the required overhead by exploiting con-
text knowledge of query processing and data storage. Apart
from reacting on already detected errors, this was mostly
neglected in database research so far. We therefore give a
broad overview of the background of resilient computing and
existing techniques from the database perspective. Based on
the lack of existing techniques on data management level, we
raise three fundamental challenges of resiliency-aware data
management and present example use cases. Finally, our vi-
sion of resiliency-aware data management opens many direc-
tions of future work. Fundamental research, including the
partial reuse of underlying mechanisms, would allow data
management systems to cope with future hardware charac-
teristics by effectively and efficiently ensuring resiliency.
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1. INTRODUCTION
Physical limits of processor design such as minimal size of

transistors and power-thermal constraints of high frequency
processors [6, 19] caused a fundamental change of comput-
ing architectures towards large-scale parallel systems that
will also continue in the future. This especially includes an
increasing number of cores and an increasing heterogene-
ity of computing components and interconnects. Multi- and
many-core systems have become standard nowadays and the
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development will lead to hundreds, thousands and more of
cores per processor. Heterogeneity of cores and intercon-
nects also increases substantially: future systems will there-
fore most likely consist of few high frequency cores, many low
frequency cores and special purpose cores [19]. An example
for this trend is the Intel Sandy Bridge ring architecture,
which already connects GPU and CPU cores on the same
die. In the long term, new technologies such as Memristors,
Carbon Nanotubes, Silicon Nanowires as well as biological
and chemical components might be included in such archi-
tectures that will further increase the heterogeneity.

The increasing number of components inherently leads to
increasing system error rates. Assume a fix error probability
per component (core or transistor). As the number of com-
ponents increases, the total error probability of the overall
system, i.e., at least one component fails, increases linearly
with the number of components [25]. Furthermore, com-
ponent error rates even increase due to decreasing feature
sizes [6] or due to new technologies. Errors and error-prone
computation will therefore become the normal case.

So far, the detection and correction of permanent and
transient technical errors are mainly addressed at hardware
abstraction layers and operating system level; technical er-
rors therefore received little attention in database research.
The major problem of ensuring a low overall error probabil-
ity by these abstraction layers are dramatically increasing
reliability costs (overhead) with increasing number of com-
ponents [2]. From a data management perspective, we are
able to reduce these costs because we ”only” need to en-
sure correct outcomes in terms of query results. Hence, we
argue that resiliency-awareness at data management level
can provide higher effectiveness (higher detection rates) and
efficiency (lower overhead) than general purpose techniques.

The primary contribution of this paper is to introduce
the challenge of resilient (error-aware) data management
in order to cope with changing hardware characteristics by
exploiting context knowledge of query processing and data
storage. Furthermore, we make the following more concrete
contributions, which also reflect the structure of the paper:

• First, we explain the background of resiliency includ-
ing error types and reasons in Subsection 2.1.

• Second, we discuss existing techniques from database
research in Subsection 2.2.

• Third, we derive three fundamental challenges of re-
silient data management in Section 3.

Finally, we conclude the paper in Section 4 with a summary
of our vision of resiliency-aware data management.
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2. BACKGROUND OF RESILIENCY
To assist the reader in understanding the vision of re-

siliency-aware data management, we first describe the back-
ground of types and reasons of errors. Second, we also
present existing techniques from database research.

2.1 Types, Reasons, and Rates of Errors
Taxonomies of dependable systems [3] distinguish faults

(technical defects or variability), errors (system-internal
misbehavior), and failures (system-external misbehavior).
Due to hierarchically structured data management systems,
i.e., a failure at a system level is a fault at the next level,
we globally use the term error. We further distinguish static
(hard errors, permanently corrupted bits) and dynamic er-
rors (soft errors, transiently corrupted bits) [6, 25]:

• Static Errors [6]: For small transistor sizes, there is
transistor variability due to different electrical charac-
teristics of random dopant atoms fluctuation. In ad-
dition, the sub-wavelength lithography is a reason for
line edge roughness and other effects in transistors.

• Dynamic Errors: Heat flux variations cause time-
dependent, dynamic, supply voltage variations and
thus, dynamic errors [6]. Furthermore, energetic alpha
particles and neutrons (from cosmic ray) cause increas-
ing charges that might dynamically invert the state of
a logical device (e.g., SRAM cell, latch, gate) [25].

Finally, it is worth to note that component aging might lead
to increasing static and dynamic error rates over time [22].

In order to prevent silent errors (silent computation/data
corruption, mainly by dynamic errors) typically basic error
detection techniques are employed to enable a fail-stop be-
havior [25]. Depending on the used error correction code
(ECC) [8], the error is corrected automatically, or if the
number of affected bits exceeds certain limits, it is reported
as an uncorrectable error [22] or it even remains undetected.
We use the terms of implicit (silent) and explicit (detected
or corrected) errors. Note that error correction codes can
cause significant storage and latency overhead [2, 25].

As an example for DRAM error rates, consider a study by
Schroeder et al. in a Google environment [22]. They report
rates of 25,000 to 70,000 errors per billion device hours per
Mbit and 8% of DIMMs affected by errors per year. Fur-
thermore, there are predictions of about 8% increase in soft-
error rate per logic state bit each technology generation [6].
Similar observations have also been made for soft disk er-
rors [4, 17]. For example, Bairavasundaram et al. reported
400,000 checksum mismatches in a field study of 1.53 mil-
lion disk drives over a time period of 41 months [4]. Finally,
the combination of increasing error rates (including silent
errors) and associated increasing costs for general-purpose
error detection and correction motivates to exploit context
knowledge of data management for more efficient resiliency.

2.2 Existing Database Techniques
In contrast to existing work from systems research [3], re-

silient computing did not receive much attention in database
research. Existing techniques can be mainly classified into
(1) work that relies on error-aware frameworks, (2) work ad-
dressing explicit errors, and (3) work that addresses implicit
errors for specific aspects of data management.

There are techniques that simply rely on error-aware pro-
cessing frameworks such as MapReduce or Hadoop. By

building a data management solution on top of such frame-
works (e.g., Pig [12], Hive [24]) or by hybrid approaches
(e.g., HadoopDB [1], Dremel [21]) enables resilient process-
ing. However, these approaches use general-purpose re-
siliency mechanism of these frameworks and thus, do not
exploit context knowledge from data management.

In addition, there is a long history of work concerning
explicit (detected) errors that trigger recovery. Major re-
search directions are efficient recovery processing [15, 26]
and data replication techniques [7]. For example, fault-
tolerance in (distributed) data streaming systems was ad-
dressed by checkpointing and recovery [5] as well as operator
replicas and replication transparency [20]. Recent work also
integrates the estimated recovery time into the optimiza-
tion of ETL flows by considering the placement of recovery
points [23]. All these techniques use a fail-stop-retry model
[15], where recovery is triggered on explicit errors only.

Finally, recent work addressed also implicit errors. For
example, Graefe and Stonecipher discussed efficient consis-
tency verification (error detection) within and between B-
tree indexes [14] in order to cope with silent soft errors.
They even achieved performance that allows for online ver-
ification. Simitsis et al. presented so-called replicate oper-
ators (for redundant execution of ETL flow operators) in
combination with specific voter policies for deciding on re-
sult correctness [23]. In addition, the Dremel system ad-
dressed the problem of stragglers (unfinished subtasks) in
distributed environments [21]. While these proposals are
important steps towards resilient data management, they
address only specific aspects. In contrast, we argue for holis-
tic solutions to achieve resilient data management. In con-
clusion, we see a lack of resiliency-aware data management
techniques supporting query execution, data storage, and
query optimization, especially, for implicit (silent) errors.

3. RESILIENT DATABASE CHALLENGES
Future hardware characteristics in terms of increasing

scale and decreasing feature sizes as well as the lack of ex-
isting techniques lead to the vision of resiliency-aware data
management. We introduce the three major challenges of
(1) resilient query processing, (2) resilient data storage, and
(3) resiliency-aware optimization. In addition, we exemplify
use cases, where resiliency-aware data management enables
higher efficiency compared to general purpose techniques.

3.1 Query Processing
While explicit computation errors are traditionally ad-

dressed with recovery and restore techniques, higher error
rates and implicit (silent) errors pose a fundamental novel
requirement to query processing.

Challenge 1. (Resilient Query Processing) Implicit er-
rors during query processing can lead to false negatives
(missing tuples), false positives (tuples with invalid predi-
cates) or inaccurate aggregates. Due to silent errors, there
is no indicator for result correctness. Thus, the challenge is
to ensure reliable query results (1) by efficient and effective
detection and correction of inaccurate (sub)query results, or
(2) by the use of error-tolerant algorithms.

Consider as an application example advanced analytics
such as clustering, classification, and forecasting. There is a
trend of integrating such advanced analytics into data man-
agement systems [10, 11, 13]. The overall goal is to support
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Figure 1: Example Resilient Advanced Analytics.

complex statistics that go beyond traditional aggregation
queries on huge data sets. In the following, we make a case
for resilient advanced analytics, where it would be advanta-
geous to ensure resiliency on query processing level.

Example 1. (Resilient Advanced Analytics) Forecast
queries [11] are an example for advanced analytics. Fig-
ure 1(a) shows a query plan (QP) of such a query, where
we compute a time series by an aggregation query and sub-
sequently use a forecast operator ψ for forecasting 365 steps
ahead of this time series. This operator includes the ex-
pensive parameter estimation (e.g., with iterative gradient
descent algorithms), where the search space grows exponen-
tially with the number of parameters. Thereafter, we use
the trained model for prediction. These queries produce per
se inaccurate results (predictions) such that we can trade
accuracy, performance, and resiliency but also energy effi-
ciency [18] that is tightly coupled with resiliency. We can
leverage context knowledge from query processing as shown
in Figure 1(b) in order to efficiently ensure (1) the correct-
ness of the computed time series and (2) the correctness
of parameter estimation. During blocking execution of pa-
rameter estimation, we asynchronously execute guard plans
and specific check operators (e.g., with voting policies [23])
for ensuring correctness of the time series (subquery result).
This can be done with small overhead, exploiting the avail-
able parallelism (number of cores). Furthermore, the iter-
ative parameter estimators (often local optimization) allow
for error-tolerant behavior—as long as we stay within the
same local optima region—because a wrong computation is
replaced by the next iteration result. Thus, we can tolerate
certain rates of data computation errors or state corruptions.
This enables us to disregard costly error detection and cor-
rection for parameter estimation.

Thus, crucial operations should be guarded by redundant
computation, while other are per se error-tolerant and re-
quire no additional resiliency efforts. Even if error rates
are unbounded, we can give guarantees by exploiting redun-
dancy, knowledge of the algorithm, or gathered statistics.

Major research directions of resilient query processing
are (1) error-aware query processing with redundant (par-
tial query/data) processing, (2) algorithm design for error-
tolerant operators, as well as (3) probabilistic guarantees
according to the underlying components and algorithms.

3.2 Data Storage
Resiliency-aware data management further requires re-

silient data storage in terms of data stability. Here, implicit
errors have even higher negative impact because dynamic
errors can cause permanent data corruption, i.e., all sub-
sequent queries use the corrupted data. For this reason,

almost all commercial DBMS employ data verification tech-
niques such as simple checksum mechanisms [14]. With re-
gard to effectiveness and efficiency, we formulate this as the
second fundamental challenge.

Challenge 2. (Resilient Data Storage) Explicit (de-
tected) and implicit (undetected) errors lead to data loss or
data corruption over time. Due to the silence of implicit er-
rors, there might be no trigger for recovery. The challenge is
to ensure data stability with certain guarantees by error de-
tection and correction on unreliable components (incl. disks,
main memory) with different resiliency characteristics.

Typically, data-level resiliency is ensured with partition-
ing and replication (e.g., RAID systems or transparent repli-
cation). In the following, we use an example to show how
we could ensure resilient data storage more efficiently.

Example 2. (Resilient Data Partitioning) Assume a ta-
ble R. In order to ensure resilient data storage, we maintain
a replica R′ of this table as shown in Figure 2. We may also
exploit this redundancy for more efficient query processing.
Similar to systems such as HYRISE [16] that computes the
best vertical partitioning for a single copy of a table, the
core idea is to compute a set of complementary partitioning
schemes (vertical/horizontal) for multiple table replicas with
regard to the query workload. Figure 2 shows two replicas,
where we use row- (for point-queries) and column-oriented
layouts (for aggregation queries) at the same time. Further-
more, we employ sample synopses [13] for efficient time-
based or on-the-fly error detection with probabilistic guar-
antees. In case of detected errors, we subsequently use the
replicas for error correction. Synopses and replicas might be
located on different components with different resiliency.

Table R
a1 b1 c1

a2 b2 c2

a3 b3 c3

a1 b1 c1
a2 b2 c2
a3 b3 c3

a b c a b c

Degree of Data Redundancy

Table R’ (replica fragments)

Synopsis SR Synopsis SR’

Time-Based / 
On-The-Fly Error 

Detection and 
Correction

Figure 2: Example Resilient Data Partitioning.

Thus, resiliency-aware data storage can be beneficial due
to consistency checks on query processing level and due to
exploiting replicas for more efficient query processing.

Major research directions are (1) synopsis/replica design
with probabilistic guarantees, (2) adaptive detection strate-
gies, offline or online during query processing/data manip-
ulation, (3) efficient correction strategies, (4) exploitation
of different partitioning/compression schemes, (5) efficient
update handling, and (6) re-organization/re-partitioning.

3.3 Query Optimization
Resilient query processing (operational) and resilient data

storage (physical design) both span multi-objective opti-
mization problems. This leads to the third fundamental
challenge that completes the resilient database challenges.

Challenge 3. (Resiliency-Aware Optimization) The in-
creasing number of cores as well as increasing heterogeneity
of components and interconnects, pose the challenge of how
and where to execute subqueries, on which physical design,
in order to optimize result accuracy, performance, energy
efficiency and resiliency. The integration of resiliency and
energy efficiency into query optimization requires (to some
extend) architecture-awareness of the underlying system.
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Example 3. (Resiliency-Aware Optimization) Recall the
query from Example 1 and assume heterogeneous cores. Re-
garding performance, we assign compute-bound operators
(such as the forecast operator ψ) to high frequency cores,
while we assign memory-bound operators to low frequency
cores. Furthermore, we trade accuracy, performance, en-
ergy consumption, and resiliency. The power consumption
is computed by P ≈ CS ·V 2 ·f , where CS is the switching ca-
pacity, V is the voltage, and f is the frequency [9]. Given the
processor capability of dynamic frequency and voltage scal-
ing [9, 18], we can reduce the energy consumption and error
rates (due to thermal influences) by decreasing frequency or
voltage. The required energy, i.e., the integral of used power
over time, is a non-monotonic convex function [9] and be-
low a minimum voltage, the error rates will increase again.
In addition, decreased frequency/voltage decreases the per-
formance of query processing (if compute-bound) but due to
lower error rates, we might require fewer guard plans. This
poses a challenging re-optimization problem.

In general, heterogeneity of cores leads to hybrid query
execution in terms of plan partitioning, where the different
CPU, memory, and resiliency characteristics fundamentally
strengthens the traditional query optimization problem.

Major research directions regarding resiliency-aware opti-
mization are (1) scheduling redundant subqueries and verifi-
cation checks, (2) placement of subqueries on reliable/unre-
liable components (plan partitioning), (3) parallelization of
subqueries (data partitioning), (4) topology-awareness (e.g.,
NUMA), (5) adjustment of platform parameters (e.g., fre-
quency/voltage), (6) error-aware runtime adaptation, and
(7) multi-objective cost models and global optimization.

4. CONCLUSIONS
In conclusion, we would like to encourage the database

community to reconsider many aspects of data management
and query processing with regard to resilient computing in
order to cope with future hardware characteristics in terms
of increasing scale and decreasing feature sizes that lead to
increasing error rates and the resulting high overhead of re-
silient computing. We argue that resiliency-aware data man-
agement can provide higher effectiveness and efficiency than
general-purpose resiliency techniques by exploiting context
knowledge of query processing and data storage. This vi-
sion includes the three fundamental challenges of (1) re-
silient query processing, (2) resilient data storage, and (3)
resiliency-aware optimization. Furthermore, we presented
examples for these challenges, where resilient data manage-
ment would be beneficial. Finally, this inter-disciplinary re-
search field exhibits many opportunities for future work and
bridges the gap between systems and database research.
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