

Microsoft Codename “Montego” – Data Import,
Transformation, and Publication for Information Workers

Stephen J. Maine, Lorenz Prem, Clemens Szyperski, James F. Terwilliger,
and the Microsoft “Montego” Team

Microsoft Corporation
{smaine, lorenzp, clemens, jamest}@microsoft.com

1. INTRODUCTION
A fundamental problem in database systems is deriving useful
information from untold quantities of data fragments that exist in
the web’s data stores. Data is abundant, useful information is rare.

This problem space plays host to many successful and innovative
solutions from industry (e.g., [2, 4, 5, 9]), and the open-source
community (e.g., [11]). Each solution has its strengths and
weaknesses based their balance of utility and usability. In this
paper, we demonstrate the unique approach to data mashups that
Microsoft Codename “Montego” brings to the space. The
“Montego” tool allows non-technical users to create complex data
queries in a familiar graphical environment, while making the full
expressiveness of a query language available to professional users.
“Montego” operates both as a standalone client, where a user can
launch it from an application like Excel® to import and
manipulate data into a spreadsheet, or as a cloud service, where a
user can take the product of data transformation and publish its
results into a database or to the web as an OData feed.
The “Montego” formula language – “M” for short – and the
associated runtime provide the muscle necessary to create data
mashups that consist of data from many sources and formats.
“M” is a language similar in intent to the language used in the
Excel formula bar. Like Excel, the “Montego” tool allows a user
to construct data transformations piecemeal through composition;
in Excel, one can build complicated expressions out of smaller
ones assigned to spreadsheet cells. “Montego” uses that same
paradigm to build larger expressions component-wise, either
through explicit writing of the expression or through using
gestures in the “Montego” UI.
Unlike Excel (and SSIS [9], and many other data integration or
mashup tools), the entire instance of a “Montego” data integration
session can be serialized as an instance of the “M” language. The
rich duality between gestures and formulas enables both step-at-a-
time convenience as well as the supportability, optimization, and
reuse capabilities of a full-featured language.
The remainder of this paper is organized as follows: Section 2
covers the scenarios used to demonstrate “Montego” capabilities;

Section 3 outlines some of the technical challenges addressed by
the “Montego” tool’s implementation. The tool is the work of
many whose contributions we wish to acknowledge.

2. WHAT IS DEMONSTRATED
We demonstrate the “Montego” tool in different settings drawing
data from multiple data sources, transforming that data in non-
trivial ways, and publishing that data by several means. In this
paper, we show one such scenario, where we create a summarized
data extract from three unrelated heterogeneous data sources. The
tool uses a visual interaction paradigm approachable by business
users familiar with Microsoft Office products. In our scenario, we
combine Orders, Products, and Suppliers to create a summarized
data set showing Sales by Supplier and Products.

After starting the “Montego” tool, the first step is to create
references to the three data sources: Orders from a SQL Server
database, Product data from an Excel spreadsheet, and Supplier
information from the Internet in the form of an OData feed. This
process is accomplished visually using the “Montego” user
experience, which guides the user through the process of
discovering and connecting to each data source. Each data source
is introduced into the “Montego” environment as a named
resource that can be referenced by subsequent tasks.

The next task is to reshape Orders into a summarized view of
Sales by Product, a task with several steps. First is to add a
computed column named LineTotal by calculating Unit Price
times Quantity for each row in the Orders data set, accomplished
visually via a formula builder, as shown in Figure 1. The builder
constructs an equivalent formula in the "M" formula language:
!"#$%&'(()*$+,-./0(%01233
333%"45367-89:084%;3<36=+"-989>;23?@8-%!*9"$?A3

In “Montego”, user interactions can be expressed visually via
formula builders or textually via “M” expressions, and the tool
facilitates easy transitions between visual and textual work styles.
The formula in the builder can be constructed manually, or the
user can use the buttons shown in Figure 1 to add references to the
available columns (for details on “M”, see Section 3).

To complete the shaping of the Orders data set, we hide
unnecessary columns from the data set and sum the results of the
LineTotal computation by ProductID. This step is again
accomplished visually by adding a task to the linear task stream
representing the overall shaping operation. The task stream is
represented visually in the tool, as shown in Figure 2.

At the left side of Figure 2 is a vertical list of items called
resources. Each resource represents a value that can be referenced
by name by any formula in the tool. Clicking on a resource reveals
a preview of the value of that resource, in addition to the task

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Articles from this volume were invited to
present their results at The 37th International Conference on Very Large
Data Bases, August 29th - September 3rd 2011, Seattle, Washington.
Proceedings of the VLDB Endowment, Vol. 4, No. 12
Copyright 2011 VLDB Endowment 2150-8097/11/08... $ 10.00.

1454

Figure 1. The builder for a lookup column addition.

stream (shown as a horizontal set of steps) that generates the
resource’s value.

The expression represented by the task stream shown in Figure 2
for resource “Sales By Product”, in the “M” formula language:
B?C"$%13D>3:0*(+49?3E3$%93

33'((%()+19*,3E33
333333333333!"#$%&'(()*$+,-./0(%0123
3333333333333333%"45367-89:084%;<6=+"-989>;23
3333333333333333?@8-%!*9"$?A23

33F%,*G%()*$+,-13E33
333333333333!"#$%&F%,*G%)*$+,-1.3
3333333333333333'((%()+19*,23
3333333333333333H?/0(%0IJ?23?7-89:084%?23?=+"-989>?KA23

L0*+M%(F*N13E3
3333333333!"#$%&L0*+M.3
33333333333333F%,*G%()*$+,-123
33333333333333H?:0*(+49IJ?K23
33333333333333HH?!*9"$3C"$%1?23@819&C+,KKA3

8-3

33L0*+M%(F*N1O3

Although the user is building expressions in “M” exclusively, the
entire expression above is delegated to SQL Server for execution.
The “Montego” tool is capable of determining that the “Sales By
Product” formula is dependent only on the Orders data set, which
is stored in a SQL Server database. Thus, the bulk of the
computation needed to produce the Sales By Product view is done
on the database server and not the “Montego” runtime. In general,
“Montego” translates “M” formulas to equivalent T-SQL syntax
for efficient execution by the database server instead of the
“Montego” runtime whenever such translation makes sense.

To create the final summarized view of Sales By Product With
Supplier, we use “Montego” to join each Product (stored locally in
an Excel spreadsheet) with a list of Suppliers exposed on the
Internet as an OData feed. Next, we incorporate the computed
value for Total Sales from the previous resource by adding a
lookup column keyed by ProductID. Finally, we limit the data to
only the relevant information by excluding all but the Supplier,
ProductName, and Total Sales columns.

Figure 2 shows the “Montego” tool’s preview of the current result
set. The user can go backward and forward along a task stream to
see the data changing at each step and to make changes to each
task’s definition, as appropriate. Once a satisfactory result set has
been formed, the user has the option to share the computed data
set in a number of ways, including publishing to a SQL
Database table, filling an Excel spreadsheet with the output of

Figure 2. Grouping rows; note the result preview.

the computation, or publishing the data set broadly as an OData
feed.

Figure 3 shows the “Montego” integration with Excel, offering to
add the resulting data to an Excel range; Figure 4 shows the filled
Excel sheet.

3. TECHNICAL DETAILS
“Montego” encourages the interactive building of complex
expressions in the presence of dynamic result previews. To
facilitate this interactive functionality, the “Montego” runtime
uses special optimizations to quickly get partial preview results.

The interactive model focuses on linear chains of tasks cascaded
on top of each other. Each such chain can be used to define the
starting point of one or more further chains. A chain can be started
by merging (joining) multiple starting points. In essence, users of
“Montego” create complex expressions that can be understood as
fork/join dataflow graphs – but without ever encountering such
terminology or bewildering graph-based topologies in the UI.

The user can switch between UI and textual “M” views at any
time – all information is captured in “M” with no additional state.
Editing either view maintains the other (since the UI view is
always derived from the “M” text). All common “M” expressions
are covered by the UI. However, one can write more advanced
expressions, such as custom function definitions, that are not
covered by the UI. Such expressions will appear verbatim as “M”
text in the UI.

The “Montego” system takes an expression authored in “M” and
evaluates it by drawing on the query capabilities of external stores
and a local runtime. The local runtime is used both to decide how
to federate work and to back-fill work locally that cannot be
federated. External data sources have query capabilities of varying
degrees, from trivial get-all mechanisms like reading a text file to
full-blown query processors like SQL. The computational cost of
copying data versus sending sub-queries for remote evaluation
varies, including dynamic variations caused by effects such as
current network performance. Finally, the real cost of evaluation
versus bulk copying varies. “Montego” aims to cover all these
variations to a degree enabling a good user experience.

The “M” language is a dynamic, higher-order functional language
with lazy record, list, and table constructors and a simple uniform
data model. “M” has types as first-class values and uses dynamic,
lazy type checking to assert type constraints. For instance, an
assertion that a streamed list contains only values of a certain
record type can be stated but the assertion will only be checked as
values are accessed, thus not undermining data-streaming. More
complex structures are built from composing the primitive types.

1455

Figure 3. The Montego user interface with the preview of an expression, and the Excel context menu to import the result into Excel.

Figure 4. Excel filled with results.

The “Montego” runtime uses two core technologies to make
federation decisions: typeflow and cost estimation. Typeflow is
used to predict tight type bounds over sub-expressions to
determine whether federation to typed systems such as SQL or
OData (EDM) is feasible. It is also used to drive the UI; suitable
controllers and views are chosen based on the type of the current
context. For instance, if the current preview is table-shaped, then a
tabular preview is used and table tools are offered while record or
hierarchy-based tools are hidden. The UI shown in Figure 3
exhibits both cases: the preview shows tabular data and the
“ribbon” at the top has highlighted “table tools”.

The typeflow system uses advanced bi-directional type inference
[10] based on abstract interpretation over partially evaluated
contexts. For example, a select-like query at list level might take
the following form in “M”:
@819&!0"-1P*0,.3
33H6IJEQ23R",%E?'$84%?;236IJES23R",%E?D*#?;K23
33%"4536R",%;A3

Here, %"4536R",%; is “M” shorthand for a unary function .89%,A3
ET389%,6R",%;, where 89%, is an item (a record) in the list and
where 89%,6R",%; selects the R",% field of that record.

Based on the schema of the list (the first argument to
@819&!0"-1P*0,), typeflow infers that the untyped anonymous
function passed as the second argument is a function from a
record of type
9>M%363IJ3E3R+,#%0&!>M%23R",%3E3!%U9&!>M%3;3

to a value of type !%U9&!>M%. With that inference established,
typeflow determines that @819&!0"-1P*0,’s return type is

9>M%3H3!%U9&!>M%3K3

That is, a list of simple text values. For typeflow to work even in
this simple example, inference must flow both top-down and
bottom-up. Note that cases like the following (from the
demonstration) require inference based on both values and types:

!"#$%&'(()*$+,-./0(%0123
333%"45367-89:084%;3<36=+"-989>;23?@8-%!*9"$?A3

Specifically, the value "LineTotal" (a text value) is interpreted by
!"#$%&'(()*$+,- as the name of a new column thus affecting the
type of the return value of !"#$%&'(()*$+,-. Typeflow draws on
values where available to accomplish such inferences.

Cost estimation is used to predict the multi-dimensional cost
facets if federation of a feasible sub-expression were performed.
The cost-prediction heuristics map costs into real units (such as
time, space, and money) to enable effective federation decisions
in highly heterogeneous systems.

Query federation is ultimately performed by “folding” nested
queries over queryable sources. The folded sub-queries are then
translated to external query languages such as SQL, OData, or
XPath or to instructions for internal data processors that crack
files in formats such as CSV or Excel xlsx. Our approach is
similar to other federated systems where portions of queries are
delegated to remote servers (e.g., [1, 3]). Unlike at least some of
these systems, the user is never required to know the syntax or
peculiarities of the remote system; the user simply writes “M”
code (or just uses the UI) and “Montego” constructs queries as
possible to federate the computation.

One of the key obstacles when attempting query federation is
semantic differences among query processors. Such differences
range from varying floating-point, to differences in date and time
handling, to differences in the interpretation of ‘null’ or sparse
data, to varying capabilities to express complex and simple types.
“Montego” addresses these issues by relying on “soft” semantics,
accepting reality. That is, no promise is made to “fix” an external
query engine that diverges in niche semantics from the baseline
“M” semantics. It is too early to evaluate the impact of this non-

1456

traditional choice on actual users of “Montego”. However, there is
precedence in the soft semantics of the Web.

Figure 5 shows an overview of the “Montego” architecture. In
essence, “Montego” builds a bridge from UI or “M” authored
expressions to a diverse world of data sources and back to
uniform data publication mechanisms. The target audience is
information workers, such as staff analysts working on periodic
but constantly changing tasks over a multitude of data sources.

4. RELATED WORK
JackBe [5] is a leader in the mashup space. The company’s Presto
suite uses flowcharts to visualize the flow operations in a mashup.
Like Montego, JackBe places significant value on presenting the
sometimes complex mashup in an understandable way. At the
engine level JackBe promotes its own language for authoring data
transformations, the ‘Enterprise Mashup Markup Language’
(EMML). Yahoo Pipes [12], another tool in this space,
distinguishes itself by its large catalog of adapters. Like JackBe, it
uses the flowchart analogy to visualize a mashup.

Kapow [6] takes a similar approach to SSIS [9]. Having created
an impressive offering for programmers, the company seeks to
simplify the concepts involved to make the suite appealing to
information workers.

Microsoft Excel [7], coming from spreadsheet space, is expanding
its data processing capabilities. As the world becomes more
integrated, Excel users want to process increasingly complex
datasets. The addition of PowerPivot [8] to the Excel ecosystem
illustrates this trend.

5. REFERENCES
[1] J. A. Blakeley, C. Cunningham, N. Ellis, B. Rathakrishnan,

M.-C. Wu. Distributed/Heterogeneous Query Processing in
Microsoft SQL Server. In: ICDE, pp. 1001–1012, 2005.

[2] H. Gonzalez, A. Y. Halevy, C. S. Jensen, A. Langen, J.
Madhavan, R. Shapley, W. Shen, J. Goldberg-Kidon.
Google Fusion Tables: Web-Centered Data Management and
Collaboration. In: SIGMOD, pp. 175–180, 2010.

[3] L. M. Haas, R. J. Miller, B. Niswonger, M. T. Roth, P. M.
Schwarz, E. L. Wimmers. Transforming Heterogeneous Data
with Database Middleware: Beyond Integration. IEEE Data
Engineering Bulletin, 22(1):31–36, 1999.

[4] IBM Corporation. IBM Mashup Center. http://www-
01.ibm.com/software/info/mashup-center/.

[5] JackBe Corporation. Presto Suit. Online
http://www.jackbe.com/.

[6] Kapow Software. Kapow Katalyst.
http://kapowsoftware.com/products/kapow-katalyst-
platform/index.php.

[7] Microsoft Corporation. Excel.
http://office.microsoft.com/en-us/excel/.

[8] Microsoft Corporation. PowerPivot.
http://www.powerpivot.com/.

[9] Microsoft Corporation. SQL Server Integration Services.
http://msdn.microsoft.com/en-us/sqlserver/cc511477.

[10] B.C. Pierce and D.N. Turner. Local type inference. In:
POPL, pp. 252–265, 1998.

[11] V. Raman, J. M. Hellerstein. Potter’s Wheel: An Interactive
Data Cleaning System. In: VLDB, pp. 381–390, 2001.

[12] Yahoo. Yahoo Pipes. http://pipes.yahoo.com/pipes/.

!"#$ %&'()$*+,-,$

+,-,$./0123(41$

!"#$
*+,-,$

5''(11$
67#$

"2(48,9)($!/24'(1$$

%&'()$:;7#$.!<$;(&-$

=/0>"2(48,9)($!/24'(1$$

;,1?$@)/A$BC$

C0-(4,'-DE($"2(48$
F2D)G(4$

+/'23(0-$7,0,H(4$

I4(ED(A$J(12)-1$

"2(48$J(12)-1$

 7/0-(H/$J20-D3($

@D41->.K,0'($*L-D3DM(4$

.(0-4,)$"2(48$I4/'(11/4$

C0>7(3/48$%E,)2,-/4$

;8L($@)/A$%0HD0($

;(&-$.!<$%&'()$:;7#$67#$*+,-,$5''(11$!"#$

%&-(40,)$+,-,$#D94,4D(1$

.,-,)/H$N;8L(O$F2D)G(4$

./1-$%1-D3,-/4$
.,L,9D)D-8$50,)81D1$

"2(48$./3LD)(4$ *L-D3DM(G$!(4D,)DM(4$

"2(48$ P(-$

%&L4(11D/0$

+D1L,-'K$
+,-,Q;8L(1$

I29)D1K$

+,-,Q;8L(1$

Figure 5. The Montego Architecture.

1457

