
AIDA: An Online Tool for Accurate Disambiguation of
Named Entities in Text and Tables

Mohamed Amir Yosef, Johannes Hoffart, Ilaria Bordino, Marc Spaniol, Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

{mamir,jhoffart,mspaniol,weikum}@mpi-inf.mpg.de, bordino@yahoo-inc.com

ABSTRACT
We present AIDA, a framework and online tool for entity detec-
tion and disambiguation. Given a natural-language text or a Web
table, we map mentions of ambiguous names onto canonical entities
like people or places, registered in a knowledge base like DBpedia,
Freebase, or YAGO. AIDA is a robust framework centred around
collective disambiguation exploiting the prominence of entities, sim-
ilarity between the context of the mention and its candidates, and the
coherence among candidate entities for all mentions. We have devel-
oped a Web-based online interface for AIDA where different formats
of inputs can be processed on the fly, returning proper entities and
showing intermediate steps of the disambiguation process.

1. INTRODUCTION
Motivation. News articles, postings in blogs and online com-

munities, and other Web pages contain mentions of named entities
such as people, places, or organizations. This entity information is
a great asset for making sense of the raw and often noisy contents,
and key to enabling business-intelligence and semantic-search appli-
cations. However, names are often ambiguous: the same name can
have many different meanings. For example, given a text snippet
like “Harry is the opponent of you know who”, how can we tell
that “Harry” denotes Harry Potter rather than Dirty Harry or Prince
Harry of England? Establishing this mapping between the men-
tion and the actual entity is known as the problem of named-entity
disambiguation (NED) (aka. entity-name resolution).

Even structured Web data such as tables and lists in Web pages
face this problem, as their cells merely contain names, often in
abbreviated or otherwise non-canonical form (e.g., “Mac” instead
of “Apple Macintosh”) [4, 11]. How can we tell that in a table like

Liverpool Manchester 2:2
Tottenham Newcastle 4:1
Celtic Rangers 0:0

the city names denote football clubs such as FC Liverpool and
“Celtic” and “Rangers” are the major teams in Glasgow? The Linked-
Data cloud of semantically interconnected data and knowledge bases
[2], has the goal of providing extensive cross-referencing at the entity
level, but the current forms of manually or heuristically created
mappings have very limited coverage. For example, the archive of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 37th International Conference on Very Large Data Bases,
August 29th - September 3rd 2011, Seattle, Washington.
Proceedings of the VLDB Endowment, Vol. 4, No. 12
Copyright 2011 VLDB Endowment 2150-8097/11/08... $ 10.00.

the New York Times (data.nytimes.com) has only about 5000
people and 2000 locations (manually) linked to other sources.

State of the Art. The NED problem has been addressed in dif-
ferent communities. For structured data with schematic attributes,
record-linkage algorithms aim to find equivalence classes of records
that denote the same entities [5]. This is based on attribute-wise sim-
ilarities such as string edit distance or n-gram overlap. The emphasis
has been on scalable batch processing, as needed for de-duplication
[13]. Annotating cells in Web tables with proper entities has recently
received attention [4, 11]. NLP research has harnessed Wikipedia as
a means for linking words and phrases onto canonical entities [3, 6].
This theme has been further pursued in Web mining, most notably,
the work of [12] and [10].

Recent methods leverage knowledge bases such as DBpedia [1],
freebase.com, or YAGO [15]. These contain millions of entities,
with fine-grained assignment to semantic types (e.g., heavy metal
rock guitarists, fictional characters in mystery novels, etc.), and
billions of relational facts between entities. Also, they provide
dictionaries of short names and paraphrases for entities. This way,
one can quickly identify candidate entities for mentions, but these
sets tend to be very large.

Knowledge bases can guide NED in several ways. First, a pop-
ularity prior for each mention-entity pair can estimate how often
the mention phrase is used together with the entity. A good source
for this estimation is the anchor texts of Wikipedia links, as these
have both short mentions and unique designation of entities. Second,
a variety of mention-entity similarity measures can be computed,
based on the context of the mention in its input text and the context of
the entity in the knowledge base. On the mention side, we can con-
struct a bag-of-words representation from the words in the mention’s
proximity, possibly filtered or weighted by other mentions, common
nouns, etc. On the entity side, a bag-of-words can be constructed
from names of related entities, the entities’ types in the taxonomy,
or semantic properties. Third, we can reason on the coherence be-
tween the entities that different mentions in a text or table would
potentially denote. For example, once we map “you know who” to
Lord Voldemort or “Manchester” to Manchester United, it is likely
that the meanings of “Harry” and “Liverpool” are Harry Potter and
FC Liverpool.

Recently, collective learning methods have been used for jointly
mapping all mentions to entities in one step, based on probabilis-
tic graphical models [14, 10, 16]. The leading method of [10]
approximates the best mapping by solving a relaxed linear pro-
gram with subsequent rounding [10]. The best methods achieve
70-90 % accuracy, depending on how clean the input text is. For
very short texts or texts that switch between different topics, the
result is far from near-human quality. The best prior methods are
computationally expensive, as they build on sampling over factor

1450



University of
California, Berkeley

Jean Auguste
Dominique Ingres

Ingres (Database)

Berkeley, California

Michael Stonebraker

Michael J. Franklin

The World of
Suzie Wong

PostgreSQL

Berkeley DB

computer scientist

relational databases

the Berkeley years

relational database system

UC Berkeley

open-source SQL

American university

Turing awards

San Francisco Bay Area

Mike 

and his colleagues

Rowe  and Wong 

were the architects of the

relational system Ingres,

developed at Berkeley.

Postgres

and

Berkeley DB

also came out of

UC Berkeley.

Figure 1: Example for Mention-Entity Graph.

graphs or linear programs for optimization. With the exception
of [12], which offers a Web service at wdm.cs.waikato.ac.nz:
8080/service?task=wikify, none of the above methods is suit-
able for online computation, with interactive response time. The
service of [12] is highly geared to (an old version of) Wikipedia
articles, and did not perform well when we tried it with news articles.

Our Approach. This paper presents the AIDA system, which
includes an efficient and accurate NED method, suited for online
usage. Our approach leverages the YAGO2 knowledge base [8], as
an entity catalog and a rich source of relationships among entities.
We cast the joint mapping into a graph problem: mentions from
the input text and candidate entities define the node set, and we
consider weighted edges between mentions and entities, capturing
context similarities, and weighted edges among entities, capturing
coherence. The AIDA system is accessible online at the URL www.

mpi-inf.mpg.de/yago-naga/aida/. It accepts plain text as
well as HTML, and also supports semistructured inputs like tables,
lists, or short XML files.

2. FRAMEWORK AND ALGORITHMS
The input to AIDA is an arbitrary text, optionally with HTML

or XML markup or in the RDF N3 form, with mentions of named
entities (people, music bands, songs, universities, etc.). The goal is
to find the correct mapping for the mentions onto canonical entities
in a knowledge base (currently YAGO).

Mentions are automatically detected using the Stanford NER
Tagger (nlp.stanford.edu/software/CRF-NER.shtml). For
collective mapping, we use a graph-based approach. The graph is
constructed with mentions and their candidate entities as nodes. We
have 2 types of edges:
• mention-entity edges: between mentions and their candidate

entities with weights that capture the similarity between the
context of a mention and a candidate;
• entity-entity edges: between different entities with weights

that capture the coherence (semantic relatedness) between two
entities.

Our goal is to reduce this graph to a dense sub-graph where each
mention node is connected to one and only one candidate entity
node, which provides our output mapping. Density here refers to
the total weight of the sub-graph’s edges, or alternatively, to the
minimum weighted degree in the sub-graph. Once the graph is

constructed, we use a greedy algorithm to compute the sub-graph.
In each iteration, we perform two steps:
• identify the entity node that has the lowest weighted degree (sum

of the weights of the node’s incident edges), and
• remove this node and its incident edges from the graph unless it

is the last remaining candidate entity for one of the mentions.
Figure 1 illustrates the mention-entity graph for an input text with
highlighted mentions (left) and candidate entities (middle) based on
a knowledge base (right). The thickness of edges between entities
depicts different edge weights. Next, we describe the features and
measures for computing the edge weights.

The similarity between a mention and a candidate entity is com-
puted as a linear combination of two ingredients. The first one is
the prominence of an entity, e.g., Prince Harry of England vs. Harry
Kelly, a lesser known American basketball player. This acts as a
prior probability for each potential mapping. We compute this prior
by collecting statistics on href anchor texts and their link targets
in Wikipedia. The second ingredient for the mention-entity edge
weights is based on the overlap between a mention’s context and
a candidate entity’s context. For a mention we consider the full
input text as its context. For entities, we consider entity keyphrases,
pre-computed from the Wikipedia articles that YAGO’s entities con-
nect to. We define the notion of keyphrases to be all phrases in
link anchors, including category names, citation titles, and external
references in the entity article. We extended this further by consid-
ering also the titles of incoming links for an entity’s article, as an
additional source of describing the entity.

While keyphrase overlap between the contexts of a mention and
entity is an expressive similarity measure, we will rarely find perfect
matches for multi-word keyphrases in the input text. Consider en-
tity Manchester United, which has keyphrases such as “2008
UEFA Champions League Winner” But the input text may say “win-
ner of the champions league in 2008”, not nearly a full match of the
keyphrase. Therefore, we devised a partial-match model to improve
coverage. To avoid degrading accuracy, we consider the size of the
window that covers all words of the keyphrase that appear in the
input text. For example, the above wording in the text matches 4 of
the 6 words of the keyphrase within a window of size 7. Moreover,
we penalize the keyphrases that occur in the text by their distance
from the mention under consideration. Obviously, once we allow
partial matches, different words in a phrase have different degrees of
importance. To accommodate this aspect, we collect statistics from a

1451



Figure 2: User Interface of AIDA.

large corpus (e.g., Wikipedia) about the co-occurrence frequency of
a word an the entity of interest. We use the Mutual Information (MI)
measure (aka. relative entropy) to quantify the specificy of a word
for an entity. These values serve as per-word weights for scoring
the partial matches in the input text. The scores for all matches are
aggregated by summation with distance decay.

For the coherence weights of entity-entity edges, we harness the
Wikipedia link structure. We define the coherence between two
entities to be proportional to the number of incoming links that
are shared between their Wikipedia articles [12]. For the dense
sub-graph that yields the final disambiguation, we expect the final
candidate entities of different mentions to be mutually connected by
high edge weights. More details on the features and algorithms of
this approach are included in [9].

3. SYSTEM IMPLEMENTATION
AIDA is a framework that encompasses a suite of methods for

NED. This includes methods based on popularity prior, different
notions of similarity, and the graph-based notion of coherence. The
latter includes various techniques for setting edge weights. AIDA
draws on the YAGO2 knowledge base [8] and its rich statistics
derived from Wikipedia and other sources.

Figure 2 shows a screenshot of AIDA’s UI in a browser win-
dow.
1) The online UI offers three major methods: prior only, prior and

similarity together, and the graph-based method that integrates
prior, similarity, and coherence. For the graph method, various
parameters can be adjusted by sliders.

2) The user can input any text, e.g. by copy-and-paste from news
articles, or HTML table. By default, the Stanford NER Tagger
would identify noun phrases that can be interpreted as entity
mentions. As this is error-prone, the user can alternatively flag
mentions by putting them in double brackets, e.g.: “Harry is the
opponent of [[you know who]].”

3) The output shows for each mention (in green), the entity that
the chosen method has assigned to the mention, in the form of a
clickable link. The links point to the corresponding Wikipedia
articles. Alternatively, they could point to the YAGO2 entries,
or any comparable knowledge source in the Linked-Data world.

4) For each input text, once it is disambiguated, the user can see a
variety of run-time information and statistics about the input’s
ambiguity, the constructed graph, etc.

5) For each mention, one can inspect the candidate entities and
associated weights for similarity and coherence. The entities
are sorted in the order in which they were dropped from consid-
eration (removed from the graph, if the graph-based method is
used). The coloring reflects this order: the entity finally selected
is shown in green and the alternatives are in the yellow-to-red
spectrum. The darker the color the earlier the entity is dropped.
The user can also drill down, upon further clicks, into the related
entities that led to assessing a candidate entity to be more or less
appropriate. Another view (not shown in the screenshot) lists the
individual steps of the algorithm for finding the best sub-graph.

In addition to YAGO2, AIDA makes use of several software tools,
notably, PostgreSQL as a back-end server and the Stanford NER
Tagger. The system is available online at www.mpi-inf.mpg.de/
yago-naga/aida/.

4. DEMO SCENARIOS
The actual demo of AIDA will highlight a variety of use cases.

Users will be able to freely interact with the system.
Text as input. The first use case is that users type in their own

texts with ambiguous names. This may be a short and difficult text,
like the ones we have as examples earlier; or it can be a news article,
blog posting, or content from a discussion forum that is copy-and-
pasted into AIDA. Users can choose different methods, vary their
configurations, explore the effects in terms of candidate entities,
the weighted graph of mentions and entities, and the output quality.
Figure 3 shows such a text-centric example using the graph-based
method. Note that the difficulty of this intentionally sophisticated
example: only first names of people, and Berkeley and Stanford both
could denote cities as well as universities or historic persons. The
prior-only and the prior-and-similarity methods would make many
mistakes; for example, “Ingres” would be mapped to the painter
(after whom the database system was named), and “Michael” to
Michael Jackson or Michael (archangel). Our graph-based method
gets all disambiguations perfectly right for this difficult example.

Table as input. An interesting option that demonstrates the versa-
tility of AIDA is to copy-and-paste Web tables in HTML (or XML)
format. Figure 4 shows an example with a table that lists some Euro-
pean football clubs, one of the seasons in their national leagues, and
the top-scoring player of that season. Note the high ambiguity here,
as the clubs are merely given by city name or short-hand notation
and the players by last name only. The figure shows the outcomes of
the three main methods with prior only (left), with prior and similar-

1452



Figure 3: AIDA with Text Input.

Figure 4: AIDA with Table as Input.

ity (middle), and with the full-fledged graph method (right). There
are major differences in accuracy, underlining the high quality of
AIDA’s graph-based approach. For example, the prior-only method
maps Barcelona to the city, and Real to Real County, Texas. The
graph method maps these to the corresponding football clubs, and
is even able to correctly assign the mention “2008/09” to the entity
2008-09 La Liga, which is the 2008-09 season of the Spanish first
league in football.

We are currently working on supporting also mixed forms of input
data and more richly structured input. These include semantically
annotated HTML with microformats such as hCard or hProduct,
RDF triples from linked-data sources enriched with textual context,
as well as JSON-encoded semantic objects.

5. REFERENCES
[1] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, Z.G. Ives:

DBpedia: A Nucleus for a Web of Open Data. ISWC/ASWC
2007:722-735

[2] C. Bizer, T. Heath, T. Berners-Lee: Linked Data - The Story So Far.
Int. J. Semantic Web Inf. Syst. 5(3):1-22, 2009

[3] R.C. Bunescu, M. Pasca: Using Encyclopedic Knowledge for Named
entity Disambiguation. EACL 2006

[4] M.J. Cafarella, A.Y. Halevy, N. Khoussainova: Data Integration for
the Relational Web. PVLDB 2(1):1090-1101, 2009

[5] W.W. Cohen: Data integration using similarity joins and a word-based
information representation language. ACM TOIS 18(3):288-321, 2000

[6] S. Cucerzan: Large-Scale Named Entity Disambiguation Based on
Wikipedia Data. EMNLP-CoNLL 2007:708-716

[7] J.R. Finkel, T. Grenager, C. Manning: Incorporating Non-local
Information into Information Extraction Systems by Gibbs Sampling.
ACL 2005.
nlp.stanford.edu/software/CRF-NER.shtml

[8] J. Hoffart, F. Suchanek, K. Berberich, E. Lewis-Kelham, G. de Melo,
G. Weikum: YAGO2: Exploring and Querying World Knowledge in
Time, Space, Context, and Many Languages. Demo Paper, WWW
2011:229-232, data at
www.mpi-inf.mpg.de/yago-naga/yago/

[9] J. Hoffart, M. A. Yosef, I. Bordino, H. Fürstenau, M. Pinkal, M.
Spaniol, B. Taneva, S. Thater, G. Weikum: Robust Disambiguation of
Named Entities in Text. EMNLP 2011

[10] S. Kulkarni, A. Singh, G. Ramakrishnan, S. Chakrabarti: Collective
annotation of Wikipedia entities in web text. KDD 2009:457-466

[11] G. Limaye, S. Sarawagi, S. Chakrabarti: Annotating and Searching
Web Tables Using Entities, Types and Relationships. PVLDB
3(1):1338-1347, 2010

[12] D.N. Milne, I.H. Witten: Learning to link with wikipedia. CIKM
2008:509-518

[13] F. Naumann, M. Herschel: An Introduction to Duplicate Detection.
Morgan & Claypool, 2010

[14] P. Singla, P. Domingos. Entity resolution with Markov Logic. ICDM
2006:572-582

[15] F.M. Suchanek, G. Kasneci, G. Weikum: YAGO: a Core of Semantic
Knowledge. WWW 2007:697-706

[16] M.L. Wick, A. Culotta, K. Rohanimanesh, A. McCallum: An Entity
Based Model for Coreference Resolution. SDM 2009:365-376

1453


