
MapReduce Programming and Cost-based Optimization?
Crossing this Chasm with Starfish

Herodotos Herodotou
Duke University

hero@cs.duke.edu

Fei Dong
Duke University

dongfei@cs.duke.edu

Shivnath Babu∗
Duke University

shivnath@cs.duke.edu

ABSTRACT
MapReduce has emerged as a viable competitor to database sys-
tems in big data analytics. MapReduce programs are being written
for a wide variety of application domains including business data
processing, text analysis, natural language processing, Web graph
and social network analysis, and computational science. However,
MapReduce systems lack a feature that has been key to the histor-
ical success of database systems, namely, cost-based optimization.
A major challenge here is that, to the MapReduce system, a pro-
gram consists of black-box map and reduce functions written in
some programming language like C++, Java, Python, or Ruby.

Starfish is a self-tuning system for big data analytics that in-
cludes, to our knowledge, the first Cost-based Optimizer for simple
to arbitrarily complex MapReduce programs. Starfish also includes
a Profiler to collect detailed statistical information from unmodified
MapReduce programs, and a What-if Engine for fine-grained cost
estimation. This demonstration will present the profiling, what-
if analysis, and cost-based optimization of MapReduce programs
in Starfish. We will show how (nonexpert) users can employ the
Starfish Visualizer to (a) get a deep understanding of a MapReduce
program’s behavior during execution, (b) ask hypothetical ques-
tions on how the program’s behavior will change when parameter
settings, cluster resources, or input data properties change, and (c)
ultimately optimize the program.

1. INTRODUCTION
MapReduce is a relatively young framework—both a program-

ming model and an associated run-time system—for large-scale
data processing [4]. Hadoop [5] is a popular open-source imple-
mentation of MapReduce that many academic, government, and
industrial organizations use in production deployments. Hadoop
is used for applications such as Web indexing, data mining, report
generation, log file analysis, machine learning, financial analysis,
scientific simulation, and bioinformatics research. Cloud platforms
make MapReduce an attractive proposition for small organizations
that need to process large datasets, but lack the computing and hu-
man resources of a Google or Yahoo! to throw at the problem.

∗Supported by NSF grant 0964560 and an AWS research grant

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 37th International Conference on Very Large Data Bases,
August 29th - September 3rd 2011, Seattle, Washington.
Proceedings of the VLDB Endowment, Vol. 4, No. 12
Copyright 2011 VLDB Endowment 2150-8097/11/08... $ 10.00.

Elastic MapReduce, for example, is a hosted platform on the Ama-
zon cloud where users can instantly provision Hadoop clusters to
perform data-intensive tasks; paying only for the resources used.

A MapReduce program p is run on input data d and cluster re-
sources r as a MapReduce job j = 〈p, d, r, c〉. c represents a set of
configuration parameter settings needed in order to fully specify
how the job should execute on the cluster. Choices for settings in c
include (but are not limited to):
1. Degree of parallelism. The execution of j consists of running

parallel map and reduce tasks. These tasks may run in multiple
waves depending on the number of execution slots in r.

2. The amount of memory to allocate to each map (reduce) task of
j to buffer its outputs (inputs).

3. The settings for the multiphase external sorting used to group
map-output values by key.

4. Whether the output data from the map (reduce) tasks should be
compressed before being written to disk.

5. Whether a given combine function should be used to preaggre-
gate map outputs before their transfer to reduce tasks.

Hadoop has more than 190 configuration parameters out of which
10-20 parameters can have significant impact on job performance.
Today, the burden falls on the user who submits the MapReduce
job to specify settings for all configuration parameters. For any pa-
rameter whose value is not specified explicitly during job submis-
sion, default values—either shipped with the system or specified
by the system administrator—are used. Higher-level languages for
MapReduce like HiveQL and Pig Latin have developed their own
hinting syntax for setting parameters.

The impact of various parameters as well as their best settings
vary depending on the MapReduce program, input data, and clus-
ter resource properties. Personal communication, our own experi-
ence [1, 7], and plenty of anecdotal evidence on the Web indicate
that finding good configuration settings for MapReduce jobs is time
consuming and requires extensive knowledge of system internals.

To automate this process, we developed Starfish [7], a self-tuning
system for big data analytics. Starfish, which is built on Hadoop,
aims to enable Hadoop users and applications to get good perfor-
mance automatically without any need on their part to understand
and manipulate the many tuning knobs available. Starfish includes
a Cost-based Optimizer to find good configuration settings auto-
matically for arbitrary MapReduce programs. The Optimizer re-
quires the use of two other components: a Profiler that instruments
unmodified MapReduce programs dynamically to generate concise
statistical summaries of MapReduce job execution; and a What-if
Engine to reason about the impact of parameter configuration set-
tings, as well as data and cluster resource properties, on the perfor-
mance of MapReduce jobs.

1446



In this demonstration, we will present the uses and contributions
of each component in optimizing MapReduce program execution:
• The information collected by the Profiler helps in understand-

ing the job behavior as well as in diagnosing bottlenecks during
job execution.
• The What-if Engine can predict the performance of a MapRe-

duce job j, allowing the user to study the effects of configura-
tion parameters, cluster resources, and input data on the perfor-
mance of j; without actually running j.
• The Cost-based Optimizer can find the optimal configuration

settings for j, and also help understand why the current settings
are possibly suboptimal.

2. COST-BASED OPTIMIZATION
Consider a MapReduce job j = 〈p, d, r, c〉 that runs program p on

input data d and cluster resources r using configuration parameter
settings c. Job j’s performance can be represented as:

perf = F (p, d, r, c) (1)

Here, perf is some performance metric (e.g., execution time) of
interest for jobs that is captured by the cost model F . Optimizing
the performance of program p for given input data d and cluster
resources r requires finding the configuration parameter settings
copt that give the optimal value of perf. The What-if Engine uses
a set of analytical and simulation models to implement the cost
function F , whereas the Profiler gathers the necessary information
for performing cost-based optimization. The three components of
our solution are described next.

2.1 Profiler
The Profiler is responsible for collecting job profiles: statistical

summaries of MapReduce job execution. A job profile is a vector of
fields where each field captures some unique aspect of data-flow or
cost estimates during job execution. Data-flow estimates represent
information regarding the amount of bytes and key-value pairs pro-
cessed during the job’s execution, as well as key-value distributions
for input, intermediate, and output data. Cost estimates represent
execution time and resource usage, including the usage trends of
CPU, memory, I/O, and network resources during the job’s execu-
tion. The full listing of profile fields can be found in [6].

The information included in a job profile is at the fine granularity
of phases within the map and reduce tasks of a MapReduce job
execution. This feature is crucial to the accuracy of decisions made
by the What-if Engine and the Cost-based Optimizer. Apart from
using job profiles in answering what-if questions, the job profiles
also help in understanding the job behavior as well as in diagnosing
bottlenecks during job execution.

The Profiler uses dynamic instrumentation [3] to collect run-time
monitoring information from unmodified MapReduce programs run-
ning on Hadoop. Dynamic instrumentation is now a popular tech-
nique to understand, debug, and optimize complex systems . Our
current implementation of the Profiler uses the BTrace dynamic in-
strumentation tool for Java [2]. When Hadoop runs a MapReduce
job, the Profiler dynamically instruments selected Java classes in-
ternal to Hadoop to collect raw monitoring data. The raw data will
undergo a series of post-processing steps in order to construct a
concise job profile. First, the raw data collected for each profiled
map or reduce task is processed to give fields in a task profile. The
map (reduce) task profiles are further processed to give representa-
tive map (reduce) task profiles. The task profiles also contain all in-
dividual key-value flows, which are used to compute the key-value
distributions across all map and reduce tasks.

Three features are noteworthy. First, the Profiler only instru-
ments the MapReduce framework, and not user-written programs.

Hence, profiling works irrespective of whether the user submits
the MapReduce program in Java, in Python/Ruby using Hadoop
Streaming, or in C++ using Hadoop Pipes. Second, dynamic in-
strumentation can be turned on or off seamlessly at run-time, in-
curring zero overhead when turned off; an appealing property in
production deployments. Third, task-level sampling can be used
to generate approximate job profiles quickly.

2.2 What-if Engine
The What-if Engine is given four inputs when asked to predict

the performance of a MapReduce job j:
1. Job profile generated for j by the Profiler.
2. New configuration settings c to run j with.
3. Size, layout, and compression information of the input dataset

d on which j will be run. Note that this input dataset can be
different from the dataset used while generating the job profile.

4. Cluster setup and resource allocation r that will be used to run
j. This information includes the number of nodes and network
topology of the cluster, the number of map and reduce task slots
per node, and the memory available for each task execution.

These inputs and a detailed set of analytical and simulation mod-
els we developed are used to generate a virtual job profile for the
hypothetical job j′ that represents j run with the new configuration
settings. The virtual job profile is used by a Task Scheduler Simula-
tor, along with the models and information on the cluster resources
r, to simulate the scheduling and execution of the map and reduce
tasks of j′; from which the desired performance metrics are esti-
mated. The full details are given in [6].

2.3 Cost-based Optimizer
Given a MapReduce program p to be run on input data d and

cluster resources r, the Optimizer must find the setting of config-
uration parameters copt = argmin

c∈S
F (p, d, r, c) for the cost model

F represented by the What-if Engine over the space S of config-
uration parameter settings. The Optimizer addresses this problem
by making what-if calls with settings c of the configuration param-
eters selected through an enumeration and search over S. In order
to provide both efficiency and effectiveness, the Optimizer must
minimize the number of what-if calls while finding near-optimal
configurations.

For this purpose, the Optimizer uses Recursive Random Search
(RRS), a recent technique developed to solve black-box optimiza-
tion problems [9]. RRS first samples the space S randomly to iden-
tify promising regions that contain the optimal setting with high
probability. These regions are then sampled recursively, and the
regions either move or shrink gradually to locally-optimal settings
based on the samples collected. RRS then restarts random sampling
to find a more promising region to repeat the recursive search.

3. DEMONSTRATION PLAN
The demonstration will use the Starfish Visualizer, a new graphi-

cal user interface that we have developed. Users employ the Visual-
izer to (a) get a deep understanding of a MapReduce job’s behavior
during execution, (b) ask hypothetical questions on how the job be-
havior will change when parameter settings, cluster resources, or
input data properties change, and (c) ultimately optimize the job.
Hence, we categorize the core functionalities of the Visualizer into
Job Analysis, What-if Analysis, and Job Optimization. For each
functionality, the Visualizer offers five different views:
1. Timeline views, used to visualize the progress of job execution

at the task level.
2. Data-skew views, used to identify the presence of data skew in

the input and output data for map and reduce.

1447



Figure 1: Execution timeline of the map and reduce tasks of a
MapReduce job in a Hadoop cluster running on Amazon EC2.
3. Data-flow views, used to visualize the flow of data among the

nodes of a Hadoop cluster, and between the map and reduce
tasks of a job.

4. Profile views, used to show the detailed information exposed by
the job profiles, including the phase timings within the tasks.

5. Settings views, used to list the configuration parameter settings,
cluster setup, and the input data properties during job execution.

We will demonstrate the Visualizer’s functionalities in order, and
show how the user can obtain deep insights into a job’s perfor-
mance from each view in each case. The jobs considered will
represent popular MapReduce programs used in different domains:
text analytics (WordCount), natural language processing (Word Co-
occurrence), analysis of large hyperlink graphs (LinkGraph, PageR-
ank), and business data processing (Join, TeraSort) [8].

3.1 Job Analysis
When a MapReduce job executes on a Hadoop cluster, the Pro-

filer collects a wealth of information including logs, counters, re-
source utilization metrics, and profiling data. Figure 11 shows the
execution timeline of map and reduce tasks that ran during a MapRe-
duce job execution. The user can get information such as how many
tasks were running at any point in time on each node, when each
task started and ended, or how many map or reduce waves occurred
during job execution. The user is able to quickly spot any high
variance in the task execution times, and discover potential load-
balancing issues. Moreover, Timeline views can be used to com-
pare different executions of the same job run at different times or
with different parameter settings. Comparison of timelines shows
whether the job behavior changed over time, as well as helps under-
stand the impact of changing parameter settings on job execution.

While the Timeline views are useful in identifying computational
skew, the Data-skew views (shown in Figure 2) can readily help
identify the presence of skew in the data consumed and produced
by the map and reduce tasks. Data skew in the reduce tasks usu-
ally indicates a strong need for a better partitioner in a MapReduce
job. Data skew in the map tasks corresponds to properties of the
input data, and may indicate the need for a better partitioner in the
producer job that generates the input data.

The Data-skew views are complemented by the Data-flow views
used to identify data skew across the Hadoop nodes. Figure 3
presents the data flow among the nodes during the execution of

1All figures are actual screenshots from the Starfish Visualizer.

Figure 2: A histogram showing the data-skew of the map out-
put produced by a MapReduce job.

Figure 3: Visual representation of the data-flow among the
Hadoop nodes during a MapReduce job execution.

a MapReduce job. The thickness of each line is proportional to the
amount of data that was shuffled between the corresponding nodes.
The user also has the ability to specify a set of filter conditions (see
the left side of Figure 3) that allows her to zoom in on a subset of
nodes or on the large data transfers. An important feature of the
Visualizer is the Video mode that allows users to play back a job
execution from the past. Using the Video mode, the user can in-
spect how data was processed and transfered between the map and
reduce tasks of the job, and among nodes and racks of the cluster,
as time went by.

The Profile views help visualize the job profiles, namely, the in-
formation exposed by the profile fields at the fine granularity of
phases within the map and reduce tasks of a job; allowing for an
in-depth analysis of the task behavior during execution. For exam-
ple, Figure 4 displays the breakdown of time spent on average in
each map and reduce task. The Profile views also form an excellent
way of diagnosing bottlenecks during task execution. It stands out
in Figure 4 that the time spent merging the map output data at the
reduce tasks contributes the most to the total execution time; in-
dicating that the corresponding configuration parameters have set-
tings that are potentially suboptimal.

1448



Figure 4: Map and reduce time breakdown from the virtual
profile for a MapReduce job.

Finally, the Settings view (see Figure 5) lists the most important
Hadoop configuration parameters used during the execution of a
MapReduce job, as well as the cluster setup and input data proper-
ties. The cluster setup is summarized as the number of nodes, the
average number of map and reduce slots per node, and the memory
available for each task execution. The input data properties include
the size and compression of each input split processed by a sin-
gle map task. The user also has the option of exporting any of the
above settings in XML format.

3.2 What-if Analysis
The second core functionality provided by the Starfish Visualizer

is the ability to answer hypothetical questions about the behavior of
a MapReduce job when run under different settings. This function-
ality allows users to study and understand the impact of configura-
tion parameter settings, cluster setup, and input data properties on
the performance of a MapReduce job.

For instance, the user can ask a what-if question of the form:
“How will the execution time of a job change if the number of re-
duce tasks is doubled?” The user can then use the Timeline view to
visualize what the execution of the job will look like under the new
settings, and compare it to the current job execution. By varying
the number of reducers (or any other configuration parameter), the
user can determine the impact of changing that parameter on the job
execution. Under the hood, the Visualizer invokes the What-if En-
gine to generate a virtual job profile for the job in the hypothetical
setting (recall Section 2.2).

Furthermore, the user can investigate the behavior of MapRe-
duce jobs when changing the cluster setup or the input specifica-
tion. This functionality is useful in two scenarios. First, many orga-
nizations run the same MapReduce programs over multiple datasets
with similar data distribution, but different sizes. For example, the
same report-generation MapReduce program may be used to gen-
erate daily, weekly, and monthly reports. Or, the daily log data
collected and processed may be larger for a weekday than the data
for the weekend. By modifying the input specification, the user can
ask what-if questions on the job behavior when the job is run using
datasets of different sizes.

Another common use-case is the presence of a development/test
cluster for generating job profiles. In many companies, developers
use a small test cluster for testing and debugging MapReduce pro-
grams over small (representative) datasets before running the pro-

Figure 5: The optimal configuration settings found by the Op-
timizer, as well as the cluster and input data specifications.

grams, possibly multiple times, on the production cluster. Again,
the user can modify the cluster setup in order to determine in ad-
vance how the jobs will behave on the production cluster. These
novel capabilities are immensely useful in Hadoop deployments; a
detailed evaluation is provided in [6].

3.3 Job Optimization
Perhaps the most important functionality of the Visualizer comes

from how it can use the Cost-based Optimizer to find good configu-
ration settings for executing a MapReduce job on a Hadoop cluster.
The user can then export the configuration settings as an XML file
that is used when the same program has to be run in future. At the
same time, the user can examine the behavior of the optimal job
through the other views provided by the Visualizer.

Similar to the What-if Analysis functionality, the user can mod-
ify the cluster and input specifications before optimizing a MapRe-
duce job. Hence, the user can obtain good configuration settings
for the same MapReduce program executed over different input
datasets and different clusters (per the two usage scenarios pre-
sented above). In addition, the user can take advantage of the sam-
pling capabilities of the Profiler to quickly collect a job profile on a
sample of the input data. The user can then modify the input spec-
ifications and find the optimal settings to use when executing the
MapReduce program over the full (or a different) dataset.

4. REFERENCES
[1] S. Babu. Towards Automatic Optimization of MapReduce Programs.

In SoCC, pages 137–142, 2010.
[2] A Dynamic Instrumentation Tool for Java. kenai.com/projects/btrace.
[3] B. M. Cantrill, M. W. Shapiro, and A. H. Leventhal. Dynamic

Instrumentation of Production Systems. In USENIX ATEC, pages 2–2,
2004.

[4] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing
on Large Clusters. Commun. ACM, 51(1):107–113, 2008.

[5] Apache Hadoop. http://hadoop.apache.org/.
[6] H. Herodotou and S. Babu. Profiling, What-if Analysis, and

Cost-based Optimization of MapReduce Programs. PVLDB, 4, 2011.
[7] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. B. Cetin, and

S. Babu. Starfish: A Self-tuning System for Big Data Analytics. In
CIDR, pages 261–272, 2011.

[8] J. Lin and C. Dyer. Data-Intensive Text Processing with MapReduce.
Morgan and Claypool, 2010.

[9] T. Ye and S. Kalyanaraman. A Recursive Random Search Algorithm
for Large-scale Network Parameter Configuration. In SIGMETRICS,
pages 196–205, 2003.

1449


