
UpStream: A Storagecentric Load Management System
for Realtime Update Streams

Alexandru Moga
Systems Group, ETH Zurich, Switzerland

amoga@inf.ethz.ch

Nesime Tatbul
Systems Group, ETH Zurich, Switzerland

tatbul@inf.ethz.ch

ABSTRACT

UpStream is a framework for load management over data
streams with update semantics. It provides a novel stor-
age manager architecture that can be plugged into data
stream processing engines for serving streaming applications
that require low-staleness results over real-time continuous
queries. We propose to demonstrate the key aspects of the
UpStream architecture as well as its performance using two
different application scenarios: One that models a contin-
uously updating financial market dashboard, and another
one that is based on an intelligent transportation system
for monitoring moving vehicles on a road traffic network.
The demonstration will illustrate how UpStream can pro-
vide low-staleness query results for these applications under
highly overloaded situations, by using a number of update
scheduling and storage management techniques. This will
be done through a number of interactive visual monitoring
tools for the application interface as well as for monitoring
the run-time operation of the UpStream system itself.

1. INTRODUCTION
Processing high-volume data streams in real time has been

a challenge for many applications including financial ser-
vices, multi-player online games, security monitoring and
location tracking systems. Various load management tech-
niques have been proposed to deal with this challenge from
dynamic load balancing to adaptive load shedding. Most of
these techniques are best-effort in nature and rely heavily
on application-specific resource allocation and system opti-
mization techniques based on Quality of Service (QoS) spec-
ifications. In UpStream, we focus on one such application
property which characterizes a common set of applications,
yet has not been sufficiently addressed by previous work thus
far: update semantics.

For applications with update semantics, each data ele-
ment (or a window of data elements) in a stream represents
an update to a previous one, and therefore, the most recent
arrival is all that really matters to the application [9]. For

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 37th International Conference on Very Large Data Bases,
August 29th September 3rd 2011, Seattle, Washington.
Proceedings of the VLDB Endowment, Vol. 4, No. 12
Copyright 2011 VLDB Endowment 21508097/11/08... $ 10.00.

example, a stock broker watching a continuously updating
market dashboard is often times interested in the current
market value of a particular stock symbol. Similarly, in sys-
tems that involve continuous mobile object tracking such
as in Intelligent Transportation Systems, there is a need to
monitor the current GPS location of each vehicle as well as
the latest average vehicle speed or traffic flow for selected
road segments or geographical regions [1]. In such applica-
tions, the main goal is to provide the most up-to-date an-
swers to the application with the lowest staleness possible,
as opposed to the applications with the traditional append
semantics, where providing all answers with the lowest pos-
sible latency is the normal modus operandi. Under normal
load conditions, the QoS requirements of these two classes of
applications coincide, since lowering latency also lowers stal-
eness. However, under overload, previous load management
techniques fall short in satisfying the staleness requirements
of the update-based applications since they optimize for la-
tency.

In UpStream, we propose a scalable framework for adap-
tively managing overload for update-based applications in a
way to minimize their staleness and memory usage [9]. Our
framework is “storage-centric” in that the update semantics
is pushed to the storage level, allowing us to immediately ap-
ply in-place updates inside the tuple queues as soon as new
events hit the system. This has been one of the key and
novel design decisions in UpStream that greatly impacts its
performance and usability.

In this demonstration proposal, we first present an archi-
tectural overview of our UpStream system, followed by a
short related work summary. Then we describe the applica-
tion scenarios that we are building on top of UpStream to
showcase its main features.

2. UPSTREAM SYSTEM OVERVIEW
An update stream consists of a sequence of relational tu-

ples with the generic schema (time, update-key-fields, other-
fields). We assume that tuples are ordered by time for a
given update key and this per-key order is preserved through-
out the query processing. Furthermore, we assume that up-
date key fields are retained in the tuples throughout the
query plan. This enables the user and the system to under-
stand the connection between the input tuples and the query
result tuples that belong to the same update key value.

As in the case of append streams, continuous queries on
update streams can be composed of a number of stream-
oriented operators. In this demo, we focus on two represen-
tative operator classes. The first class includes the state-

1442

Figure 1: UpStream storage manager architecture.

less operators that execute on a per-tuple basis (e.g., filter,
map). The second class includes stateful operators that exe-
cute on a per-window basis (e.g., sliding window aggregate).
The stateful operators map updates on input tuples into up-
dates on windows, each corresponding to an output tuple.
This difference in operational units must be taken into ac-
count in managing the updates in the system, since output
staleness will then apply to whole windows rather than in-
dividual input tuples.

One of the key architectural features of UpStream is that
it takes a storage-centric approach to handling high-volumes
of real-time update streams. At the core of the system is a
lossy tuple storage model called an “update queue”. An up-
date queue is responsible for keeping only the most recently
arrived update for each distinct update key value; older up-
dates can be discarded right away. Furthermore, each key
may be updating at a different frequency than others. Sim-
ilarly, each output application may like to access the query
results at different rates. Given these, UpStream must de-
cide which keys should be prioritized in query processing so
that overall application staleness can be minimized. This
requirement has led to several different flavors of update
queues in UpStream (e.g., IN-PLACE, LINE-CUTTING),
each suitable for a particular type of workload.

Figure 1 shows a high-level overview of the UpStream stor-
age manager architecture. The Storage Manager interfaces
with Input Sources, Output Applications, and the Query
Processor through its iterators. These iterators enable three
basic queue operations: enqueue, dequeue, and read. Input
Sources always enqueue new tuples into a queue, whereas
Output Applications always dequeue tuples from a queue.
The Query Processor can enqueue intermediate results of
operators, while it can read or dequeue these back again
to feed into the subsequent operators in the query pipeline.
The Storage Manager also communicates with the Statistics
Monitor in order to get statistics (e.g., key update frequen-
cies) to drive its optimization decisions. The underlying
queue semantics can either be append or update. In this
demo, we will focus on the latter.

The Update Queue Manager is divided into three main
components. The Key Scheduler (KS) decides when to sched-
ule different update keys for processing and can employ
various different policies for this purpose (in-place updates,
etc.). The Window Manager (WM) takes care of maintain-
ing the window buffers according to the desired sliding win-

dow semantics. Finally, the Memory Manager (MM) compo-
nent oversees the physical page allocation from the memory
pool. In our design, these three components are layered on
top of each other and handle three orthogonal issues: KS is
responsible for minimizing staleness, WM is responsible for
correct window processing, and MM is responsible for the
efficient management of the available system memory where
the actual data is physically stored [10].

We have implemented UpStream on top of the Borealis
stream processing engine, expanding on its Storage Manager
component [3]. The QoS and statistics monitoring compo-
nents of Borealis were also extended in order to keep track of
update key frequencies and to compute staleness and mem-
ory usage. It should be noted that the UpStream design is
general enough to be applicable on any stream processing
engine. This power comes from the fact that it follows a
design that decouples storage management from the query
processing engine [5].

3. RELATED WORK SUMMARY
UpStream mainly relates to previous work in three broad

research areas: (i) stream load management, (ii) synchro-
nization and freshness in web databases, and (iii) material-
ized view maintenance. A more detailed summary of related
work in these areas is provided in a recent publication [9].
However, we would like to discuss here in detail, one re-
cent work in (iii) which relates to UpStream quite closely:
The DataDepot Project from AT&T Labs [8]. DataDepot is
a tool for generating data warehouses from streaming data
feeds, thus it has many warehousing-related features. For
us, the part on real-time update scheduling is directly rele-
vant. We see two basic similarities between UpStream and
DataDepot: Both accept push-based data and both worry
about staleness. On the other hand, in DataDepot, up-
dates correspond to appending new data to warehouse ta-
bles. Therefore, all updates must be applied. Furthermore,
DataDepot focuses on scheduling the update jobs, but does
not consider continuous operations on streams (e.g., slid-
ing window queries). UpStream could potentially serve as a
pre-processor for a real-time data warehouse system such as
DataDepot. Thus, the two works are complementary.

4. DEMO SCENARIOS
In this section, we describe two application scenarios that

will demonstrate different key aspects in UpStream.

4.1 Financial Market Dashboard
Our first application is from the financial services domain.

We took a real financial dataset from NYSE TAQ (Trade
and Quote) database [2], which we can replay as a real-time
continuous data stream. This dataset contains two types of
streams: Trades and Quotes. A trade tuple contains the last
price and volume of a stock traded for a particular stock
symbol at a particular time. A quote tuple contains the
current highest bid and the current lowest ask for a stock
symbol. Therefore, both Trades and Quotes streams have
update semantics. On these data streams, we can define a
number of continuous queries that also exhibit update se-
mantics. For example:

Q1: For each symbol, report the current price and the total

change in price relative to the beginning of the day.
Q2: For each symbol, report the total trade volume and the

average trading price in the last 10 minutes.

1443

Figure 2: Real-time dashboard for UpStream.

Q1 produces an update stream, where the key is the stock
symbol and the scope is the time elapsed since the beginning
of the day; whereas in Q2, the window of interest consists
of the last 10 minutes from the Trades stream for the same
symbol. Such queries need to provide answers that reflect
the most recent state of the input. Otherwise, decisions
based on stale data may lead to loss in profits.

We will use this application scenario to demonstrate how
UpStream can reduce staleness via update frequency-aware
key scheduling. We analyzed the NYSE TAQ dataset (e.g.,
for a trading day in January 2006) and saw that update fre-
quencies for different stock symbols over a given time period
were not uniform. We exploit differences among update fre-
quencies of keys in making intelligent scheduling decisions in
the tuple queues. Thus, in addition to our in-place update
queue policy (which we have theoretically and experimen-
tally proven to be the best possible approach for uniform up-
date frequencies [9]), we will also demonstrate line-cutting
policies, which essentially allow slowly updating keys to cut
in front of the other keys in the update queue. We have
shown that this can indeed lead to a great reduction in the
overall query staleness over the in-place policy [9].

As continuous queries, we are planning to use sliding win-
dow aggregation queries with grouping by symbol (similar
to Q1 and Q2 shown above). The results of the continuous
queries will be visualized on a real-time dashboard along
with their staleness values, as shown in Figure 2. We will
have several stock portfolios containing a number of stock
symbols to be monitored. The stream of symbols from the
NYSE TAQ dataset will be fed into UpStream at different
rates. For instance, we can have diversified portfolios: Some
symbols show intense trading, i.e., high update rate, while
others less intense, i.e., low update rates. We can monitor

selected symbols from the selected portfolio (top panel in
Figure 2) both in terms of query answers (middle panel) and
most importantly in terms of staleness levels (bottom panel).
For the latter, we can observe staleness levels in real-time
and average staleness per symbol and overall when different
optimization techniques are employed in UpStream.

4.2 Road Traffic Monitoring
In this scenario, we model a real-time monitoring service

for a transportation system, inspired by initiatives such as
ITS [1]. Here we specifically focus on monitoring vehicles
traveling inside a metropolitan area. However, the type
of queries and techniques shown in this scenario are gen-
eral enough to address continuous monitoring of any kind of
moving objects.

Continuous monitoring of moving objects consists of spatio-
temporal queries (e.g., range, nearest-neighbor, or time-para
metrized [7]). A moving object generates position reports of
the form (time, object-id, coordinates, speed, ...). A stream
consisting of such position reports for all moving objects
has clear update semantics: Each new report is an update
on the previous one, for the same object-id value. A contin-
uous query on the stream of position reports can also exhibit
update semantics. For instance, a typical query may be to
retrieve the available cabs that are currently within 1 mile
of 33 N. Michigan Ave., Chicago [11]. On the other hand,
such a query needs to provide results in a timely fashion
even when the update rates are very high. As also pointed
out by Wolfson et al [11], high update rates can be a reason
for inherent uncertainty in moving object databases. In Up-
Stream, this uncertainty can be easily captured by staleness
of the query results.

In this demonstration scenario, we plan to show how Up-
Stream can reduce the staleness of spatio-temporal queries
under conditions of high load. UpStream can do so via
efficient update-aware load shedding directly on the input
stream. In recent work [9], we have introduced the window-
aware update queues, which can perform update-aware load
shedding for sliding-window aggregation queries. We also
showed through experimental analysis how the window-aware
update queues reduce staleness in a better way than state-of-
the-art approaches, i.e., random-based window-aware load
shedding. Here we use them for spatial queries that pro-
duce results using a time-based sliding window, such as the
following:

Q3: Continuously report the number of cars that have passed
through region R in the last hour.

Q4: Continuously report the number of cars in region R.

From a temporal perspective, we consider Q3 to be a his-
torical query since it reports based on what has happened
in the last period of time. On the other hand, we call Q4
a snapshot query since it reports based on the current po-
sitions of the moving objects. From a spatial perspective,
we envision the following queries on spatial data: predefined,
user-defined, and mobile range queries on one hand, and k-
nearest neighbor (kNN) or skyline queries on the other. Fig-
ure 3 shows several screenshots taken from our visualization
tool that allows us to depict the results of spatio-temporal
queries running in UpStream as well as controlling query
parameters. The figures show only a part of the GUI that
is in charge with displaying the entire space (in this case
the map of a city), the location of moving objects and the
regions surrounding the query points.

1444

(a) Predetermined ranges. (b) Arbitrary fixed ranges. (c) Mobile ranges. (d) kNN and skyline.

Figure 3: Spatio-temporal queries in UpStream.

◮ Predefined Range Queries. Ranges are defined based
on information that can be found in the input stream. In
other words, we can assume that the entire space is divided
into non-overlapping regions (i.e., sectors), as depicted in
Figure 3(a). In this case, the input stream has an addi-
tional field, the sector-id, which indicates the sector where
a moving object has reported position (e.g., A1, B3, C1 in
Figure 3(a)). The query can compute a number of aggre-
gations (e.g., object counts, center of mass, average speed,
ingress/egress counts etc.) based on the objects found in
each sector. This way, the output stream is an update
stream where the update key is the sector.
◮ User-defined Range Queries. This time, ranges are
defined by the user. They are arbitrary and fixed (e.g.,
regions R1, R2, and R3 in Figure 3(b)). Normally, each
range would entail a separate query that can perform the
same type of aggregations as in the case of predefined range
queries. However, UpStream benefits from Borealis’ group-
by sliding-window aggregate operator. Therefore, we can
combine all range queries into one which produces an up-
date stream where the update key is the range itself.
◮ Mobile Range Queries. We define a mobile range
query to be object-centric. Therefore, the range moves with
the object. For instance, Figure 3(c) shows the ranges around
the positions of the objects O1, O2, and O3 at time t. The
query performs aggregations based on the objects within
range, and produces an update stream where the update
key is the object itself.
◮ k-Nearest Neighbor and Skyline Queries. These
queries are similar in style to the mobile range queries. They
are object centric, i.e., the output is an update stream where
the update key is the object. However, instead of a user-
defined range around the object, the query scope is made
up by the k-nearest neighbors or the skyline (i.e., the most
interesting set of objects [4]) in relation to the object. An
example query would be to maintain the minimum bounding
box around each object and its k-nearest neighbors. Figure
3(d) depicts this for objects O1, O2, and O3 at time t.

The demonstration will be carried out based on the visual-
ization tool which shows the query points and query scopes
as well as the moving objects themselves (to some extent)
directly on the map of a city in real-time. One can use the
tool to change the query parameters or select specific points
(e.g., ranges or objects) of interest to be displayed. Stale-
ness information from UpStream can also be shown through
variable transparency of the regions around the query points

(e.g., if region R2 in Figure 3(b) is completely transpar-
ent, then the latest aggregation result for that region has
zero staleness). The data streams will be generated using a
network-based generator of moving objects such as the one
described in [6]. Different load levels will be exerted onto
the system by varying the input stream rates.

5. ACKNOWLEDGEMENTS
The work presented in this paper has been supported in

part by the National Competence Center in Research on
Mobile Information and Communication Systems NCCR-
MICS, a center supported by the Swiss National Science
Foundation under grant number 51NF40-130758/1.

6. REFERENCES
[1] Intelligent Transportation Systems (ITS).

http://www.its.dot.gov .
[2] NYSE Data Solutions. http://www.nyxdata.com/nysedata .

[3] D. Abadi, Y. Ahmad, M. Balazinska, U. Çetintemel,
M. Cherniack, J. Hwang, W. Lindner, A. Maskey, A. Rasin,
E. Ryvkina, N. Tatbul, Y. Xing, and S. Zdonik. The Design
of the Borealis Stream Processing Engine. In CIDR
Conference, pages 277–289, Asilomar, CA, January 2005.

[4] S. Borzsony, D. Kossmann, and K. Stocker. The Skyline
Operator. In IEEE ICDE Conference, pages 421–430,
Heidelberg, Germany, April 2001.

[5] I. Botan, G. Alonso, P. M. Fischer, D. Kossmann, and
N.Tatbul. Flexible and Scalable Storage Management for
Data-intensive Stream Processing. In EDBT Conference,
pages 934–945, Saint Petersburg, Russia, March 2009.

[6] T. Brinkhoff. A Framework for Generating Network-based
Moving Objects. GeoInformatica, 6(2):153–180, June 2002.

[7] J. Dittrich, L. Blunschi, and M. Vaz Salles. Indexing
Moving Objects using Short-lived Throwaway Indexes. In
SSTD Symposium, pages 189–207, Aalborg, Denmark, July
2009.

[8] L. Golab, T. Johnson, J. S. Seidel, and V. Shkapenyuk.
Stream Warehousing with DataDepot. In ACM SIGMOD
Conference, pages 847–854, Providence, RI, June 2009.

[9] A. Moga, I. Botan, and N. Tatbul. UpStream: Storage-
centric Load Management for Streaming Applications with
Update Semantics. VLDB Journal. to appear.

[10] A. Moga, I. Botan, and N. Tatbul. UpStream: Storage-
centric Load Management for Data Streams with Update
Semantics. Technical Report TR-620, ETH Zurich, March
2009. ftp://ftp.inf.ethz.ch/pub/publications/tech-reports
/6xx/620.pdf.

[11] O. Wolfson, B. Xu, S. Chamberlain, and L. Jiang. Moving
Objects Databases: Issues and Solutions. In IEEE SSDBM
Conference, pages 111–122, Capri, Italy, July 1998.

1445

http://www.its.dot.gov
http://www.nyxdata.com/nysedata

	Introduction
	UpStream System Overview
	Related Work Summary
	Demo Scenarios
	Financial Market Dashboard
	Road Traffic Monitoring

	Acknowledgements
	References

