
FuDoCS: A Web Service Composition System Based on
Fuzzy Dominance for Preference Query Answering

Karim Benouaret 1, Djamal Benslimane 1, Allel Hadjali 2, Mahmoud Barhamgi 1

1Claude Bernard Lyon1 University, 69622 , Villeurbanne, France
{karim.benouaret, djamal.benslimane, mahmoud.barhamgi}@liris.cnrs.fr

2Enssat, University of Rennes 1, 22305, Lannion, France
allel.hadjali@enssat.fr

1. INTRODUCTION
Modern enterprises are increasingly moving towards a ser-

vice oriented architecture for data sharing by putting their
data sources behind services, thereby providing an interop-
erable way to interact with their data. This class of services
is known as DaaS (Data-as-a-Service) services. DaaS Com-
position is a powerful solution to answer the user’s complex
queries by combining primitive DaaS services. User prefer-
ences are a key aspect that must be considered in the service
composition process. A more general and suitable approach
to model preferences is based on fuzzy sets theory [3]. Fuzzy
sets are very well suited to the interpretation of linguistic
terms and constitute a convenient way for a user to express
her/his preferences. For example, when expressing prefer-
ences about the price of a car, users often employ fuzzy terms
like rather cheap, affordable, etc. However as DaaS services
proliferate, a large number of candidate compositions that
would use different (most likely competing) services may be
used to answer the same query. Hence, it is important to
set up an effective service composition framework that would
identify and retrieve the most relevant services and return
the top-k compositions according to the user preferences.
Challenges. Consider the services from the car e-commerce
in Table 1 (i.e., typical services that can be provided by
systems like the e-Bay). The symbols “$” and “?” denote
inputs and outputs of services, respectively. Services provid-
ing the same functionality belong to the same service class.
For instance, S21, S22, S23, S24 belong to the class S2. Each
service has its (fuzzy) constraints on the data it manipu-
lates. For instance, the cars returned by S21 are of cheap
price and short warranty.

Assume that the user Bob wants to buy a car. He sets
his preferences and submits the following query Q1: “return
the French cars, preferably at an affordable price with a war-
ranty around 18 months and having a normal power with a
medium consumption”. Answering Q1 raises the following
challenges: (i) how to understand the semantics of the pub-
lished services to select the relevant ones that can contribute

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 37th International Conference on Very Large Data Bases,
August 29th - September 3rd 2011, Seattle, Washington.
Proceedings of the VLDB Endowment, Vol. 4, No. 12
Copyright 2011 VLDB Endowment 2150-8097/11/08... $ 10.00.

Table 1: Example of DaaS Services.
Service Functionality Constraints

S11($x, ?y)

Returns the
automakers
y in a given
country x

-

S21($x, ?y, ?z, ?t) Returns the
cars y along
with their
prices z and
warranties t
for a given
automaker x

z is cheap, t is short

S22($x, ?y, ?z, ?t)
z is accessible,
t is [12, 24]

S23($x, ?y, ?z, ?t)
z is expensive,
t is long

S24($x, ?y, ?z, ?t)
z is [9000, 14000],
t is [6, 24]

S31($x, ?y, ?z) Returns the
power y and
the
consumption
z for a given
car x

y is weak, z is small

S32($x, ?y, ?z)
y is ordinary, z is
approximately 4

S33($x, ?y, ?z)
y is powerful,
z is high

S34($x, ?y, ?z) y is [60, 110], z is [3.5, 5.5]

to answering the query at hand; (ii) how to retain the most
relevant services (several services offer the same functional-
ity but are associated with different constraints) that better
satisfy the user’s preferences; and (iii) how to generate the
best k compositions that satisfy the whole user query.
Contributions. We address the above challenges by propos-
ing an automatic Web service compositions framework for
preference query answering. This framework is based on a
semantic annotation of DaaS services in the form of RDF
graphs and an RDF-based query rewriting algorithm that
generates automatically the relevant DaaS compositions that
cover a user query (which does not include any preference
constraints) [1]. In order to select the most relevant ser-
vices, a fuzzy dominance relationship and fuzzy scores are
proposed and implemented to rank-order both individual
and composite services. Finally, the framework implements
a first algorithm that efficiently compute the top-k service
compositions and a second algorithm that diversify the top-k
service compositions by using a quality metric that combines
both diversity and service accuracy.

2. SYSTEM ARCHITECTURE
This section outlines the main components of our system

architecture illustrated in Figure 1.

2.1 Fuzzy Membership Functions Manager
The Fuzzy Membership Functions Manager (FMFM) is

useful to manage fuzzy linguistic terms. These terms are
created and used to express user preferences and service

1430

Ontology

RDF Query
Rewriter

Top-k Service Composition Module

Service Locator Execution
Engine

SPARQL
Query

Composite
Service

Service
Registry

WSDL-S

Users

Q

WSWS WSWS

WSDL-SWSDL-S

Service
Providers

SOAP Messages

Ontology
Manager

Fuzzy Constraints
Matcher

System Interface

Service Ranker

Fuzzy Terms
(KB)

Implementation
(Web Services)

Preference Query
Formulator

DaaS
Annotator

Fuzzy Membership
Functions Manager

Top-K
Composition

Diversification
Aware Top-K
Composition

Composition Plan
Generator

Figure 1: DaaS Service Composition Architecture.

constraints, they are modeled using fuzzy sets. Formally, a
fuzzy set F on a referential X is characterized by a member-
ship function µF : X −→ [0, 1], where µF (x) is the grade of
membership of x in F . µF offers a convenient way for order-
ing the elements of X. In particular, µF (x) = 1 reflects full
membership of x in F , µF (x) = 0 absolute non-membership
and 0 < µF (x) < 1 partial membership. Fuzzy terms are
stored in a knowledge base, their associated fuzzy member-
ship functions are implemented as Web services. They are
identified by the URL of their implementing Web services
and can be shared among users.

2.2 Preference Queries
The Preference Query Formulator provides users with a

GUI implemented with Java Swing to interactively formu-
late their conjunctive fuzzy preference queries over a domain
ontology. The ontology manager uses Jena API to manage
domain ontology. The resulting user query is represented
using a slightly modified version of SPARQL. For instance,
query Q1 given in Section 1 is expressed as follows:

URL=http://vm.liris.cnrs.fr:36880/MembershipFunctions/

SELECT ?n ?pr ?w ?pw ?co

WHERE{?Au rdf:type AutoMaker ?Au hasCountry ‘France’

?Au makes ?C ?C rdf:type Car ?C hasName ?n ?C hasPrice ?pr

?C hasWarranty ?w ?C hasPower ?pw ?C hasConsumption ?co}

PREFERING{?pr is ‘URL/AffordablesService’,

?w is ‘URL/around(18)Service’,?pw is ‘URL/NormalService’,

?co is ‘URL/MediumService’}

The “is” operator in the PREFERING clause is used to place
fuzzy constraints (preferences) on the query’s variables (e.g.,
the price ?pr should be Affordable as defined by the service
on URL/AffordableService).

2.3 DaaS Annotator
The DaaS Annotator allows service providers to seman-

tically annotate WSDL description files of services with (i)
the semantic description of the service functionality and (ii)
the (fuzzy) constraints of a service. This annotation is rep-
resented in the form of SPARQL queries. For instance, the
following SPARQL query illustrates the functionality and
constraints of the DaaS service S21:

URL=http://vm.liris.cnrs.fr:36880/MembershipFunctions/

RDFQuery {SELECT ?y ?z ?t

WHERE {?Au rdf:type AutoMaker ?Au name $x

?Au makes ?C ?C rdf:type Car ?C hasName ?y

?C hasPrice ?z ?C hasWarranty ?t}}

CONSTRAINTS {?z is ‘URL/CheapService’, ?t is ‘URL/ShortService’}

2.4 RDF Query Rewriter
The RDF Query Rewriter leverages an RDF query rewrit-

ing algorithm described in [1] to identify the relevant services
that match (some parts of) a user query. For that purpose,
it exploits the semantic description of the functionality of
a service. The same subquery qj of the initial query is in
general covered by different services that constitute a class
of relevant services and is designated as class Sj . A service
Sji ∈ Sj is said to be relevant to a query Q iff its function-
ality completely matches the sub query qj . The preference
constraints are not taken into account by this component.

2.5 Fuzzy Constraints Matcher
The Fuzzy Constraints Matcher (FCM) component is used

to compute the matching degrees between (fuzzy) preference
constraints and (fuzzy) service constraints for each relevant
service. As preference constraints are expressed in the rich
fuzzy sets framework, the computed matching degrees may
differ from one Constraints Matching Method (CMM) to an-
other. The FCM component associates to each relevant ser-
vice M matching degrees (4 methods are implemented, i.e.,
M = 4) as depicted in Table 2. The service S11 covering the
subquery q1 does not have a matching degree because there
are no constraints imposed by the user on q1. Each ser-
vice covering the q2 is associated with four (M = 4) degrees
formulated as a pair of real values within the range [0, 1],
where the first and second values are the matching degrees
of the constraints price and warranty, respectively. Simi-
larly, for the matching degrees of the services covering q3,
the first and second values represent the matching degrees
of the constraints power and consumption, respectively.

Table 2: Matching Degrees between Services’ Con-
straints and Preference Constraints of Q1.
Sji qj M-QM P-QM G-LM L-LM

S11 q1 - - - -
S21

q2

(1, 0.57) (0.98, 057) (1, 0) (0.80, 0)
S22 (0.89, 1) (0.77, 1) (0, 1) (0.50, 1)
S23 (0.20, 0.16) (0.13, 0.13) (0, 0) (0, 0)
S24 (0.83, 0.88) (0.83, 0.88) (0.60, 0.50) (0.60, 0.50)
S31

q3

(0.50, 0.36) (0.46, 0.32) (0, 0) (0, 0)
S32 (0.79, 0.75) (0.69, 0.72) (0, 0.25) (0.40, 0.50)
S33 (0.21, 0.64) (0.17, 0.61) (0, 0) (0, 0)
S34 (0.83, 0.85) (0.83, 0.85) (0.50, 0.50) (0.50, 0.50)

2.6 Services Ranker
The role of the Service Ranker component is to rank both

individual and composite services. The ranking of services
based on their associated matching degrees is useful to com-
pute the top-k service compositions. We show below the
limitation of Pareto dominance1 and highlight why its fuzzi-
fication is important. We then introduce a particular fuzzy
dominance and a way to compute fuzzy scores of services.

1For a d-dimensional dataset, a point u dominates another
point v iff u is at least as good as v in all dimensions and
(strictly) better than v in at least one dimension.

1431

Let u = (u1, u2) = (1, 0) and v = (v1, v2) = (0.90, 1) be
two matching degrees. In Pareto order, the points u and
v are incomparable. However, one can consider that v is
better than u since v2 = 1 is too much higher than u2 = 0,
contrariwise v1 = 0.90 is almost close to u1 = 1. This is
why it is interesting to fuzzify the dominance relationship
to express the extent to which a matching degree (more or
less) dominates another one [2]. We define below a fuzzy
dominance relationship that relies on particular member-
ship function of a graded inequality.
Fuzzy dominance. Given two d-dimensional points u and
v, the fuzzy dominance expresses the extent to which u dom-
inates v, it is defined as:

deg(u � v) =
∑d
i=1 µ�(ui, vi)

d
(1)

where µ�(ui, vi) expresses the extent to which ui is more
or less (strongly) greater than vi. µ� is defined as:

µ�(x, y) =


0 ifx− y ≤ ε
1 ifx− y ≥ λ+ ε

x−y−ε
λ

otherwise

 (2)

where λ > 0 and ε ≥ 0. With this fuzzy dominance, the
previous matching degrees u and v become comparable by
computing deg(u � v) = 0.25 and deg(v � u) = 0.5. Fur-
ther v is better than u.
Associating fuzzy score with a service. Under a single
matching degree, the dominance relationship is unambigu-
ous. When multiple CMM are applied, resulting in differ-
ent matching degrees for the same couple of constraints,
the (fuzzy) dominance relationship becomes uncertain. The
probabilistic skyline proposed in [4] overcomes this prob-
lem, i.e., the problem of uncertainty. Contrariwise, Skoutas
et al. show in [5] the limitations of the probabilistic skyline
to rank Web services and introduce the Pareto dominating
score of individual services. We generalize this score to fuzzy
dominance and propose a fuzzy dominating score (FDS) for
individual services. An FDS of a service Sji indicates the
average extent to which Sji dominates the whole services of
its class Sj . It is defined as:

FDS(Sji) =
1

(|Sj | − 1)M2

M∑
h=1

∑
Sjk∈Sj

k 6=i

M∑
r=1

deg(Shji � Srjk) (3)

Where Shji is the matching degree of the service Sji obtained

by applying the hth CMM. The term (|Sj | − 1) is used to
normalize the FDS score by making it in the range [0, 1].
Associating fuzzy score with a composition. To be
able to rank-order DaaS compositions, we associate each
composition with an FDS. The FDS of a composition C
is an aggregation of the FDSs of its component services.
Let C = {S1i1 , ..., Snin} be a composition of n services and
d = d1+...+dn be the number of user preference constraints
where dj is the number of constraints involved in the service
Sji. The FDS of C is then computed as follows:

FDS(C) =
1

d

n∑
j=1

dj · FDS(Sjij) (4)

2.7 Top-k Service Compositions
Our system provides two ways of computing the top-k ser-

vice compositions.

Top-k Compositions. The top-k compositions component
is used to efficiently generate the compositions that better
answer a query. A straightforward method to find the top-k
compositions is to generate all possible compositions, com-
pute their scores, and return the top-k ones. However, this
approach incurs a high computational cost. We provide an
optimization technique to find the top-k compositions. This
technique allows eliminating relevant services Sji from their
classes Sj before generating the compositions, i.e. services
that we are sure that if they are composed with other ones,
the obtained compositions are not in the top-k. The top-k
sets of the different service classes Sj are sufficient to com-
pute the top-k compositions that answer the user query.
Diversification-aware Top-k Compositions. Multiple
similar services could exist in each class Sj leading to simi-
lar compositions. Diversification, which means that the con-
sidered services in each class must be dissimilar from each
other, is then needed to improve the quality of the top-k
compositions. In our proposed system, diversifying the top-
k compositions is achieved by firstly diversifying the top-k
services in classes Sj and then by diversifying the composi-
tions themselves. To diversify the top-k of Sj , we use the
following quality metric that combines diversity and accu-
racy during the generation of the top-k of a class Sj :

Quality(Sji,SDj) = FDS(Sji) ∗RelDiv(Sji,SDj) (5)

The quality of a service Sji in its class Sj is proportional to
its fuzzy score and to its relative diversity to those services
so far selected SDj . The relative diversity of Sji to the set

SDj is defined as following:

RelDiv(Sji,SDj) =

∑
Sjr∈SD

j
(1− Sim(Sji, Sjr)

|SDj |
(6)

Sim(Sji, Sjr) represents a similarity measure between two
services Sji and Sjr. Since services of the same class have the
same functionality, the similarity measure is only computed
from thier (fuzzy) constraints. The above quality measure
guides the construction of the diversified top-k of Sj in an
incremental way. During each step the remaining services
are rank-ordered according to their quality and the highest
quality service is added to SDj .

2.8 Composition Plan Generation
The top-k compositions are then translated by the com-

position plan generator into execution plans expressed in
the XPDL language. They are executed by a workflow ex-
ecution engine; we use the Sarasvati execution engine from
Google.

3. DEMO SCENARIOS
Demo 1. We implemented a set of /120/ DaaS services

on top of /7/ databases holding synthetic commercial data
about cars, clients, invoices, etc. Each DaaS service retrieves
information about a set of cars satisfying some fuzzy con-
straints on their attributes (e.g., price, warranty, etc). We
created an ontology with Protege too. Our first demonstra-
tion will illustrate how users can test the provided fuzzy
terms, formulate their fuzzy preference queries, and how
DaaS providers can annotate the description files of their
services. Figure 2, plot a, presents the user interface to the
composition system. Users edit their queries in the Query
Editor. The panel on the left-hand side gives a tree view of

1432

Table 3: Effects of (ε, λ).

(ε, λ)
Top-k Compositions Diversified Top-k Compositions

Component Services Score Diversity Component Services Quality Score Diversity

(0.002, 0.05)
{S1318, S2292, S3154, S4154} 0.74703556

0.6121456

{S1318, S2292, S3154, S4154} 0.74703556 0.74703556

0.6995363{S1318, S259, S3154, S4154} 0.7441032 {S1318, S2292, S3154, S4134} 0.6972428 0.7426259

{S1318, S2152, S3154, S4154} 0.7441032 {S1318, S2134, S3154, S4154} 0.6972428 0.7426259

(0.02, 0.2)
{S1318, S2292, S3154, S4154} 0.6563174

0.59373885

{S1318, S2292, S3154, S4154} 0.6563174 0.6563174

0.6995363{S1318, S2132, S3154, S4154} 0.655371 {S1318, S2292, S3154, S4134} 0.612067 0.6519956

{S1318, S259, S3154, S4154} 0.65328693 {S1318, S2134, S3154, S4154} 0.6098658 0.6515922

Table 4: Effects of the Used Similarity Measure.
Diversified Top-k Compositions

Component Services Score
Quality

M L N

{S1356, S2372, S3285, S4214, S5183} 0.6919484 0.6919484 0.6919484 0.6919484
{S1356, S2372, S3283, S4214, S5183} 0.68804884 0.6744621 0.6615082 0.6780993
{S1356, S2372, S3360, S4214, S5183} 0.69165516 0.6713853 0.6594182 0.6809209

Output
x = x

S11
Invoke

S22
Invoke

French y

Input

S34
Invoke

x

x

yx,

x,y,n
pr,w

x,y,n
pr,w

x,y,n,pr
w,pw,co

0

5000

10000

15000

20000

200 400 600 800 1000

TKSC
DTKSC,s=s1
DTKSC,s=s2

0

1000

2000

3000

4000

5000

6000

2 3 4 5 6

TKSC
DTKSC,s=s1
DTKSC,s=s2

0

2000

4000

6000

8000

10000

2 4 6 8 10

TKSC
DTKSC,s=s1
DTKSC,s=s2

Number of candidate Services
per class

(c)

Service classes(query components)
(d)

Max preferences involved in a
service class (e)

Ti
m

e
(m

s)

Ti
m

e
(m

s)

Ti
m

e
(m

s)

The User Interface to the System
(a)

The Execution Plan of the composition C1
(b)

Figure 2: Demo.

the domain ontology. Executing the query specified in the
query editor results in the compositions shown in the “Com-
positions” tab. We will demonstrate the query answering of
Q1 described in Section 1. Q1 will be executed without its
fuzzy constrains to demonstrate how DaaS services can be
discovered and composed to answer the query. We will show
the execution plan of the selected composition as depicted
in Figure 2, plot b. The service S11 is invoked first with the
required nationality for automakers x which is relayed also
to its outputs. The inputs with which a service is invoked are
always relayed to its outputs; this allows to get the query’s
requested data by joining the outputs of services that are
leaves (e.g. S34) in the execution plan. Then S22 is invoked
with the retrieved automakers, and finally S34 is invoked to
retrieve the consumption and the power of retrieved cars.
The query Q1 will be then re-executed with its fuzzy prefer-
ences and we will show how the top-k and diversified top-k
compositions are generated to answer the query. In addi-
tion, we will compare the returned compositions when the
fuzzy dominance is applied to those obtained if the Pareto
dominance were applied and show to what extent the fuzzy

dominance improves the quality of returned compositions.
Furthermore, for the same fuzzy term (e.g. Affordable), we
will vary its membership functions both in Q1 and the con-
sidered set of DaaS services and show to what extent this
may influence the returned compositions.

Demo 2. We will present an experimental study of our
approach conducted on a Pentium D 2:4GHz with 2GB
of RAM, running Windows XP to highlight its efficiency
and scalability. We will show our implemented Web service
generator. It takes as input a set of (real-life) model ser-
vices (each representing a class of services) and their associ-
ated fuzzy constraints and produces for each model service
a set of synthetic Web services and their associated syn-
thetic fuzzy constraints. We considered a set of /15/ model
Web services from the domain of car commerce having about
/20/ attributes (e.g. Price, Warranty, Power, Consumption,
etc.). We will show the effects of the following parameters
on the performance of our system and on the quality of the
computed compositions: (i) the number of services per class
(Figure 2, plot c), (ii) the service classes number (Figure
2, plot d), (iii) the number of fuzzy constraints per class
(Figure 2, plot e), (iv) the number of considered matching
methods, (v) the considered value of k, (vi) the effects of
the used similarity measure SIM (three measures were im-
plemented denoted by M, L and N in Table 4), and (vii) the
effects of ε and λ (Table 3).

4. REFERENCES
[1] M. Barhamgi, D. Benslimane, and B. Medjahed. A

query rewriting approach for web service composition.
IEEE T. Services Computing, 3(3):206–222, 2010.

[2] K. Benouaret, D. Benslimane, and A. Hadjali. Top-k
service compositions: A fuzzy set-based approach. In
SAC, pages 1033–1038, 2011.

[3] D. Dubois and H. Prade. Fundamentals of fuzzy sets.
Kluwer, Netherlands, 2000.

[4] J. Pei, B. Jiang, X. Lin, and Y. Yuan. Probabilistic
skylines on uncertain data. In VLDB, pages 15–26,
2007.

[5] D. Skoutas, D. Sacharidis, A. Simitsis, V. Kantere, and
T. K. Sellis. Top- dominant web services under
multi-criteria matching. In EDBT, pages 898–909, 2009.

1433

