
Whodunit: An Auditing Tool for Detecting Data Breaches 
Raghav Kaushik 
Microsoft Research 
One Microsoft Way 

Redmond WA 

skaushi@microsoft.com 

Ravi Ramamurthy 
Microsoft Research 
One Microsoft Way 

Redmond WA 

ravirama@microsoft.com

 
ABSTRACT 

Commercial database systems provide support to maintain an 
audit trail that can be analyzed offline to identify potential threats 
to data security. We present a tool that performs data auditing 
that asks for an audit trail of all users and queries that referenced 
sensitive data, for example “find all queries and corresponding 
users that referenced John Doe’s salary in the last six months”.  
Our tool: (1) handles complex SQL queries including constructs 
such as grouping, aggregation and subqueries, (2) has privacy 
guarantees, and (3) incorporates novel optimization techniques for 
efficiently auditing a large workload of complex SQL queries.  

1. INTRODUCTION 
Database systems are used today as the primary repository of 

the most valuable information in any organization. As the volume 
of sensitive data (e.g., health care information, credit card 
information) stored in these repositories has increased, protecting 
the security of the data has gained increasing importance. Further, 
data compliance laws such as the Sarbanes-Oaxley act and the 
Health Insurance Portability and Accountability Act (HIPAA) 
mandates the responsible management of sensitive data. 

 

Figure 1. Architecture. 

 

One of the important components of the security 
infrastructure is an auditing system (see Figure 1) that can be used 

to aposteriori investigate potential security breaches. Accordingly, 
there has been an increase in database auditing products on the 
market including from the major database vendors (e.g., [9] [10] ). 
As the database system is in production, these products monitor 
various operations such as user logins, queries, data updates and 
DDL statements to obtain an audit trail. In addition, the database 
system provides an “audit-analysis” tool which can help in an 
offline analysis of the audit log to answer questions about access 
to schema objects. Examples of such schema auditing are as 
follows. 

(1) Find queries and updates issued by a given user. 

(2) Find queries accessing sensitive columns such as PII 
columns.  

(3) Find failed login attempts as an important user.  

In this demonstration, we present a data auditing tool that 
can be used to analyze the audit trail in correlation with the data 
present in the database. A prototypical example of data auditing is 
single tuple auditing where the goal is to find all queries and 
update statements that “referenced” a particular tuple (e.g., find all 
queries that referenced John Doe’s salary). Such analysis is 
important to discover potential breaches of sensitive information; 
it was recently reported [2] that Kaiser Permanente recently fired 
fifteen employees for inappropriately viewing the medical records 
of Nadya Suleman, the highly publicized “octomom”.  

In general, data auditing can be more complex including 
examples such as the following. 

(1) Find “important” customers (defined using appropriate 
filters on the data) that were referenced by queries 
issued by a particular analyst. 

(2) Find queries that reference the account balance of at 
least three “important” customers. 

The main challenges we address are (1) to define a semantics 
of data auditing that has privacy guarantees and simultaneously 
leads to a feasible implementation for arbitrarily complex SQL 
queries including constructs such as grouping, aggregation and 
subqueries, and (2) to perform auditing efficiently over a 
potentially large workload of SQL queries. We believe that ours is 
the first general purpose tool for data auditing that can support 
arbitrary SQL queries with privacy guarantees. Our tool is based 
on our recent work [5]. In Section 2, we provide a brief technical 
overview of the tool (termed Whodunit).  Section 3 discusses 
example demo scenarios. 

2. TECHNICAL OVERVIEW 
The basis for all data auditing semantics is to define what it 

means for a query to have referenced a particular tuple (that is, 

 
 
Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are not 
made or distributed for profit or commercial advantage and that copies bear 
this notice and the full citation on the first page. To copy otherwise, to 
republish, to post on servers or to redistribute to lists, requires prior specific 
permission and/or a fee. Articles from this volume were invited to present 
their results at The 37th International Conference on Very Large Data Bases, 
August 29th - September 3rd 2011, Seattle, Washington. 
Proceedings of the VLDB Endowment, Vol. 4, No. 12 
Copyright 2011 VLDB Endowment 2150-8097/11/08... $ 10.00. 

1410



single-tuple auditing). Prior work has proposed two 
fundamentally different semantics for data auditing which we can 
classify broadly as (data) instance dependent and (data) instance 
independent.  

In the instance-dependent approach [1], a query is said to 
access a tuple if deleting the tuple changes the query result on the 
database instance where the query was originally run. 
Unfortunately, even for the special case of single-tuple auditing, 
subsequent work has shown that the instance dependent approach 
can lead to breaches of privacy [7][8]. In contrast, an instance 
independent approach can be used to get strong privacy 
guarantees [7][8]. Under the instance independent approach, a 
query is said to have accessed a tuple if there is some database 
instance where deleting it changes the query result. 

Previous work [6][7][8]developing the instance independent 
approach has focused on increasing the class of queries that can 
be audited efficiently while retaining strong privacy guarantees. 
However, our recent paper [5] shows that the previously proposed 
instance independent semantics are computationally incompatible 
with complex SQL—in the presence of subqueries, enforcing the 
semantics becomes un-decidable. 

Thus, in order to build a general purpose data-auditing tool 
that can handle arbitrary SQL queries, we fall back to the 
instance-dependent approach. Our recent work [5] formalizes the 
instance dependent semantics using the notion of query 

differentials. The notation Q(D) denotes the result of executing 
query Q in a database instance D. 

DEFINITION. Given a database instance D, a query Q and a 

tuple t specified by the value v of its primary key, the differential 

of query Q (denoted Q’) is defined as Q rewritten to exclude tuple 

t from T (by adding the predicate T.id ≠ v). A query is defined to 

reference tuple t if Q(D) ≠ Q’(D). If Q(D) = Q’(D), we say that Q 

is safe with respect to t. 

Our instance dependent semantics yields a feasible 
implementation for an arbitrary query --- it is possible to perform 
single tuple auditing by running the query and a rewritten version 
that excludes the tuple and checking if the results are equal. 

While we inherit the known privacy limitations of the 
instance dependent approach [7][8], we show [5] that a weaker 
privacy guarantee can still be obtained. We introduce the notion 
of a risk-free attack [5] and show that under our instance 
dependent semantics, no attack is risk-free. Intuitively, this 
guarantee means that an attacker may get access to sensitive 
information but not without taking a risk of getting detected. 
While the above guarantee falls short of the stronger privacy 
guarantees yielded by the instance independent approach, we 
believe it offers us an interesting way forward in addressing the 
full complexity of SQL. 

In general, we would like to audit not only a single tuple but 
more complex audit expressions. Similar to previous work, we 
formulate our audit expression in the form of a forbidden view 
that captures the sensitive information. For the purposes of this 
proposal, we consider forbidden views of the form: 

Create Forbidden View <ViewName> as 
Select * From T Where <predicate>  
Partition By <T.Key> 

Our paper [5] discusses a larger class of forbidden views that 
include joins and arbitrary partitioning columns (and our tool 
supports the larger class).  

For example, in a health care database, we can create a 
forbidden view to include all patients suffering from AIDS as 
follows. 

Create Forbidden View SensitivePatients As   
Select * From Patients 
Where Disease = “AIDS” 
Partition By PatientID 
 
Each partition encapsulates the sensitive information 

corresponding to an individual. In the above example, each 
partition corresponds to an individual patient record that is 
sensitive. (We note again that our tool supports a larger class of 
forbidden views presented in our paper [5] where the sensitive 
information corresponding to each individual can span multiple 
records.) 

Our tool performs data auditing based on a novel 
REFERENCES operator. The operator (see Figure 2) takes as 
input a set of queries and a forbidden view with partition id PID 
and outputs (Q, PID) pairs such that query Q references partition 
PID.  

REFERENCES Operator

Pairs (Q, PID) such that Q references 

partition  PID

Query Set Forbidden View

Figure 2. References Operator. 

A straightforward implementation of the above operator 
performs a cross product of the partitions and the queries and for 
each pair, computes the differential of the query and checks if it is 
equal to the original query by running them. The straightforward 
implementation can be prohibitively expensive. Accordingly, our 
tool includes optimizations that help improve the efficiency of 
data auditing. An important optimization that our tool uses is the 
notion of an audit optimizer that can check if a query and its 
differential are equal without any execution. The idea is to start 
with an algebraic plan for a query and find if we can “reach” a 
plan for the corresponding differential query by transforming the 
initial plan. The plan is transformed using equivalence rules in the 
usual way deployed by any rule-based query optimizer. The main 
difference is that in addition to the standard rules that hold for all 
database instances (e.g., pushing a selection below join, join 
commutativity etc.), we also handle rules that are instance 
specific. Instance specific rules are naturally derived from audit 
checks—a query that passes the audit is equivalent to the 
rewritten query. Thus, we can leverage the results of previously 

1411



audited queries to optimize the overheads of auditing. Our paper 
[5] carries a more detailed description of the audit optimizer.  

In general, we note that the query set can also include update 
statements. We currently handle updates by finding the query 
underlying the update and extending our semantics for queries. 
Our paper [5] carries a more detailed discussion on updates. 

The REFERENCES operator in conjunction with other 
relational operators provides a natural programming interface for 
expressing data auditing tasks such as the examples in the 
introduction. In the following section, we describe our prototype 
and outline a sample demo scenario. 

3. DEMO SCENARIO 
The current prototype is built as a client application and uses 
Microsoft SQL Server as the underlying database system (see [5] 
for details). Our prototype builds on the existing audit 
analysis/audit log viewer tool [10] that is provided by Microsoft 
SQL Server. We now provide a brief overview of the different 
features supported by our tool. 

3.1 Schema Auditing 
 As mentioned in the introduction, audit log analysis tools provide 
interfaces for simple search queries over the audit log. Our tool 
can support such schema auditing functionality. 

 

Figure 3.  Filtering using Timestamp. 

Figure 3 illustrates the user interface for the tool. In addition to a 
basic search box, there are drop-down menus for common 
operations such as selecting a database as well as filtering the 
audit log based on the timestamp of the event. For example, 
Figure 3 illustrates how we can filter the audit log events based on 
a predicate on the timestamp of the event. The set of events to be 
displayed in the user interface is configurable; we only show the 
username and queryStr fields in the following examples for 
brevity. 

The user can use the search box for a keyword search over the 
contents of the audit log. In addition, our system supports 
relational operators over the audit log. For example, Figure 4 
illustrates how we can check for login failures in the last fifteen 
minutes by using the FilterLoginFailures primitive.  

 

Figure 4. Primitive Operators for Filtering. 

3.2 References Operator 
In addition to providing support for basic schema auditing (as 
discussed in the previous examples), our tool supports the 
REFERENCES operator which significantly expands the scope of 
audit analysis to include data auditing. 

In order to demonstrate the utility of our tool for data auditing, we 
now illustrate a sample “session”. We will use the TPC-H [11] 
database for illustration. The TPC-H database includes a 
CUSTOMER table which we assume contains sensitive 
information such as credit card information or customer account 
balance. 

Consider the following scenario. Assume that the sensitive data of 
interest is the customer information of “premium” customers – 
customers that have a high account balance (say greater than 
$100,000). In order to detect data breaches, assume the security 
administrator would like to carry out the following task: 

“Find all premium customers whose information has been 

accessed by user JoeAnalyst within the last week” 

Clearly, a simple search interface over the audit log is insufficient 
for executing the above task; we now illustrate how this task is 
enabled in our prototype. 

We first create a forbidden view to capture the sensitive customers 
as follows: 

Create Forbidden View SensitiveCustomers As   
Select * From Customers 
Where C_Acctbal > 100K 
Partition By CustomerID 

Figure 5 shows how we can then execute the above task via 
operator composition. We pose the following command to execute 
the above task. 

     FilterByUser(JoeAnalyst) | References(SensitiveCustomers) 

The first operator obtains the subset of queries issued by 
JoeAnalyst in the last week and the second operator is used to 
check if any of the premium customers were referenced by these 
queries. The output window indicates for each query issued by 
JoeAnalyst, the corresponding customer IDs of the premium 
customers referenced by it. 

1412



 

Figure 5. References Operator. 

3.3 Support for Ad-hoc Analytics 
Our tool also supports a variety of primitive aggregate/grouping 
functions which can be used for more sophisticated ad-hoc 
analytics over the audit log. Consider the following task that is a 
variant of the previous example. 

“Find all users that have accessed the information of at-least 

three premium customers within the last week” 

This task can be again supported in our tool via operator 
composition.  

 

Figure 6. Example of Analytics. 

Figure 6 shows that we pose the command  

 References(SensitiveCustomers) | GroupbyAgg(c_custkey, 3) 

to compose the References operator (as in the previous analysis) 
with a group-by operator to figure out the users who have 
accessed at-least three distinct premium customers.  

To summarize, in this demonstration we present a tool for audit 
log analysis with several novel features including: 1) Data 
auditing using the notion of forbidden views 2) Flexible set of 
composable operators that enable rich analytics over the audit log 
3) Support for arbitrary SQL queries with privacy guarantees. 

4. ACKNOWLEDGMENTS 
We would like to thank Yuri Siradeghyan for assisting us in 
developing the user interface of the tool. 

5. REFERENCES 
[1] R.Agrawal et al., “Auditing Compliance with a Hippocratic 

Database” in VLDB 2004. 

[2] J.Cart, “Kaiser fires staffers who snooped into suleman’s 

files” in The Los Angeles Times. March 31 2009. 

[3] D.Fabbri, K.Lefevre, D.Zhu, “PolicyReplay: 

Misconfiguration Response Queries for Data Breach 

Reporting” in PVLDB 3(1): 36-47(2010). 

[4] C.Farkis, S. Jajodia, “The Inference Problem. A Survey”, 
ACM SIGKDD Explorations 4(2):6-11(2002). 

[5] R.Kaushik, R.Ramamurthy, “Efficient Auditing for Complex 

SQL Queries” in SIGMOD 2011. 

[6] A. Machanavajjhala , J.Gehrke, “On the efficiency of 

checking perfect privacy” in PODS 2006. 

[7] G. Miklau, D. Suciu, “A Formal Analysis of Information 

Disclosure in Data Exchange” in SIGMOD 2004. 

[8] R.Motwani, S.U.Nabar, D.Thomas, “Auditing SQL Queries” 
in ICDE 2008.  

[9] Oracle Audit Vault. 
http://www.oracle.com/technetwork/database/audit-vault/ 

[10] “Understanding SQL Server Audit”. 
http://msdn.microsoft.com/en-us/library/cc280386.aspx 

[11] TPC-H Benchmark. http://www.tpc.org/tpch/ 

 

 

 

 

 

 

1413


