

Automatic Workload Driven Index Defragmentation

Vivek Narasayya
Microsoft Research
Redmond, WA, USA

viveknar@microsoft.com

Hyunjung Park†
Stanford University
Stanford, CA, USA

hyunjung@cs.stanford.edu

Manoj Syamala
Microsoft Research
Redmond, WA, USA

manojsy@microsoft.com

ABSTRACT

Queries that scan a B-Tree index can suffer significant I/O
performance degradation due to index fragmentation. The task of
determining if an index should be defragmented is challenging for
database administrators (DBAs) since today’s database engines
offer no support for quantifying the impact of defragmenting an
index on query I/O performance. Furthermore, DBMSs only
support defragmentation at the granularity of an entire B-Tree,
which can be very restrictive since defragmentation is an
expensive operation and workloads typically access different
ranges of an index non-uniformly. We have developed techniques
to address the above two challenges, and implemented a prototype
of automatic workload driven index defragmentation functionality
in Microsoft SQL Server. We demonstrate this functionality by
showing (a) how the system tracks the potential benefit of
defragmenting an index on I/O performance at low overhead, (b)
the ability to defragment a range of a B-Tree index online, and (c)
how the cost/benefit trade-off can be controlled in a policy driven
manner to enable automatic workload driven index
defragmentation requiring minimal DBA intervention.

1. INTRODUCTION
Decision support queries involve scanning large amounts of data.
This data is typically stored in indexes, and thus the I/O
performance of such queries crucially depends on fragmentation
in the index. Typically when an index is created there is little or
no fragmentation, and the I/O performance of queries that scan the
index is good. However, as data is inserted, updated and deleted,
an index can get fragmented over time. There are two kinds of
fragmentation, both of which can have significant impact on I/O
performance of a query (see Figure 1 for example). Internal
fragmentation occurs when leaf pages of an index are only
partially filled, thus increasing the number of pages that need to
be scanned. For example, page 101 in Figure 1a is only partially
filled, containing two empty slots. External fragmentation occurs
when the logical order of leaf pages in the B-Tree differs from the
physical order in which the pages occur in the data file, thereby
increasing the number of disk seeks required. A previous study [1]
has shown that fragmentation can reduce the I/O performance of
decision support queries significantly (e.g. by 5x).

Figure 1. (a) Example of internal and external fragmentation

in a B-Tree index. (b) Same index after it is defragmented.

Today’s DBMSs offers techniques to gather fragmentation
information of an index. For example, Microsoft SQL Server has
virtual tables that report external and internal fragmentation
statistics for an index. While such statistics can quantify
fragmentation levels, there is no support in today’s engines to
quantify the benefit (i.e. reductions in I/O for a query) if an index
were to be defragmented. Furthermore, defragmenting an index is
an expensive operation. For example, an index that is heavily
fragmented may have very few queries in the workload that scan
it. Defragmenting such an index would bring very little benefit in
terms of reducing I/Os but can incur the high cost of
defragmentation.

Another significant limitation of today’s DBMSs is that they only
support defragmentation at the granularity of an entire B-Tree.
This makes index defragmentation an expensive operation (e.g.
they can incur significant I/O cost due to data movement and
logging). Queries in the workload often access different ranges of
an index non-uniformly. Thus, in principle, most of the
performance benefit from defragmenting the index could be
obtained by defragmenting only a small portion (i.e. range) of the
index, but at a much lower cost. Furthermore, the ability to
defragment smaller ranges allows defragmentation to be done
incrementally and in an online manner, which is useful when the
maintenance windows are small or non-existent.

For the reasons described above, determining if an index should
be defragmented or not can be a difficult task for database
administrators (DBAs). Furthermore, database-as-a-service
(DaaS) offerings (e.g. SQL Azure [2]) have recently emerged. In
such environments the service provider is typically responsible for
performing index maintenance tasks such as defragmentation.
Thus in both a traditional database as well as in a DaaS, the ability
for the engine to automatically detect and correct performance
problems due to index fragmentation can be valuable.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 37th International Conference on Very Large Data Bases,
August 29th - September 3rd 2011, Seattle, Washington.
Proceedings of the VLDB Endowment, Vol. 4, No. 12
Copyright 2011 VLDB Endowment 2150-8097/11/08... $ 10.00.

† Work done while author was visiting Microsoft Research

1407

2. OVERVIEW OF SOLUTION
We have developed techniques to address the problems described
above, and implemented a prototype of our solution in Microsoft
SQL Server. Below we briefly describe the functionality of each
component in our solution.

RangeTracker: We have developed a new monitoring component
in the database engine that can estimate the benefit of
defragmenting an index (or a range of the index) for the queries
that have executed on the system. In particular, it estimates the
reduction in the number of I/Os for a query that scans an index
that would result if that index were to be defragmented. This
“what-if” analysis is a key to making an informed decision on
whether an index should be defragmented. We show how such
monitoring can be done at low overhead by piggybacking on
execution of queries in the system.

RangeDefragmenter: We have developed a new mechanism for
defragmenting a range of an index. This mechanism can be
invoked online, i.e., it can be invoked with minimal locking,
thereby allowing concurrent queries and updates to proceed
without significant blocking. A key advantage of such range level
defragmentation is that most of the benefits of defragmentation
for a query (or workload) can often be realized by only
defragmenting a small part of the entire index.

Defragmentation Policy: We have developed a policy for
automatically deciding when an index (or range of an index)
should be defragmented. This policy takes into account the benefit
of defragmentation as well as the cost. Intuitively, the policy
looks for “sufficient evidence” based on the workload before
triggering defragmentation of an index. The policy can be
configured by a DBA in different ways, e.g., how aggressive or
conservative the system should be, at what time of day
defragmentation can be invoked, etc.

More technical details of our work can be found in [3]. These
techniques are novel and to the best of our knowledge this
functionality does not exist in any commercial DBMS.

3. DEMONSTRATION
The goal of the demonstration is to highlight the importance of the
index defragmentation problem, and the effectiveness of our
techniques in addressing the index defragmentation problem. In
particular, we show the functionality of each of the components
described above: RangeTracker, RangeDefragmenter as well as
the Defragmentation Policy. Our demo will be based on a
prototype we developed in Microsoft SQL Server 2008 R2
edition. The demo also involves a client driver program that (a)
executes queries and updates against our server, (b) visualizes the
I/O performance of queries, and (c) visualizes the relevant metrics
used internally by the server in our solution (e.g. benefit of
defragmenting a range, cost of defragmenting a range).

We now outline the demo scenario using a sequence of
screenshots. Figure 2 shows a screenshot of the client driver
program. The client driver allows us to choose a workload and
also specify other input parameters like the number of times the
query needs to execute. The output grid at the top shows the
workload activity (Select, Insert, Delete, Update) in timestamp
order and fragmentation metrics per index. It also shows the
number of reads/writes issued by the workload. The chart on the
left represent the actual number of I/O’s per activity (i.e., query).
The chart on the right shows the estimated cost of defrgamenting

a range of the index (red bar) and the estimated benefit of
defragmenting the range (blue bar).

Figure 2 shows the state of the server after the following sequence
of activity: (i) 10 range scans on an unfragmented index, (ii) Insert
and Delete transactions that fragment the index, (iii) 10 range
scans (same query). Observe that the number of I/Os required for
the same query is now much higher (by about 7x) due to the
increased data size and due to the fact that the index is much more
fragmented. Also note that in the second chart, we begin to see the
benefit and cost of defragmentation beginning to accumulate for
ranges of the index. These benefits and costs are comptued by the
RangeTracker module. At this point the costs are significantly
higher than the benefits.

The next screenshot, shown in Figure 3, shows the state of the
server after the same query has been executed several more times.
We now notice that for a few index ranges the benefits have
accumulated significantly. The automated Defragmentation Policy
to decide if an index range should be defragmented is
configurable. For simplicity, in the demo, we configure a range to
be defragmented if its benefit exceeds the cost. Observe that in
Figure 3, for a couple of ranges, the benefit is almost equal to the
cost.

Figure 4 shows a screenshot of the situation after the same query
has further been executed a few more times. At this point, a
couple of ranges have already been automatically defragmented
by the system (as controlled by the policy above). We also note
that the I/O cost of queries has begun to reduce due to the fact that
the ranges have been defragmented.

Figure 5 shows the state of the server after the scan query was
further run a few more times. At this point most of the index
ranges have been automatically defragmented, and the I/O cost of
queries that scan the index has reduced significantly. Note that
final I/O cost of the query is higher than the initial cost. This is
because the initial Insert operations (that caused the
fragmentation) added a significant amount of new data – thus
there is more data to be scanned).

Figure 2. Screenshot of client driver program showing (a)

I/O performance of each query, (b) benefit and cost of

defragmenting each range of the index, and (c) queries,

updates that have executed on the server.

1408

Figure 3. Screenshot showing how benefit accumulate for each

index range as more queries execute on the server.

Figure 4. Screenshot showing how the I/O cost of queries

begins to reduce after a couple of index ranges were

automatically defragmented. The red dots on the left chart

denote that an index range was defragmented.

Figure 5. Screenshot showing query I/O performance after

multiple index ranges have been defragmented.

4. CONCLUSION
Index defragmentation is an important problem in database
systems, and is becoming even more important to address
automatically in emerging cloud data services where it is not
possible to have expert database administrators for each database.
We have developed techniques for automatically detecting when it
is beneficial to defragment an index and a mechanism for actually
defragmenting a range of an index in an online manner. We show
how to put these mechanisms together in a policy driven manner
that requires minimal DBA intervention. This functionality is
novel, and we have implemented our solutions in a real world
commercial DBMS: Microsoft SQL Server. This is the first
demonstration of this technology outside of Microsoft.

5. REFERENCES
[1] M. Ruthruff. Microsoft SQL Server 2000 Index

Defragmentation Best Practices. Microsoft TechNet, 2003.
http://technet.microsoft.com/en-us/library/cc966523.aspx

[2] Microsoft SQL Azure. http://www.microsoft.com/sqlazure

[3] V. Narasayya and M. Syamala. Workload Driven Index
Defragmentation. In ICDE, pp. 497-508, 2010.

1409

