
Proactive Detection and Repair of Data Corruption:
Towards a Hassle-free Declarative Approach with Amulet

Nedyalko Borisov
Duke University

nedyalko@cs.duke.edu

Shivnath Babu∗

Duke University

shivnath@cs.duke.edu

ABSTRACT
Occasional corruption of stored data is an unfortunate byproduct
of the complexity of modern systems. Hardware errors, software
bugs, and mistakes by human administrators can corrupt important
sources of data. The dominant practice to deal with data corruption
today involves administrators writing ad hoc scripts that run data-
integrity tests at the application, database, file-system, and storage
levels. This manual approach, apart from being tedious and error-
prone, provides no understanding of the potential system unavail-
ability and data loss if a corruption were to occur. We have de-
veloped the Amulet system that can verify the correctness of stored
data proactively and continuously. This demonstration focuses on
the uses of Amulet and its technical innovations: (i) a declarative
language for administrators to specify their objectives regarding the
detection and repair of data corruption; (ii) optimization and exe-
cution algorithms to meet the administrator’s objectives robustly
and with least cost using pay-as-you-go cloud resources; and (iii)
timely notification when corruption is detected, allowing proactive
repair of corruption before it impacts users and applications.

1. INTRODUCTION
Data corruption—where bits of data in persistent storage differ

from what they are supposed to be—is an ugly reality that database
and storage administrators have to deal with occasionally; often
when they are least prepared [2, 3, 5, 7, 11]. Hardware problems
such as errors in magnetic media (bit rot), erratic disk-arm move-
ments or power supplies, and bit flips in CPU or RAM due to alpha
particles can cause data corruption. Bugs in software or firmware
as well as mistakes by human administrators are more worrisome.
Bugs in the hundreds of thousands of lines of disk firmware code
have caused corruption due to misdirected writes, partial writes,
and lost writes [5]. Bugs in storage software [3], OS device drivers,
and higher-level layers like load balancers [9] and database soft-
ware [2] have caused corruption and data loss. Recent trends make
data corruption more likely to occur than ever:
• Production use of fairly new data management systems. A bug

in the CouchDB NoSQL system caused data loss because writes
were not being committed to disk [2]. A recent bug triggered

∗Supported by NSF grants 0644106 and 0964560

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 37th International Conference on Very Large Data Bases,
August 29th - September 3rd 2011, Seattle, Washington.
Proceedings of the VLDB Endowment, Vol. 4, No. 12
Copyright 2011 VLDB Endowment 2150-8097/11/08... $ 10.00.

by a storage software update caused 0.02% of Gmail users to
lose their email data (which had to be restored from tape) [3].

• Use of large numbers of commodity “white-box” systems in
datacenters instead of more expensive servers. The lower price
comes from the use of less reliable hardware components that
are more prone to corruption and failures [10].

• More software layers due to virtualization and cloud services.
Customers of the Amazon Simple Storage Service (S3) have
experienced data corruption where the data they got back on
reads was different from the data they had stored originally [9].

• Increasing inter-dependencies and complexity in systems. Cor-
ruption of four files in an Oracle database at JPMorgan Chase
recently caused a severe outage that left customers stranded,
and blocked about $132 Million in financial transactions [4].

Data corruption can have severe consequences, even putting com-
panies out of business. It took only one unfortunate instance of
file-system corruption (which spread to data backups), and the con-
sequent loss of data stored by users, to put the once popular social-
bookmarking site Ma.gnolia.com out of business [6].

Most systems have a first line of defense to corruption in the
form of detection and repair mechanisms. Storing checksums, both
at the software and hardware levels, is a common mechanism used
to detect corruption [8]. Storing redundant data—e.g., in the form
of error correcting codes (ECC) or replicas—as well as duplication
of work—e.g., writing to two separate hosts—lowers the chances
of data loss due to corruption from bit flips, partial writes, and lost
writes. Despite these mechanisms, recent literature [5] as well as
plenty of anecdotal evidence show that problems due to corruption
happen, and more frequently than expected [10]. A particularly
dangerous scenario that the authors as well as others (e.g., [4, 6,
7]) have come across involves the propagation of corruption from
the production system to critical backups; increasing the chances
of data loss if a failure occurs in the production system.

Thus, systems have developed a second line of defense in the
form of data-integrity tests (hereafter, tests). A test: (a) performs
checks in order to detect specific types of data corruption, and/or
(b) repairs specific types of data corruption. A detailed list of tests
can be found in [1]. Tests have the following characteristics:
• Tests perform more sophisticated detection and repair of cor-

ruption than is possible automatically during regular system op-
eration through mechanisms like checksums and RAID [11].

• Barring few exceptions, tests have been developed to be run
offline when the system is not serving a workload. If a work-
load changes the data concurrently with a test execution, then
the test may detect (and worse, fix) spurious corruptions. The
workload could also return incorrect results because of modifi-
cations made by the test. As one example, it is recommended
that the file-system be unmounted while running the fsck test.

1403

Description of Example Objectives in English
1 If the myisamchk test detects corruption in the lineitem table in my

MySQL OLTP DBMS, then I want to have immediate access to an
older corruption-free version of the table that is less than 1 hour old.

2 (A security patch was applied in the ext4 file-system that my produc-
tion DBMS is using. I am afraid that the patch may inadvertently
cause data corruption.) Run the fsck file-system test at least once
every hour. Notify me immediately of any corruption detected.

3 My production DBMS runs on an Amazon EC2 m1.large host. I
have the same objectives as in 1, but I am willing to spend up to 12
dollars per day for additional resources on the Amazon cloud to meet
these objectives. How recent of a corruption-free version of the data
can I have immediate access to if a corruption were to be detected?

4 My objectives are a combination of 1 and 2, but I want the time
intervals to be 30 minutes instead of 60. I am cost conscious. What
minimum number of m1.small EC2 hosts should I rent to run tests?

Table 1: Examples of objectives that an administrator may
have regarding timely detection and repair of data corruption.
• Most of the tests are very resource-intensive.

Because of the above characteristics of tests, database and storage
administrators often struggle with questions on when and where to
run tests. If the administrator is not proactive in running tests, then,
when corruption strikes eventually, high system downtime and data
loss (and possibly, loss of the administrator’s job) will result.

Administrators usually have specific objectives in mind for proac-
tive detection and repair of data corruption. Table 1 gives examples
of such objectives. To our knowledge, no system today helps ad-
ministrators specify objectives like these easily, and automates the
nontrivial task of running tests to meet these objectives. The result
is usually a convoluted mix of ad hoc scripts and testing practices
with nobody having a clear idea of the downtime and data loss a
potential corruption can cause.

This demonstration will present the Amulet system (Figure 1)
that we have developed to detect and repair data corruption proac-
tively and continuously [1]. Section 2 gives an overview of the
uses of Amulet and its technical innovations. Section 3 presents
our demonstration plan. We refer the reader to [1] for a detailed
description and experimental evaluation of Amulet.

2. AMULET
A typical database software stack on a production host is shown

in Figure 1. Different levels of the software stack maintain different
sources of data. All these data sources have to be kept corruption-
free in order to guarantee correct behavior, good performance, and
availability of applications running on the software stack.

The database level has data in tables as well as plenty of meta-
data such as indexes, materialized views, and information in the
database catalog. Databases store their data and metadata as files
and directories in a file-system or directly as blocks on volumes.
The file-system level has files containing data stored by the database
level, as well as metadata such as the directory structure, inodes
(indexes storing file-to-block mappings) and journals (log of oper-
ations done). A file-system, in turn, stores its own data and meta-
data on a volume. A volume provides an interface to read and write
blocks of data. Beneath this interface, the volume may be a physi-
cal block device (e.g., a hard disk or solid state drive) or a logical
entity (e.g., representing storage on a networked server or a combi-
nation of partitions from multiple hard disks).
Proactive Testing for Data Corruption: Tests are run to verify
the correctness of data. For example, MySQL’s myisamchk suite
contains five different tests invoked through distinct invocation op-
tions: fast, check-only-changed, check (default), medium-check,
and extended-check. These tests apply checks of increasing sophis-
tication and thoroughness to verify the correctness of tables and
indexes in the database. The checks include verifying page-level
and record-level checksums as well as verifying that each index

P������������	
�

���������

��		
����

���������

��		
����

���������

��		
����

���������

��		
����

��������������
��������������

���
����
� �
������
	��
������
	�

������������

u���
�

��
����
�
���
��

��	
��

u��	���

���������

��		
����

���������

��		
����

���������

��		
����

���������

��		
����
ã

�������
��������
�

u���
�

��
����
�
���
��

u����

��	
���������

������
�

u����

���	����������
���
��
�

u��������������

P��������

�
���������

��	
���������

P�������

�
���������
·�� ·�� ·��

�������
�����
��������
�����
�

���	����������
���
��
�

�����
,��
�����
��

�������������
�
��������������
�
�

	��������
�	��������
�

u��	�
��

�����
�

P�������

�
���������

�
���������

"�"� "�"� "�"������

·�� ·�� ·��
�����

ì����
�
ä���������
�ä���������
�

�����
� �
���������

�
�����

�
��
���

���
��

�
�����

·������������

ä����#���

�
�����

ä����#���

ì����
�

�	�$�������
��	�$�������
�

�
��
����
�����

�������u�

ä����#���

�
�����

Figure 1: Overview of Amulet’s optimization and orchestration.
entry points to a valid record in the corresponding table, and vice
versa. The fsck and xfs check tests verify the correctness of meta-
data and data in the ext3 and XFS file-systems respectively. For
example, they ensure consistency between the file-system journal
and the data blocks, and verify that all the data block pointers in
the inodes are correct.

The first challenge that Amulet faces is how to run a test automat-
ically. Most of the popular tests cannot be run concurrently with the
regular workload on the production host because of performance
and correctness problems. The tests can consume significant CPU
or I/O resources. The tests may also have to lock large amounts of
data, making response times for the production workload slow and
unpredictable. Amulet addresses these problems using the follow-
ing three-step approach to run tests automatically:
1. Create snapshot: A snapshot is a persistent copy of a point-in-

time version of the data needed for a test. Snapshots can be
taken at the database, file-system, or volume levels. In this
demonstration, we focus on volume-level snapshots because
they capture the data needed for any test in the software stack.1

2. Run tests: A snapshot is loaded on to one or more testing hosts
where tests are run. As shown in Figure 1, testing hosts are dif-
ferent from the production host to avoid performance problems.

3. Apply changes: If tests detect and repair corruption in a snap-
shot, then the administrator can choose to apply these changes
or load the repaired snapshot on to the production host.

2.1 Amulet’s Angel Declarative Language
Easy and intuitive declaration of objectives like those in Table 1

poses a language design problem. Amulet’s declarative language,
called Angel, is designed to express such objectives. Example An-
gel programs can be found in [1]. The cases in Table 1 reveal the
important features that are built into the language, discussed next.
Tests, Data, and Resources: Angel contains a Test statement
that defines a test t by specifying the command to run t as well
as references to t’s input data (specified by a Data statement) and
the type of host on which to run t (specified by a Host statement).
Angel’s Data statement defines the input data for a test, including
the volume that the data belongs to, the data type (from a set of
supported types), and the data properties. Angel’s Host statement
defines a host type (from a set of supported types) for a test t so
that Amulet will always run t on testing hosts of that type.

1Production deployments that need near-real-time disaster recov-
ery take snapshots regularly and store them on cloud storage.

1404

P����P���� P����P���� P����P���� P����P���� P����P���� P�����P�����

��	 �� �� �� ��� ��� ��� ��� ���

P� P
 P� P� P P�� P��P� P� P� P� P��P�

�����	

�����

����� ÁÁÁ

P�������	�������� ������	P������� ����	���� ����P� P�������	�

Figure 2: Actual execution timeline, in minutes, of a testing plan in Amulet for Example 1 from Table 1. Each box denotes a run of
the myisamchk (TM) test on the respective snapshot Si. The horizontal width of each box corresponds to the test execution time.

Tested Recovery Points: When corruption is detected in the data
in a volume V , it is useful to have immediate access to a tested
recovery point for V from the recent past. A recovery point is a
corruption-free snapshot of V from which the database software
stack can be brought back online quickly. Recovery points are
an essential part of disaster recovery planning strategies. Angel’s
Recovery Point Objective (RPO) statement defines a re-
covery point objective with its respective time interval.
Other Objectives: Angel contains a Test Count Objective
(TCO) statement that defines, for a test t, the minimum or maxi-
mum number of test runs per specific time window. The Cost
Objective (CO) statement can be used to specify a budget
for provisioning pay-as-you-go cloud resources to run tests. The
Snapshot Interval Objective (SIO) statement speci-
fies constraints on the rate at which snapshots are tested.
Optimization Objective: The Optimize Objective (OO)
statement allows administrators to declare any one objective as sub-
ject to maximization or minimization during test execution.

2.2 Amulet’s Optimizer
Amulet can run a comprehensive suite of tests, including new

user-defined ones, to detect and possibly repair data corruption any-
where in the software stack. To use Amulet, as shown in Figure
1, a user or application submits a declarative Angel program that
references one or more volumes on the production system. For
each volume V , the program specifies: (a) the tests to be run on
data contained in V , and (b) the objectives to be met. For vol-
ume V , Amulet’s Optimizer will generate an efficient execution
strategy—called a testing plan—using an optimization algorithm
that maximizes or minimizes one objective subject to satisfying all
other objectives. Amulet’s Orchestrator will execute the testing
plan automatically and continuously by provisioning testing hosts
and scheduling tests on a resource provider.

Figure 2 shows an actual execution timeline on the Amazon cloud
for a testing plan P for an Angel program corresponding to Exam-
ple 1 from Table 1. Plan P uses one testing host that runs the
myisamchk test on snapshots taken from the production host. One
snapshot is tested every 30 minutes, and each test takes around 20
minutes to complete. This plan minimizes execution cost while
meeting the objective of continuously maintaining a tested recov-
ery point for a past 1-hour window. This testing plan, while simple,
illustrates a number of challenges that Amulet addresses.
Characterizing the testing plan space: A testing plan has mul-
tiple aspects. First, there is a provisioning aspect that determines
how many testing hosts are used to meet the specified objectives.
Second, there is a scheduling aspect that determines the rate at
which snapshots are tested and how test runs are scheduled on the
provisioned hosts. Third, there is a sustainability aspect that deter-
mines whether the plan will continuously meet the specified objec-
tives as time progresses. Formally, a testing plan P contains five
components:
1. Snapshot interval PI is the uniformly-spaced minimum time

interval between consecutive snapshots that the plan needs to
test to meet all the objectives specified.

2. Window PW is a time interval such that the plan repeats every

PW time units. The plan processes PW
PI

snapshots per window.
3. Test-to-snapshot mapping PM specifies, for each snapshot s in

the plan window, the set of tests that need to be run on s.
4. Test execution schedule PS specifies the number and respective

types of testing hosts to use, and when to run each test from
PM on these hosts.

5. Reserved cost budget PR is the part of the plan’s total cost
budget that is reserved for the Orchestrator to deal with unpre-
dictable events that can arise during plan execution.

Developing a cost model for tests: To find whether a plan enumer-
ated from the testing plan space will meet the objectives specified
in an Angel program, the Optimizer needs models to estimate the
execution times of tests scheduled by the plan. A novel component
of Amulet is a library of models to estimate test execution times.
The library currently covers tests for the MySQL database and the
ext3 and XFS file-systems.
Finding a good testing plan: For each volume referenced in an
Angel program, the Optimizer has to find a good plan from a huge
plan space. We have developed a novel algorithm for this opti-
mization problem that considers all three aspects of testing plans:
provisioning testing hosts, scheduling tests on snapshots and hosts,
and ensuring plan sustainability over time. The complete details of
the algorithm used to generate testing plans are given in [1].

2.3 Amulet’s Orchestrator
After submitting an Angel program, the administrator can view

the testing plans generated, and when satisfied, submit the plans
to Amulet’s Orchestrator for execution. The Orchestrator executes
testing plans continuously by working in conjunction with a Snap-
shot Manager and a resource provider, both of which are external
to Amulet. The Snapshot Manager notifies the Orchestrator when a
new snapshot of a volume on the production system is available for
testing. The Orchestrator allocates testing hosts from the resource
provider which, currently, can be any infrastructure-as-a-service
cloud provider. A major challenge faced by the Orchestrator is in
dealing with unpredictable events arising during plan execution:
• Straggler hosts: A host used to run tests on the cloud may be-

come slow temporarily, causing the test execution schedule to
lag behind the optimizer-planned schedule.

• Repairs: It is impossible to predict when a corruption will be
detected and a repair action needs to be taken.

• Wrong estimates: Lags in the testing schedule can also be caused
by inaccurate estimates of test execution times from the models.

Rather than complicating the Optimizer or making unrealistic as-
sumptions, Amulet’s solution is to reserve a cost budget in each
testing plan that the Orchestrator can use to provision additional
hosts on demand to deal with unpredictable events. The novel ef-
fect is that a testing plan has a statically-planned component gener-
ated by the Optimizer as well as an adaptive component managed
by the Orchestrator.

3. DEMONSTRATION PLAN
Amulet has been deployed and evaluated as a service running

on the Amazon Elastic Compute Cloud [1]. We will use this de-
ployment (illustrated in Figure 1) as the setting for the demon-

1405

P���������

Ð����� Ð�����
��	�
 333

Ð����� Ð����� Ð����� Ð	���� Ð
���� Ð����� Ð�����

Ð���� Ð���� Ð���� Ð���� Ð���� Ð	��� Ð
��� Ð���� Ð����

Ð����

�� �� � �� �� �� �� �� ���

�����

�����

��	�� 333
Ð���� Ð���� Ð���� Ð���� Ð	��� Ð
��� Ð���� Ð����

Ð���� Ð���� Ð���� Ð���� Ð���� Ð	��� Ð
��� Ð���� Ð����

�� �� � �� �� �� �� �� ��

��

������

�����

	���	
333

�
 �� � �� �� �� �� ��

Figure 3: Actual execution timeline on the Amazon Cloud for the testing plan from the base scenario in our demonstration.

stration.2 The demonstration itself will present three aspects of
Amulet: declarative use, regular optimized execution of testing
plans, and dealing with unpredictable events during plan execution.

3.1 Ease of (Declarative) Use
This part of the demonstration will focus on the Angel language

by showing how the use cases from Table 1 can be expressed in
the Angel declarative language. We will start with the Angel pro-
gram P for Example 1. This program will illustrate statements for
Test, Data, and Resources, in addition to the important Recovery
Point Objective (RPO) statement. Amulet’s Visualizer will
be used to show the testing plan chosen for P by the Optimizer.

We will then invite viewer participation to either show more use
cases from Table 1 or to complicate these use cases in two direc-
tions: (i) adding more tests to the program, and (ii) including more
objectives. This process will enable viewers to appreciate the ease
of use and intricacies of Amulet. Viewers will also gain an under-
standing of the Optimizer’s algorithm used to satisfy objectives and
the guarantees provided by the chosen testing plans. For example,
viewers can see how the chosen testing plan changes as the budget
for provisioning pay-as-you-go cloud resources is varied through a
Cost Objective (CO). Users with a deep interest in Amulet
can also browse the cost models for tests using the Visualizer.

3.2 Automatically-Optimized Execution
The demonstration session will continue by showing viewers

how the optimized testing plans are executed by the Orchestrator.
Our base scenario—whose actual execution timeline is shown in
Figure 3—will consists of three tests for a MySQL database run-
ning on the Amazon cloud: two myisamchk-medium tests respec-
tively on a lineitem table (TML) and an orders table (TMO), and
an fsck metadata test (TF). The desired objectives will be to test
at least one snapshot every 10 minutes, and to ensure that a tested
recovery point exists within the most recent 30 minutes. Amulet’s
Visualizer supports visualization of live testing plan execution as
well as that of monitoring information collected by the Orchestra-
tor from past plan executions.

3.3 Dealing with Unpredictable Events
Finally, based on viewer interest, we will present how Amulet’s

Orchestrator handles the following two types of unpredictable events:
1. Straggler hosts: During the execution of the Orchestrator’s base

scenario from Figure 3, we will inject a problem on Host1 that
causes the TML test on the host to run slower than expected.
Figure 4 shows the actual execution timeline. Because test
TML on snapshot S4 overshoots its estimated time and poses
the danger of violating plan guarantees, the Orchestrator will
mark Host1 as a straggler, and allocate a helper host (around
time 52 in Figure 4) to take over some of the workload on
Host1. Around time 63, Host1 is no longer a straggler host; thus
the helper host is released. Intuitively, the helper host was allo-
cated dynamically to help the plan tide over a transient problem.

2In case internet connectivity is unavailable at the demonstration
site, we will fall back on the Amulet Visualizer’s replay mode that
can visualize past execution of testing plans.

P����
���

P���� ���
6����� 6����� 6����� 6�����

6���� 6���� 6	��� 6���� 6����

P�����	P���	

�������

6	���� P�����	P���

�������

6����
 6����

6	���

6����
 6����

�� �� �� �� �� ��

�����

�����
����� �� �� �� ��

����	

�����

���

���

���

Figure 4: Actual execution timeline with a straggler host.

P���� ��� ���

P���� ���
6����� 6����� 6�����

6���� 6���� 6	��� 6���� 6����

ã������P����

���������
6��

6����� 6	����

6	�

6����� 6����� 6	���� 6����� 6�����

ã������P����

ã�������

	
 �
 �

 �
 �

���Þ	 Þ� Þ� Þ Þ�
Þ����

�����

�����

�����

���

���

Figure 5: Actual execution timeline with a need for repair.

2. Repairs: During the execution of the Orchestrator’s base sce-
nario, we will cause a data corruption in the production host
(lineitem table). In Figure 5, this corruption manifests itself
in two snapshots: S4 and S5. The corruption is detected by
TML when run on S4 (S4, TML in Figure 5), and reported to
the Orchestrator. The Orchestrator requests a repair host that
will execute the repair action specified by the Angel program.
The repaired snapshot can be loaded or the repair action applied
directly on the production host as desired by the administrator.

4. REFERENCES
[1] N. Borisov, S. Babu, N. Mandagere, and S. Uttamchandani. Warding

off the Dangers of Data Corruption with Amulet. In SIGMOD, pages
277–288, 2011.
http://www.cs.duke.edu/˜nedyalko/amulet.html.

[2] Data corruption in CouchDB. couchdb.apache.org/notice/1.0.1.html.
[3] Storage software update causes 0.02% of Gmail users to lose their

emails. http://bit.ly/e5Xn18.
[4] Outage at JPMorgan Chase due to Oracle Database Corruption.

dbms2.com/2010/09/17/jp-morgan-chase-oracle-database-outage.
[5] A. Krioukov, L. N. Bairavasundaram, G. R. Goodson, K. Srinivasan,

R. Thelen, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Parity
Lost and Parity Regained. In FAST, pages 127–141, 2008.

[6] Data corruption at Ma.gnolia.com. en.wikipedia.org/wiki/Gnolia.
[7] Corrupted backups. http://bit.ly/iffTC8.
[8] Oracle HARD Initiative. http://bit.ly/eTxiqa.
[9] Data corruption in Amazon S3. http://bit.ly/foWIul.

[10] B. Schroeder, E. Pinheiro, and W. D. Weber. DRAM Errors in the
Wild: A Large-Scale Field Study. In SIGMETRICS, pages 193–204,
2009.

[11] S. Subramanian, Y. Zhang, R. Vaidyanathan, H. S. Gunawi, A. C.
Arpaci-Dusseau, R. H. Arpaci-Dusseau, and J. F. Naughton. Impact
of Disk Corruption on Open-Source DBMS. In ICDE, pages
509–520, 2010.

1406

