
Analytics for the Real-Time Web

Maxim Grinev Maria Grineva Martin Hentschel Donald Kossmann
Systems Group, Dept. of Computer Science, ETH Zurich, Switzerland

{grinevm, grinevam, hemartin, donaldk}@inf.ethz.ch

ABSTRACT
With the emergence of mobile devices constantly connected
to the Internet, the nature of user-generated data has
changed on most Web 2.0 sites. Today, people produce
and share data more often and the lifespan of the data
is shorter. Analyzing this data leads to new requirements
for analytical systems: real-time processing and database-
intensive workloads. Driven by these requirements, we have
developed a new system for real-time analytics. Our sys-
tem extends a key-value store, Cassandra, with push-based
processing, transactional task execution, and synchroniza-
tion. To demonstrate our system, we have built a service to
reorganize news sites using real-time feedback from social
media.

1. INTRODUCTION
The Web 2.0 era is characterized by the emergence of

large amounts of user-generated content. So far, analyzing
and making use of this data has been accomplished using
batch-style processing. Data produced over a certain pe-
riod of time is accumulated and then processed. Analytical
processing consists mostly of computing aggregate values or
generating indexes for data inspection. MapReduce [4] has
become the state of the art for analytical batch processing
of user-generated data.

Today, with the growing use of mobile devices constantly
connected to the Internet, the nature of user-generated data
has changed: it has become more real-time. People share
their thoughts and discuss breaking news on Twitter and
Facebook; they share their current locations and activities
on location-based social networks such as Foursquare. The
difference is that, today, people share more often and the
lifespan of the data has become shorter.

This change implies new requirements for analytical sys-
tems. Processing data in batches is too slow to analyze
data in real time. Accumulated data can lose its impor-
tance in several hours or, even, minutes. Therefore, ana-
lytical systems must aggregate values incrementally, as new

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 37th International Conference on Very Large Data Bases,
August 29th - September 3rd 2011, Seattle, Washington.
Proceedings of the VLDB Endowment, Vol. 4, No. 12
Copyright 2011 VLDB Endowment 2150-8097/11/08... $ 10.00.

data arrives. It follows that workloads are database-inten-
sive because aggregate values are not produced at once, as in
batch processing, but stored in a database constantly being
updated.

Driven by these requirements, real-time and database-in-
tensive, we have developed a system for real-time analytics.
It extends a distributed key-value store, Cassandra [9], with
push-style processing, transactional task execution, and syn-
chronization. Push-style processing allows to immediately
propagate the data to the analytical computations. Trans-
actional task execution guarantees exactly-once execution in
case of node failures. Synchronization is needed to ensure
consistency of aggregate results. As we will discuss below,
our system preserves the main advantages of the original,
batch-oriented MapReduce framework, namely its program-
ming model (adapted to push-style processing), fault toler-
ance, and scalability.

To demonstrate our system, we have developed a service
for news site optimization using social media. As more than
40% of news are now shared via social networks [2], news
companies are interested to understand the impact produced
by recently published news. With real-time feedback from
users of social networks, news companies can reorganize
their front pages placing most discussed stories first and,
thus, attract more readers.

2. SYSTEM
In this section we describe our real-time analytics system

including programming model, execution model, fault toler-
ance, and scalability.

Programming Model. MapReduce [4] is a well-estab-
lished programming model to express analytical applica-
tions. To support real-time analytical applications, we mod-
ify this programming model to support push-style data pro-
cessing. In particular, we modify the reduce function. Orig-
inally, reduce combines a list of input values into a single
aggregate value. Our modified function, reduce∗, incremen-
tally applies a new input value to an already existing aggre-
gate value. This modification allows to apply a new input
value to the aggregate value as soon as the new input value
is produced. This means, we are able to push new values
to the reduce∗ function. Figure 1 depicts our modified pro-
gramming model. reduce∗ takes as parameters a key, a new
value, and the existing aggregate value. It outputs a key-
value pair with the same key and the new aggregate value.
Note that the aggregate value can be of complex type (e.g.,
a sorted list). We did not modify the map function as it al-
ready allows push-style processing. The difference between

1391



map : (k1, v1) → list(k2, v2)

reduce∗ : (k2, v2, aggold) → (k2, aggnew )

Figure 1: Programming model.

map and reduce∗ is that multiple maps can be executed in
parallel for the same key, while the execution of reduce∗ has
to be synchronized for the same key to guarantee correct
results. In order to setup a map/reduce∗ job the developer
has to provide implementations for both functions and de-
fine the input table, from which the data is fed into map, and
the output table, to which the output of reduce∗ is written.

Note that reduce∗ exhibits some limitations in comparison
to the original reduce. Not every reduce function can be
converted to its incremental counterpart. For example, to
compute the median of a set of values, the previous median
and new value is not enough to compute the new median.
To solve this issue, the complete set of values needs to be
stored to compute the new median.

Execution Model. The incremental nature of real-time
analytics requires intensive updates to a data store. There-
fore, we built our system on top of a key-value store, which
also provides fault tolerance and scalability.

There are three main assumptions about the underlying
key-value store required to implement our approach. (1) The
key-value store is partitioned and replicated across nodes
according to some strategy. Any node of the store may be
contacted to insert data. (2) Each node has a reliable and
persistent storage. Persistent storage is needed for write-
ahead logging. When a node recovers from a failure, it will
read the log and continue in the state it was in before the fail-
ure. This assumption significantly simplifies implementing
exactly-once semantics as we do not need to redundantly dis-
tribute and coordinate map/reduce∗ task execution—there
is always a single node responsible to execute each task. We
still replicate input and aggregate values to provide non-
blocking execution of input data in case of node failures.
(3) The system supports a quorum-like consistency protocol
to update replicas, as for example supported in Amazon Dy-
namo [5]. Data can be consistently read and written from
the database as long as the majority of replicas are available.
It allows processing data when some of the nodes are down
or not available. Note that these requirements are quite gen-
eral and are supported by several databases; for example, by
Apache Cassandra used to implement our system [9].

Based on these assumptions, we implemented additional
mechanisms on top of the key-value store. (1) We extended
the nodes of the key-value store with queues and worker
threads. Each node maintains a queue that buffers map and
reduce∗ tasks. Queues are persistent and transactional such
that tasks can be durably stored or removed as part of a
distributed transaction. Multiple worker threads drain the
queues and execute buffered tasks in parallel. Buffering map
and reduce∗ tasks allows to handle bursts of input data. Fur-
thermore, the size of the queue allows a rough estimation of
the load of a node. (2) We implemented a two-phase commit
protocol in order to execute distributed transactions. Dis-
tributed transactions are used to ensure exactly-once seman-
tics of map and reduce∗ tasks. (3) We added mechanisms to
synchronize the execution of reduce∗ tasks. Reduce∗ tasks
need to be synchronized because several tasks can poten-

N0

N1

N2

N3

N4

Lease
Manager

k1, v1

k1, v1
k1, v1

k1, v1

k2, v2

k2, agg1

k2, agg1

k2, agg1

m

r∗

Figure 2: Execution of an initial insert and one map/
reduce∗ step (Replication shown).

tially update the same aggregate value in parallel leading to
inconsistent data. Synchronization is realized in two steps:
by routing all key-value pairs output by map with the same
key to a single reduce∗ node; and by synchronizing the exe-
cution of reduce∗ within a node using locks. Routing is im-
plemented reusing the database’s partitioning strategy—the
primary replica storing the corresponding aggregate value is
chosen. In case this primary replica fails, the output of map
is routed to another replica that is alive. Therefore, synchro-
nization between nodes is required. This is achieved using
fixed-length leases [7]. The system has a central master node
that serves as lease manager. Database nodes acquire leases
from this manager. Leases expire after a fixed period of time
(30 seconds in our case) and need to be renewed. Only the
node that obtained the lease for the corresponding key range
is allowed to execute reduce∗ tasks. In the normal case, the
primary replica node already acquired the lease for its key
range and can process reduce tasks for all keys routed to the
node. In the failure case, when key-value pairs are routed to
another replica, this replica must acquire the lease for the
key range before starting to process these pairs.

The detailed steps to execute map and reduce∗ are shown
in Figure 2 and described below.

How to Insert Data. Whenever a new key-value pair
is inserted into the system, the contacted node runs a dis-
tributed transaction. The transaction consists of three steps.
First, the key-value pair is replicated to the majority of the
nodes in the replication set. Second, one node among the
replication set is elected to be the coordinator to execute
the map task. As a result of these two steps, the key-value
pair has been stored in a replicated fashion and exactly one
node will execute the map task. Choosing different replicas
to execute map tasks allows to balance load across replica
nodes. Third, at the elected coordinator node, the map
task is put into the queue. In Figure 2, the contacted node
N0 replicates the key-value pair k1, v1 and elects node N1

as coordinator to execute the map task. The queue of N1

contains the map task (denoted as m).
How to Execute map. Eventually, a worker thread

executes the map task. The execution of the map task is also
a distributed transaction. First, the map task is removed
from the queue. Second, each key-value pair output by map
is written to the corresponding reduce∗ node as described
above. And third, at those nodes a reduce∗ task is put into

1392



N0

N1

N2

N3

N4

Lease
Manager

k1, v1 k4, v3

k4, v3

k1, v1

k2, v2

k2, v4

k3, v5

k2, agg2k2, agg1

k3, agg3

m

m

r∗ r∗

r∗

Figure 3: Synchronization of reduce∗ tasks (No
replication shown).

the queue. In Figure 2, node N1 executes the map task and
writes k2, v2 to the responsible node N2. The queue of N2

contains the reduce∗ task (denoted as r∗).
How to Execute reduce∗. In Figure 3, we illustrate

that output of map with the same key (k2, v2 and k2, v4)
is routed to the same node (N2) to ensure synchronization
as described above. During execution of a reduce∗ task the
worker thread reads the old aggregate value from the major-
ity of nodes in the replication set. The output of the task is
stored back to the majority of nodes in the replication set.
The execution of a reduce∗ task is a distributed transaction
to ensure that the output is replicated to the majority of the
nodes in the replication set and the task is removed from the
queue. In Figure 2, node N2 executes the reduce∗ task and
replicates its results. By writing the result, the node might
fire a subsequent map/reduce∗ task for which the current
node is the coordinator to execute the subsequent map.

Fault Tolerance. Our system tolerates node failures and
provides the following two properties.

(1) Non-blocking execution. Similar to the original, batch-
oriented MapReduce framework [4], we continue to make
progress in case of node failures. In [4], if a node goes down
the master node only assigns new jobs to alive nodes. Also,
the master re-assigns the jobs of the failed node to nodes
that are alive. In our implementation, if a node goes down
and there is still a majority of nodes of the replication set
alive, one of these alive nodes will execute new jobs. Only
the majority of nodes of the replication set is needed to
make progress. Our system blocks if the majority is lost
and as long as majority is reached again. Jobs that were
buffered in the queue when the node went down, will be
executed whenever the node recovers from the failure. If
the lease manager dies, the system stops working until the
lease manager recovers. This single point of failure is similar
to the master node in the original MapReduce framework.
A solution is to make the lease manager fault tolerant by
replicating its state.

(2) Exactly-once semantics. We provide exactly-once se-
mantics by combining atomic task execution with durable
storage of intermediate results. Each step of data process-
ing is implemented as an atomic transaction which reads a
task from a persistent queue, executes it, and durably stores
the task to execute the next step into a subsequent queue. In
case of any failure the transaction is rolled back and thus the

initial task remains in the first queue. Atomic transactions
are achieved via the two-phase commit protocol. Further-
more, there is always one single node chosen to execute a
map or reduce task.

Scalability. In our system, the task execution is dis-
tributed across the nodes according to the data partitioning
strategy. It allows to scale the system by adding nodes to
the system and moving data (and thus, task execution) onto
the newly added nodes. Distributed transactions do not pre-
vent scalability because the number of nodes involved in a
single distributed transaction is determined by the replica-
tion factor (= 3 in Figure 2) and does not depend on the
size of the key-value store.

The proposed technique allows scaling when the overall
load is distributed across many aggregate values with differ-
ent keys. If a single aggregate value becomes a hotspot (e.g.,
a global counter reflecting the overall number of messages in
a social network), our solution can be extended by aggregat-
ing values in a distributed fashion [11]. In [11], the aggregate
value is replicated and load is shed across the replicas. The
final result is obtained by combining the replicated aggre-
gate values at query time.

3. RELATED WORK
Data warehouses and MapReduce [4] represent the state

of the art in data analytics. They are designed for batch pro-
cessing and do not meet the new requirements of analytics
for the real-time web.

Google Percolator [12] is a recent example of a system to
support real-time analytics. Percolator is similar to our work
as it extends a distributed database, Google BigTable, with
(1) push-based processing using database triggers (called
observers in the paper), and (2) distributed transactions
using the two-phase commit protocol and snapshot isola-
tion. There are also important differences. First, the sys-
tem provides at-most-once semantics of trigger execution.
It is argued to be sufficient for the system’s main applica-
tion, Web indexing, because skipping some tasks still leads
to statistically correct results of the PageRank computation.
Our system guarantees exactly-once semantics and thus can
be applied for a wider range of applications. Second, our
system supports the (modified) MapReduce programming
model, which has proven to be effective to express many
kinds of analytical applications. In contrast to this, Per-
colator supports the low-level programming model of trig-
gers. Moreover, there are a number of differences in the im-
plementation of task distribution and synchronization, data
replication, and transactions. A detailed analysis of these
implementation differences is outside the scope of this paper.

The Hadoop Online Prototype (HOP) [3] is an approach
to transform the MapReduce framework to support real-
time analytics. HOP proposes a modified MapReduce ar-
chitecture that allows a pipelined execution of operators. It
still processes data in batches but users can see early ap-
proximations of the final result.

Recent research combines data stream management sys-
tems with databases to build real-time analytical applica-
tions, for example Truviso [6]. Compared to our system,
Truviso does not distribute the computation and, therefore,
cannot maintain large numbers of aggregate values (e.g., the
popularity of links on social networks for all sites on the
web). There are distributed stream management systems,
such as IBM InfoSphere Streams [8] and Borealis [1], but

1393



NEWS
. . .

. . .

. . .

tweet

tweet
retweet retweet

Popular Article

Reorganize

Feedback

Figure 4: Reorganizing a newspaper using Twitter.

these do not provide database integration. In these systems,
data is accumulated in windows. In analytical applications
the size of a window is often not known in advance. Accord-
ing to our experience with these systems, expressing ana-
lytical computations with unknown window sizes results in
complex application logic. Neither IBM InfoSphere nor Bo-
realis provide persistent storage for windows that do not fit
in main memory. Yahoo! recently developed the S4 stream-
ing system [10]. S4 is built for real-time distributed analyt-
ical applications. It provides a programming model similar
to MapReduce: data is routed between tasks by keys. But,
S4 lacks database integration and does not provide fault-
tolerance guarantees. In summary, our study on popular
stream management systems (Truviso, IBM InfoSphere, Bo-
realis, and Yahoo! S4) shows that none of these systems meet
all requirements of real-time analytics provided by our sys-
tem (database integration, distributed processing and scal-
ability, fault tolerance, and expressiveness).

4. DEMONSTRATION
We will demonstrate our system using real data obtained

from Twitter. Twitter allows to access a 1% sample of all
current tweets in real time [14]. We will use this data as
is to demonstrate real-time analytics. To demonstrate the
scalability of our system, we artificially scale this workload
to the 100% Twitter workload (1600 messages per second
[13]) using data accumulated over seven days.

Application. We have built a service for news site opti-
mization based on information posted by people on Twitter,
illustrated in Figure 4. Using our service, news companies
can monitor the popularity of published articles and reorga-
nize their front pages featuring most discussed stories first.
Hopefully, this will attract more readers.

Our service analyzes links in tweets. Many tweets contain
links to news articles and blogs [2]. Typically, these links are
abbreviated by URL shorteners such as bit.ly. We implement
this application via two consecutive map/reduce∗ tasks. In
our implementation, the first map/reduce∗ task extracts and
resolves URLs from tweets and counts the number of times
each URL is posted. The second map/reduce∗ task extracts
domains from URLs, groups URLs by their domain, and
keeps a sorted list of URLs based on their count (for each
group). As result, the user can look up the most popular
articles (i.e., their URLs) for each domain mentioned on
Twitter. Thus, we demonstrate web-scale processing.

In all scenarios described below, we use a cluster of ma-
chines where each machine is equipped with an AMD Opter-
on 2.4GHz CPU and 6GB RAM running Ubuntu Server 10.

Scenario 1: Monitoring. A user will access our service
through a standard web browser. The start page displays
a text field in which the user can enter any domain, for
example nytimes.com. For this domain, the service will then

display a sorted list of URLs that are currently discussed on
Twitter. The list is constantly updated in the browser as
new tweets are received, which demonstrates the real-time
character of our application. It allows the user to see the
most popular articles of the New York Times on Twitter
right now. The user can reset the displayed list for the
domain by clicking a reset button. When the user clicks this
button, all statistics are set to zero. In an instant though,
the list will be populated again as new tweets are received.

Scenario 2: Scalability. In order to demonstrate the
scalability of our system, we will artificially scale up the
input stream to mimic a 100% Twitter load. That is, we
replay data accumulated over seven days in a much shorter
time frame. We will show that our system is able to handle
this load on a cluster of 12 machines. The user will see
that URL counters increase much quicker with the scaled-
up input stream.

Scenario 3: Fault Tolerance. In order to demonstrate
non-blocking execution of map/reduce∗ tasks in case of node
failures, we will give the audience the chance to pick any
node of the system that we will manually shut down by
killing the corresponding Java process. To support this sce-
nario, our system logs all fatal errors during task execution.
Using the Linux command tail -f error.log (which out-
puts all errors to a console), we can show that no such errors
occur when shutting down a node of the system. The au-
dience may choose to kill more nodes, which at some point
will cause fatal errors to appear in the logs. This happens
when the majority of nodes of a replication set is down.

5. REFERENCES
[1] D. J. Abadi et al. The design of the Borealis stream

processing engine. In CIDR, pages 277–289, 2005.

[2] CNN. Study into the power of news and recommendation.
http://cnninternational.presslift.com/socialmediaresearch,
2010.

[3] T. Condie et al. Online aggregation and continuous query
support in MapReduce. In ACM SIGMOD Conf., pages
1115–1118, 2010.

[4] J. Dean and S. Ghemawat. MapReduce: Simplified data
processing on large clusters. In OSDI, pages 137–150, 2004.

[5] G. DeCandia et al. Dynamo: Amazon’s highly available
key-value store. In SOSP, pages 205–220, 2007.

[6] M. J. Franklin et al. Continuous analytics: Rethinking
query processing in a network-effect world. In CIDR, 2009.

[7] C. G. Gray and D. R. Cheriton. Leases: An efficient
fault-tolerant mechanism for distributed file cache
consistency. In SOSP, pages 202–210, 1989.

[8] InfoSphere streams.
http://www-01.ibm.com/software/data/infosphere/streams,
2011.

[9] A. Lakshman and P. Malik. Cassandra: a decentralized
structured storage system. ACM SIGOPS Operating
Systems Review, 44(2):35–40, 2010.

[10] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari. S4:
Distributed stream computing platform. In ICDM
Workshops, pages 170–177, 2010.

[11] J. Oskarsson and K. Kakugawa. Increment counters.
http://issues.apache.org/jira/browse/CASSANDRA-1072,
2010.

[12] D. Pen and F. Dabek. Large-scale incremental processing
using distributed transactions and notifications. In OSDI,
pages 215–264, 2010.

[13] C. Penner. #numbers.
http://blog.twitter.com/2011/03/numbers.html, 2011.

[14] Twitter Streaming API documentation.
http://dev.twitter.com/pages/streaming api, 2011.

1394


