
CerFix: A System for Cleaning Data with Certain Fixes

Wenfei Fan 1,2 Jianzhong Li2 Shuai Ma3 Nan Tang1 Wenyuan Yu1

1University of Edinburgh 2Harbin Institute of Technology 3Beihang University
{wenfei@inf., ntang@inf., wenyuan.yu@}ed.ac.uk lijzh@hit.edu.cn mashuai@act.buaa.edu.cn

Abstract
We present CerFix, a data cleaning system that finds cer-
tain fixes for tuples at the point of data entry, i.e., fixes that
are guaranteed correct. It is based on master data, editing
rules and certain regions. Given some attributes of an in-
put tuple that are validated (assured correct), editing rules
tell us what other attributes to fix and how to correct them
with master data. A certain region is a set of attributes
that, if validated, warrant a certain fix for the entire tuple.
We demonstrate the following facilities provided by Cer-
Fix: (1) a region finder to identify certain regions; (2) a
data monitor to find certain fixes for input tuples, by guid-
ing users to validate a minimal number of attributes; and
(3) an auditing module to show what attributes are fixed
and where the correct values come from.

1. Introduction
It has long been recognized that real-life data is often

dirty [10]. Dirty data is costly: it costs us businesses 600
billion dollars each year [5]. This highlights the need for
data cleaning tools, to help users detect errors in the data
and moreover, repair the data, i.e., correct the errors.

Most data cleaning systems on the market are ETL tools
(extraction, transformation, loading; see [8] for a survey).
To detect semantic errors in the data, there have also been
a host of approaches on data repairing based on integrity
constraints [1, 2, 4, 11]. A variety of constraints have been
studied for data repairing, such as traditional functional,
inclusion and full dependencies [1,2], as well as their exten-
sions (e.g., conditional functional dependencies [4, 11]).

Integrity constraints are capable of detecting the presence
of errors in the data, i.e., determining whether the data is
dirty or not. However, they do not tell us which attributes
of a tuple have errors and how we could correct the errors.

Example 1: Consider an input tuple:

t: (FN = Bob, LN =Brady, AC = 020, phn =079172485, type =2,
str = 501 Elm St, city = Edi, zip = EH8 4AH, item = CD)

It specifies a uk customer: name (fn, ln), phone number
(area code AC and phone phn), address (street str, city, zip
code) and item purchased. Here phn is either home phone
or mobile phone, indicated by type (1 or 2, respectively).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 37th International Conference on Very Large Data Bases,
August 29th - September 3rd 2011, Seattle, Washington.
Proceedings of the VLDB Endowment, Vol. 4, No. 12
Copyright 2011 VLDB Endowment 2150-8097/11/08... $ 10.00.

To specify the semantics of the input data, one may define
the following conditional functional dependencies (cfds):

ψ1: AC = 020 → city = Ldn, ψ2: AC = 131 → city = Edi.

These cfds state that if AC is 020, then city should be Ldn
(ψ1), and when AC is 131, then city must be Edi (ψ2). They
detect the presence of errors in tuple t: t[AC] = 020 but
t[city] = Edi. However, they do not tell us which of t[AC]
and t[city] is wrong, and to what value it should be changed.

In light of this, previous constraint-based methods use
heuristics: they do not guarantee correct fixes in data repair-
ing. Worse still, they may introduce new errors when trying
to repair the data. Indeed, the correct values of t[AC, city]
are (131, Edi). Indeed, all these previous methods may opt
to change t[city] to Ldn; this does not fix the erroneous t[AC]
and worse, messes up the correct attribute t[city]. 2

In practice, one often wants to find certain fixes for the
data, i.e., fixes that are guaranteed to be correct. In other
words, if a data repairing process changes the value of an
attribute t[A] to v, then v should be the true value of t[A]. In
addition, it should ensure that no new errors are introduced
in the process. The need for certain fixes is particularly
evident when repairing critical data, e.g., medical data, in
which a seemingly minor error may mean life or death.

An approach to finding certain fixes was proposed in [7],
based on master data, editing rules and certain regions.
Master data (a.k.a. reference data) is a single repository of
high-quality data that provides various applications in an
enterprise with a synchronized, consistent view of its core
business entities [9]. It is increasingly common for enter-
prises to maintain master data nowadays, and master data
management (MDM) is being developed by IBM, SAP, Mi-
crosoft and Oracle. In contrast to integrity constraints, edit-
ing rules aim to tell us which attributes of a tuple are wrong
and what values from master data they should take, pro-
vided that master data is available and that some other at-
tributes are validated (assured correct). With respect to a
set of editing rules and a master relation, a certain region
is a set A of attributes and a pattern tableau, such that for
any input tuple t, if t[A] is validated and t[A] bears a pat-
tern in the tableau, then the editing rules guarantee to find
a (unique) certain fix for all the attributes of t.

Example 2: Suppose that master data contains a tuple:

s: (FN = Robert,¡ LN =Brady,¡ AC = 131, Hphn = 6884563,
Mphn =079172485, str = 501 Elm St, city = Edi,
zip = EH8 4AH, DoB = 11/11/55, gender = M)

An editing rule is given as follows:

ϕ1: ((zip, zip) → (AC,AC), tp1 = ())

It states that for an input tuple t and a master tuple s,
if they have identical zip code (i.e., t[zip] = s[zip]), then t
could be updated by t[AC] := s[AC], provided that t[zip] is

1375



Master Data Manager

Dm

Rule Engine

Editing Rules

Data Auditing

Data Monitor

Region Finder
Certain regions

interact

Data cleaning module

Web interface

Data module

New suggestion

Data repairing

Data Explorer

tupletuple t

Figure 1: The CerFix Architecture.

correct (either ensured by the users or verified automati-
cally). When the master data is accurate, the editing rule
is assured valid, and the region t[zip] is correct, the fix to
t[AC] with the master data value is certainly correct. 2

Following [7], we develop CerFix, a data cleaning system
that finds certain fixes for input tuples at the point of data
entry. It differs from other systems that also ask for user
feedback (e.g., [3]) in what feedback is requested and how
the feedback is used. Below we first present CerFix, and
then outline what functionalities we shall demonstrate.

2. The CerFix System
The architecture of CerFix is depicted in Fig. 1. CerFix

maintains a collection of master data (master data manager)
and a set of editing rules (rule engine). With respect to the
master data and editing rules, it computes a set of certain
regions (region finder). It inspects and repairs input tuples
via a data monitor, which interacts with the users to find
certain fixes for input tuples. It also provides a Web inter-
face (data explorer) and a data auditing module for users to
manage editing rules and trace changes to data, respectively.

Below we briefly present the key components of CerFix.
We refer the interested readers to [7] for details about editing
rules, certain regions and their computation.

Rule engine. It maintains a set of editing rules (eRs) that
specify (a) whether an input tuple t can match a master tu-
ple s via a pattern tuple (e.g., (zip, zip) together with tp1 in
rule ϕ1 of Example 2), and (b) which attribute values of t can
be changed and what correct values they should take from
the master data. The engine also implements static analysis
techniques developed in [7]. In particular, it supports the
following. (1) It checks the consistency of editing rules, i.e.,
whether the given rules are dirty themselves. Moreover, (2)
provided that some attributes of a tuple are correct, it au-
tomatically derives what other attributes can be validated
(assured correct) by using editing rules and master data.

Editing rules can be either explicitly specified by the users,
or derived from integrity constraints, e.g., cfds and match-
ing dependencies [6] for which discovery algorithms are al-
ready in place. CerFix currently only supports manual
specification of editing rules via the Web interface.

Master data manager. It maintains master data, which
is assumed consistent and accurate [9].

Region finder. A region is a pair (Z, Tc), where Z is a list
of attributes of an input tuple and Tc is a pattern tableau
consisting of a set of pattern tuples with attributes in Z.

Figure 2: Management of editing rules.

A region (Z, Tc) is a certain region w.r.t. a set of editing
rules and master data if for any input tuple t, as long as
t[Z] is correct and t[Z] matches a pattern in Tc, the editing
rules warrant to find a certain fix for t. Based on the algo-
rithms in [7], top-k certain regions are pre-computed that
are ranked ascendingly by the number of attributes, and are
recommended to users as (initial) suggestions.

Data monitor. This is the most important module of Cer-
Fix. It interacts with the users and finds certain fixes for
input tuples, as follows. (1) Initial suggestions. It recom-
mends the set of certain regions computed by region finder
to the users as suggestions. For each input tuple t, if the
users ensure that t[Z] is correct and matches a pattern in Tc

for any region (Z, Tc) in the set, then a certain repair for t
is warranted. (2) Data repairing. For an input tuple t, the
users may respond with a set t[S] of attributes that is cor-
rect, where S may not be any of the certain regions. Data
monitor iteratively employs editing rules and master data
to fix as many attributes in t as possible, and expands the
correct attribute set S by including those attributes that
are validated via the inference system of the rule engine.
(3) New suggestion. If not all attributes of t have been vali-
dated, data monitor computes a new suggestion, i.e., a min-
imal number of attributes, which are recommended to the
users. If the users ensure the correctness of these attributes
in t, data monitor will find a certain fix for t. The process
of steps (2) and (3) repeats until a certain fix of t is reached.

CerFix ensures that each fix is correct with editing rules
and master data. It also minimizes users’ effort by identify-
ing a minimal number of attributes for users to validate.

Data auditing. This module keeps track of changes to
each tuple, incurred either by the users or automatically by
data monitor with editing rules and master data. Statistics
about the changes can be retrieved upon users’ requests.

1376



(a) Providing suggestions (b) Fixing data (c) Achieving certain fixes
Figure 3: Data monitor.

3. Demonstration Overview
We next describe various aspects of CerFix in more de-

tail, and explain the aims of our demonstration. More specif-
ically, we show the following: (1) how users manage editing
rules with the aid of the Web interface (data explorer in
Fig. 1); (2) how CerFix interacts with the users for data
monitoring, to detect and fix errors in input tuples at the
point of their entry; and (3) how data auditing works, to
keep track of which attributes are fixed and where the cor-
rect values come from, and provide statistics about the per-
centage of data that is fixed by user efforts or by CerFix.

Initialization. The users are required to configure an in-
stance, which consists of two parts: (a) a data connec-
tion with JDBC url, username, password and the correspond-
ing JDBC driver provided by users; and (b) specifying the
schema of input (dirty) tuples and that of the master data.

We illustrate these with the master data and the input
data shown in Fig. 2. Note that they have different schemas.

Master data. Each tuple in the master data specifies a per-
son in the uk in terms of the name (fn, ln), area code (AC),
home phone (Hphn), mobile phone (Mphn), address (street
str, city and zip code), date of birth (DOB) and gender.

Input tuples. Each tuple specifies a uk customer, as illus-
trated in Example 1.

Editing rule management. Figure 2 displays the Web
interface for managing eRs. In the demonstration we shall
show how the users can manage (view/modify/add/delete)
eRs using the data explorer. The system currently only sup-
ports to import eRs manually via the rule manager, where
the eRs may either be designed by experts or be discovered
from cfds or mds. For instance, Figure 2 shows nine editing
rules ϕ1–ϕ9, for the id’s 1–9, respectively.

◦ ϕ1 (resp. ϕ2 and ϕ3) states that if an input tuple t and
a master tuple s have the same zip code and if t[zip] is
already validated, then t can be updated by t[zip] :=
s[zip] (resp. str and city).
◦ ϕ4 (resp. ϕ5) states that if the phn of a tuple t matches

the Mphn of a master tuple s, and if t[phn] is validated,

then t[FN] := s[FN] (resp. LN). These eRs pose a con-
straint (a pattern tuple) t[type] = 2, requiring that phn
is mobile phone. This rule can be viewed or edited by
clicking the view/edit frame for the pattern.
◦ ϕ6 (resp. ϕ7 and ϕ8) tells us that if the (AC, phn)

attributes of an input tuple t match the (AC, Hphn)
values of a master tuple s, and if t[AC, phn] are vali-
dated, then t[str] := s[str] (resp. city and zip). These
eRs have a pattern t[type] = 1, i.e., phn is home phone.
◦ ϕ9 states that when the AC value of an input tuple t

is not 0800 (toll free, non-geographic), if it agrees with
a master tuple s on its AC attribute, and moreover,
if t[AC] has been validated, then t should be updated
with t[city] := s[city]. As shown in Fig. 2, the pattern
“ 6= 0800” can be edited via a pop-up frame.

CerFix automatically tests whether the specified eRs

make sense w.r.t. master data, i.e., the rules do not con-
tradict each other and will lead to a unique fix for any input
tuple. Furthermore, given certain attributes that are vali-
dated, it automatically derives what other attributes can be
validated by eR and master data, via an inference system.

Data monitor. We shall demonstrate how CerFix inter-
acts with users to find a certain fix for each input tuple.

1. CerFix suggests a set of attributes for the users to val-
idate. The users may either validate these attributes,
or opt to assure that some other attributes are correct.
The initial suggestions are computed by region finder.

◦ As shown in Fig. 3(a), the attributes suggested by
CerFix are highlighted in yellow, i.e., area code
AC, phone number phn, phone type, and product
item. The values of the attributes assigned by the
users are 201, 075568485, Mobile phone (type 2),
and DVD, respectively.

2. If the users opt to validate these attributes, CerFix
iteratively applies editing rules and master data to the
data, and expands the set of attributes validated.

◦ As shown in Fig. 3(b), all attributes that have
been validated are now highlighted in green.
These include attributes first name FN, last name

1377



Figure 4: Data auditing.

LN, and city, for which the correctness is validated
by CerFix. For instance, the value of FN is nor-
malized from ‘M.’ to ‘Mark’ by eR ϕ4 with the
FN value of the second master tuple in Fig. 2.

The users may decide to validate attributes other than
those suggested. CerFix reacts by fixing data with
editing rules and master data in the same way, based
on the attributes selected and validated by the users.

3. If some attributes of the input tuple are still not val-
idated, CerFix computes a new suggestion and goes
back to step 1, to interact with the users by providing
the new suggestion. In each interaction, both the users
and CerFix expand the attributes that are validated.
◦ As shown in Fig. 3(b), CerFix suggests the users

to validate zip code. After two rounds of inter-
actions, all the attributes are validated. This is
shown in Fig. 3(c) with all attributes in green.

When fixing the data, the most time-consuming procedure
is to compute suggestions. To reduce the cost, CerFix pre-
computes a set of certain regions with region finder (see
Fig. 1), which are provided to the users as initial suggestions,
and are referenced when computing new suggestions.

We remark that data monitor of CerFix is quite generic,
i.e., it does not depend on any particular system. Indeed,
it supports several interfaces to access data, which could be
readily integrated with other database applications.

Data auditing. CerFix provides a data auditing facility
such that after a stream of input tuples is fixed, the users
may inspect the changes made to those tuples.

The users may inspect attributes of an individual tuple.
For instance, as shown in Fig. 4, when the users select the FN
attribute of a tuple (highlighted in yellow), CerFix shows
that it has been fixed by normalizing the first name ‘M.’ to
‘Mark’. It further presents what master tuples and editing
rules have been employed to make the change.

The users may also want to inspect each attribute (col-
umn) of the input tuples. As shown in Fig. 4, when FN is
selected, CerFix presents the statistics about the attribute
FN, namely, the percentage of FN values that were validated
by the users and the percentage of values that were automat-
ically fixed by CerFix. Our experimental study indicates
that in average, 20% of values are validated by users while
CerFix automatically fixes 80% of the data.

Summary. The demonstration aims to exhibit the strength
of editing rules and important functionalities of CerFix. (1)
Editing rules. As opposed to integrity constraints that only
detect the presence of errors in the data, editing rules iden-
tify what attributes are erroneous and tell us how to correct
the errors with master data. (2) Region finder. It tells us
to validate an input tuple, what minimal sets of attributes
have to be assured correct. (3) Data monitor. It interacts
with the users to find certain fixes, while minimizing hu-
man efforts by suggesting a minimal number of attributes
for the users to validate. (4) Data auditing. It helps the
users understand better the quality of input data sets.

Acknowledgments. Fan is supported in part by the RSE-
NSFC Joint Project Scheme and an IBM scalable data ana-
lytics for a smarter planet innovation award. Li is supported
in part by NGFR 973 grant 2006CB303000 and NSFC grant
60533110. Shuai is supported in part by NGFR 973 grant
2011CB302602 and NSFC grants 90818028 and 60903149.

4. References

[1] M. Arenas, L. E. Bertossi, and J. Chomicki. Consistent
query answers in inconsistent databases. TPLP, 3(4-
5):393–424, 2003.

[2] P. Bohannon, W. Fan, M. Flaster, and R. Rastogi. A
cost-based model and effective heuristic for repairing
constraints by value modification. In SIGMOD, pages
143–154, 2005.

[3] K. Chen, H. Chen, N. Conway, J. M. Hellerstein, and
T. S. Parikh. Usher: Improving data quality with dy-
namic forms. In ICDE, pages 321–332, 2010.

[4] G. Cong, W. Fan, F. Geerts, X. Jia, and S. Ma. Improv-
ing data quality: Consistency and accuracy. In VLDB,
pages 315–326, 2007.

[5] W. W. Eckerson. Data Quality and the Bottom Line:
Achieving Business Success through a Commitment to
High Quality Data. In The Data Warehousing Institute,
2002.

[6] W. Fan, X. Jia, J. Li, and S. Ma. Reasoning about
record matching rules. PVLDB, pages 407–418, 2009.

[7] W. Fan, J. Li, S. Ma, N. Tang, and W. Yu. Towards cer-
tain fixes with editing rules and master data. PVLDB,
pages 173–184, 2010.

[8] T. N. Herzog, F. J. Scheuren, and W. E. Winkler. Data
Quality and Record Linkage Techniques. Springer, 2009.

[9] D. Loshin. Master Data Management. Knowledge In-
tegrity, Inc., 2009.

[10] T. Redman. The impact of poor data quality on the
typical enterprise. Commun. ACM, 2:79–82, 1998.

[11] M. Yakout, A. K. Elmagarmid, J. Neville, M. Ouzzani,
and I. F. Ilyas. Guided data repair. PVLDB, pages 279–
289, 2011.

1378


