
GrouPeer: A System for Clustering PDMSs

Verena Kantere∗

Cyprus University of
Technology

verena.kantere@cut.ac.cy

Dimos Bousounis
Swiss Federal Institute Of

Technology Zurich

dbousoun@student.ethz.ch

Timos Sellis
National Technical University

of Athens

timos@dblab.ece.ntua.gr

ABSTRACT

Sharing structured data in a PDMS is hard due to schema het-
erogeneity and peer autonomy. To overcome heterogeneity, peer
databases employ mappings that partially match local information
to that of their direct neighbors. Traditionally, a query is succes-
sively rewritten along the propagation path on each peer. This
results in gradual query degradation and the inability to retrieve
data pertinent to the original version, even from peers that store
such data. This demonstration presents GrouPeer, a system that
overcomes the query degradation problem and enables the dynamic
clustering of the overlay according to the semantics of the peer data,
utilizing normal query traffic. Peers are provided with a method-
ology that allows them to choose which rewritten version of a query
to answer and discover remote information-rich sources. The demon-
stration illustrates the functionalities in the clustering mechanism
of GrouPeer: approximate query rewriting, query similarity method-
ology, construction of new mappings, iterative learning process,
employment of automatic schema matching, and proves the capa-
bility of the system to perform gradual semantic clustering and en-
able high quality answers to peer queries.

1. INTRODUCTION
In an unstructured Peer-to-Peer data management system (here-

after PDMS) that shares structured data, the major obstacle for ac-
quiring high quality answers to peer queries is the heterogeneity of
peer database schemas in combination with peer autonomy. An-
swers to peer queries that are propagated in the overlay are enabled
by schema mappings between pairs of directly acquainted peers
[4]. Mappings are employed in order to rewrite and answer an in-
coming query on the local peer database. Yet, matching schema
information between acquainted peers is often partial and can be
poor in case of great schema dissimilarity. In large scale PDMSs
it is expected that joining peers are acquainted in a random way;
frequently, they are far away (in terms of overlay hops) from peers
with relevant data and, thus, interests. Such overlay connectivity
situations may permanently condemn various peers to ignorance of

∗This research was conducted while the first and second author
were working at the National Technical University of Athens.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 37th International Conference on Very Large Data Bases,
August 29th - September 3rd 2011, Seattle, Washington.
Proceedings of the VLDB Endowment, Vol. 4, No. 12
Copyright 2011 VLDB Endowment 2150-8097/11/08... $ 10.00.

other information-rich peers because of enforced reformulation of
queries on each node of the propagation path. The following is
an example that exhibits this problem through the illustration of an
extreme unfortunate case of overlay connectivity.

Example: Assume a three-peer overlay with the nodes succes-

sively acquainted in the following order: P1, P2, P3 with schemas

S1, S2, S3, respectively. Peers P1 and P3 have the same schema,

i.e. S1 ≡ S3, since they use the same commercial database prod-

uct. Also S2 is substantially different than S1, S3, such that a lot

of relations and attributes of the latter cannot be mapped on S2.

Queries by P1 reach P3 after they have been locally rewritten on

S2. It is certain that most such queries cannot be completely rewrit-

ten on S2 and thus a degraded version reaches P3, even though the

latter has the missing requested information. These queries would

be completely rewritten and answered, without any loss, if P1 and

P3 were directly acquainted.

The work in [9] proposes GrouPeer, a framework that provides
a PDMS with accurate answers to locally posed queries in the ab-
sence of a global schema. GrouPeer presents a procedure that sup-
ports the evasion of successive rewritings on every peer of a query’s
propagation path, instead of, sometimes hopelessly, refining query
reformulation. This methodology enables peers to discover others
with similar interests and schemas, that cannot be tracked other-
wise. Pairs of remote peers that exchange queries and answers
learn gradually about the schema of the other party. Learning is
performed through query answering and evaluation and it is formed
through the creation of mappings between the peer schemas. These
mappings encapsulate the common peer interest, since they refer to
the vital schema parts on which they express and answer queries. If
the peers decide to become acquainted, these mappings are already
a language for their communication and alleviate the administra-
tor’s load for manual creation of mappings for the new acquain-
tance. This methodology leads to the gradual clustering of the
PDMS in groups with common interests.

In this demonstration we present a full-fledged implementation
of the GrouPeer framework. Our goal is to exhibit the effectiveness
of the clustering process in order to overcome the query degrada-
tion and, in general, the heterogeneity problem in PDMSs. The
demonstration presents the complex and successful collaboration
of the several partial mechanisms implementing the various system
functionalities such that remote schema learning becomes feasible.

More information about GrouPeer can be found in the site [3].

2. THE CLUSTERING PROCESS
We summarize the clustering process that enables remote peers

with similar interests and schemas to mutually discover each other,
even if they are hidden in the query propagation paths by other
peers with dissimilar interests.

1371

P1 Pn

M

P

P
M

propagate queries

send answers

Learn

gradually

schema of Pn

Learn

gradually

schema of P1

P

P

P

P

M

M

M

M
MMM

M

M

Figure 1: Learning about a remote peer.

1. receive Qorig,

2. create Qar and Qsra,

3. rewrite one of them,

propagate

Qorig

Q
u
e

ry
in

g

P
e
e
r

A
n
s
w

e
ri
n
g

P
e
e
r 1. improve learning of

remote schema

2. answer rewritten query

3. send answer

1. receive answer

2. evaluate it

1. improve learning

of remote schema

2. give feedback

1. receive feedback

2. improve learning

of remote schema

Figure 2: One iteration of the learning procedure.

2.1 Learning about Remote Peers
Peers propagate their queries in the overlay, which are rewrit-

ten on each peer database according to the mappings that the lat-
ter holds with the previous database in the propagation path. The
query that reaches a remote peer has lost parts of it, due to the mis-
matches in mapped schema information in consecutive peers in the
propagation path. The two remote peers try to learn the schema
of the other part, during the propagations of queries and respective
answers to each other. Figure 1 depicts this overlay situation. The
peer that receives a query tries to retrieve any query attributes that
are lost in the successive rewriting of the query along the propa-
gation path. The answer is sent back to the peer that posed the
query; the latter evaluates the answer and improves its knowledge
about the schema of the remote answering peer. Moreover, it sends
this evaluation to the answering peer, so that the latter can improve
its own knowledge about the schema of the remote query-posing
peer. Figure 2 shows the flow of one iteration of the learning pro-
cedure between two remote peers. The peer that posed the query
accumulates the answers it receives; each time it receives a new
answer from a specific peer, it computes the current overall respec-
tive similarity of answers by this peer. If this similarity exceeds
a user-tunable threshold, the peer may decide to ask this peer to
be its acquaintee. The mappings that are formed during the query
position-answering between them are used as an initial set of com-
munication mappings. Overall, the proposed methodology of mak-
ing new acquaintances in the overlay leads to the restructuring and,
moreover, the gradual clustering of the P2P system in groups with
common interests.

2.2 Approximate Query Answering
In order to achieve the discovery of remote semantically related

peers, the key idea of our method is to propagate not only the suc-
cessively rewritten version along the query path but also the origi-
nal one. In this way, the peers receiving this pair of query versions
can individually decide which one to answer. Peers are equipped
with an approximate query rewriting mechanism and an automatic
schema-matching tool. The rewriting mechanism is used in order to
rewrite queries expressed on schemas of acquaintees based on ex-
isting mappings, or schemas of remote peers with revealing map-
pings. In the latter case, the automatic schema-matching tool is
used in order to create concept correspondences encapsulated in
queries expressed on schemas for which mappings are being built.

Successive query rewriting produces query versions that deviate
structurally and semantically from the original query. If the chain

incoming queries

{Q
orig

, Q
sr_previous

}
rewritte

n aytomaticallyQ orig

rewritten successively

Q
sr_previous

Q
ar

Q
sr

P
2
P

 L
a
y
e
r

a
u

g
m

e
n

t

Q
sra

} compare

with Qorig

answer

answer

Q ar

Q
sra

xor

Figure 3: Representation of the query answering procedure.

of peer mappings used for the rewriting is poor in information rel-
evant to the query (i.e., query parts cannot be accurately reformu-
lated), this can result in fast degradation within a few hops. Query
parts that cannot be translated through existing mappings are elim-
inated in the rewritten version.Even if the following nodes on the
query path encapsulate the eliminated concepts in their schemas,
they still cannot contribute them to the rewriting, since the version
they receive does not include them. Our goal is to keep the elimi-
nated concepts aside and try to match them in follow-up schemas.

Overall, an initiated query Qorig is propagated along several
query paths. On each node, the query is rewritten through mappings
with the previous node to Qsr , which is augmented with automat-
ically rewritten query parts to Qsra. Also, Qorig is automatically
rewritten from scratch to Qar . The answering node compares the
two rewritten versions with the original one, using a special simi-
larity function and answers the version it deems most similar to it.
Figure 3 summarizes the main part of the query answering proce-
dure on a peer. The query initiator evaluates the received answer
and sends its feedback to the answering peer.

The approximate successive rewriting of Qorig to Qsr and the
approximate automatic rewriting of Qorig to Qar are performed us-
ing a novel technique [7] that adapts a state of the art algorithm for
traditional query rewriting to the needs of information in PDMSs.
The proposed technique achieves to find the most suitable approx-
imate query version to be answered in absence of any data value
information and in a very efficient way.

2.3 Mapping Creation and Evolution
Through the query exchange and evaluation, two remote peers

keep record of bad and good rewritings of each other’s schema el-
ements, and, gradually, they build mappings. The mappings be-
tween remote peer databases are built employing a novel technique
described in [5, 6]. Briefly, this is a technique that aims at dis-
covering GAV and LAV mappings in a semi-automatic manner as
relational schemas are revealed. The technique is schema-centric
instead of mapping-centric, meaning that the mapping accuracy
is adapted to the incremental newly disclosed semantics, as the
schema is revealed. The technique not only provides possible map-
pings, but rank-orders them, so that the user is presented with the
mapping that is expected to be more accurate. The mapping space
is efficiently searched so that the more accurate mappings are en-
countered first. The technique is enhanced with a simple interface
that enables the user to lightly guide the schema mapping through
coarsely expressing her opinion on the mapping structure. These
easy-to-make estimations are valuable to the mechanism since they
are used as mapping experience. The latter facilitates future map-
ping adaptation to new schema semantics, in that the same mistakes
are avoided but, also, search in the mapping space becomes more
efficient. The technqiue produces mappings with value conditions,
exploiting query traffic between the matched remote schemas.

Based on the evolving mappings, the two peers can decide that
they have common interests ask each other to become acquaintees.
After that, new acquaintees can base their communication on al-
ready created mappings.

1372

3. THE GROUPEER SYSTEM
The core functionalities of the GrouPeer are:

• Communication management: refers to all tasks involved in
the communication with the acquaintees, the user and the lo-
cal database.

• Approximate query rewriting: enables partial successive rewrit-
ing of a query based on the available mappings.

• Associative automatic schema discovery: refers to query in-
crement with automatically discovered schema elements and
matching with query rewriting.

• Mapping construction: refers to the formulation of schema
learning into mappings between the remote peers.

• Clustering algorithm: realizes the overall gradual learning
process between remote peers and decides if and when clus-
tering should be requested/performed.

• Query similarity methodology: qualifies and quantifies the
similarity of rewritten query versions.

GrouPeer is combines various mechanisms that implement the
functionalities presented earlier. We describe the modules that im-
plement these mechanisms and their interactions (see Figure 4).
Peer Database: is the local database on top of which the P2P layer
sits, which implements the GrouPeer functionality. We have em-
ployed MySQL [1].
Communication manager: enables communication with the P2P
system (i.e., acquaintees) and the local peer database.

• I/O module: receives and sends messages to acquaintees.
The messages encapsulate queries and meta-data.

• User interface: enables the interaction with the user, who
can pose queries, watch the query answering and learning
procedures, give feedback and fine-tune the system.

• Acquaintance manager: manages meta-data, mappings and
status of acquaintances.

Query rewriting mechanism: produces the successively rewritten
versions of the incoming queries based on the available mappings.
The rewriting is performed through the:

• GAV rewriting module: produces the rewritten query based
on the available GAV mappings. The module preprocesses
the query so that it is approximated in order to be rewritable
by the available mappings and implements the GAV rewrit-
ing algorithm as in [4].

• LAV rewriting module: produces the rewritten query based
on the available respective LAV mappings. The module im-
plements an algorithm for approximate query rewriting that
processes the query towards a suitable approximation as it is
trying to rewrite it. This algorithm is described in [7].

Schema discovery mechanism: gradually builds and comprehends
the schema of remote peers. The remote schema is augmented with
new elements (relations, attributes, constraints, values) that arrive
with queries. Schema comprehension is performed using:

• Automatic schema matching module: discovers schema cor-
respondences between the already known part of the remote
schema and the local one. GrouPeer employs COMA++ [2].

• Mapping construction module: formulates GAV and LAV
mappings between the local and remote schemas based on
schema correspondences and rewritings of incoming queries
produced by the query rewriting mechanism [6, 5].

Learning mechanism: implements the core iterative learning func-
tionality of the system. It consists of the following:

P2P Layer

Approximate Query

Rewriting Mechanism

Schema Discovery

Mechanism
P

e
e

r D
B

GAV Rewriting

LAV Rewriting

Query Similarity

Mechanism

Quantification

Qualification

Automatic Schema

Matching Tool

Learning Mechanism

Mapping

Construction

Query Answering

Preparator

Feedback

Processor

& Logging

Clustering

Algorithm

Communication

Manager

Overlay I/O

User

Interface

Acquaintance

Manager

Figure 4: Architecture of GrouPeer.

• Query answering preparator: implements the procedure the
takes as input the incoming query and prepares the versions
Qar and Qsra that are candidates to be rewritten locally
by the approximate query rewriting mechanism, and decides
which one should be propagated.

• Feedback processor and logging: manages the user feedback
and keeps logs about the history of the remote schema learn-
ing procedure, as well as for the incoming queries, such as
previous decisions and their success.

• Clustering module: accumulates and statistics related to learn-
ing, queries and feedback per remote peer. It monitors the
progress of learning and decides if the remote peer is of enough
local interest to become an acquaintee.

Query similarity mechanism: implements the semantic query sim-
ilarity rationale and gives similarity evaluations. It consists of:

• Quantification module: contains a pool of functions that quan-
tify query similarity according to various rationales of se-
mantic similarity based on structural query features.

• Qualification module: contains tools of domain knowledge
(dictionaries, ontologies, libraries, etc) that can assist in choos-
ing the appropriate similarity function.

4. DEMONSTRATION
The goal of the demonstration is twofold: (a) to verify that all

the modules of GrouPeer implement the proposed novel underly-
ing techniques and algorithms, and exhibit how the latter behave
in practice, and (b) to show that all the modules can work tightly
together and achieve dynamic ongoing clustering of peer databases
with random initial overlay connectivity, according to the seman-
tics of their schemas and queries, and, therefore, their interests in
information exchange, as proposed in our earlier work [3, 9].

Database Schemas. We demonstrate the effectiveness of Grou-

Peer in realistic overlays of peer databases that belong to either
(a) the medical domain (i.e. hospitals, doctors, clinics etc), or (b)
the education domain (i.e. universities, schools, colleges etc). The
peer schemas are selected from two big collections of real schemas
that were created as follows: For each one of these two domains,
we created a large pool of related concepts; we gave the latter
to people with good knowledge of database design (undergradu-
ate and graduate students that have taken at least one course in
data management) and we asked them to produce relevant original
schemas with names of schema features or even data values that
come from the respective pool of concepts. After collecting these
original schemas, we artificially produced additional new schema
groups in order achieve various schema similarities. Each collec-
tion (medical and education domain) consists of 50 schemas. More

1373

Figure 5: Peer ‘Hospital1’ issues a query.

on the schema collections can be found in [8]. After selecting peer
schemas, these are populated with data. Visitors are enabled to se-
lect a peer schema and populate it.

Demonstration Scenarios. The demonstration includes three sets
of scenarios that aim to show all aspects of the system functionality.

Scenarios A: These scenarios aim to show the overall function-
ality of GrouPeer. The visitors are presented with an overlay of on
average 8 real peers with random initial connectivity. The peers is-
sue and broadcast a number of queries that are answered by other
peers (TTL = 7), e.g. Figure 5 shows the GrouPeer interface of peer
‘Hospital1’ that issues and propagates query ‘Q2’. It also shows
the peer’s schema as well as the mapped part of the schema of its
neighbor ‘Hospital2’. We demonstrate the overall learning proce-
dure for any pair of peers that exchange queries and answers (data),
including the gradual revealing of remote peer schemas and grad-
ual building of mappings, the improvement of approximate query
rewritings and the user feedback. Visitors also see graphically the
alternative query propagation paths between pairs of peers (and we
will discuss how these lead to learning) as well as a graphical rep-
resentation of the clustering overlay.

Scenarios B: The visitors are able to see and play with inter-
esting scenarios of approximate successive and automatic query
rewriting. The demonstration shows the functionality of the ap-
proximate query answering mechanism which collaborates with the
automatic schema matching mechanism. The scenarios will show
that, even with no or basic dictionary, without any sophisticated
complex general knowledge, automatic matching is a key advan-
tage to the learning procedure.

The demonstration also shows the formulation of knowledge of
remote schemas into schema mappings. The visitors watch the
gradual construction of mappings, as an application tightly coupled
with the automatic schema matching tool. Mapping construction is
based on the posed queries and user feedback in consequent iter-
ations. We emphasize on the fact that these are not only correct
mappings, but also useful, since they reflect the mutual interests of
the two remote peers, based on which they may decide to become
acquainted. Figure 6 shows peer ‘Hospital1’ evaluating a query
answer and advising the mapping creation procedure.

Scenarios C: These scenarios focus on vital details on the ap-
proximate query answering and mapping construction algorithms.
i. similarity functions: The similarity function is an input to the
query rewriting algorithm. We show the effect of similarity func-
tions on the lines of those in [9] and we will discuss their appropri-
ateness depending on the semantics and structure of the query.
ii. correspondences: The schema correspondences are an input to
the mapping algorithm and can change while mappings are evolv-
ing. Figure 7 shows an evolving correspondence. We show cases

Figure 6: Peer ‘Hospital1’ evaluates query answer.

Figure 7: Peer ‘Hospital3’ building mappings.

where the correspondences change according to the revelation of
schema knowledge (example of specific case: bad correspondences
change to good ones) and how the mapping algorithm adapts the
mappings to these changes.
iii. mapping joinpath selection: The mapping algorithm takes as
input the criteria according to which it selects one among alterna-
tive joinpaths for pair of relations that participate in a mapping.
Namely, the decision is a weighted average of the following crite-
ria: (a) user feedback, (b) overlap with the rest of the joinpaths in
the same mapping, (c) joinpath length. We show how the evolving
mappings improve when the weights change dynamically: e.g. in
the beginning, automatically assign equal weight values (e.g. 0.33
to all), but later, change based on feedback. We also discuss how
the different criteria are more successful depending on star or chain
mappings. Figure 7 shows the joinpaths for a mapping.

5. REFERENCES
[1] MySQL.http://www.mysql.com/.

[2] COMA++.http://dbs.uni-leipzig.de/Research/coma.html.

[3] GrouPeer. http://www.dblab.ece.ntua.gr/∼vkante/groupeer.

[4] A. Halevy, Z. Ives, D. Suciu, and I. Tatarinov. Schema Mediation in
Peer Data Management Systems. In ICDE, pages 505–516, 2003.

[5] V. Kantere, D. Bousounis, and T. Sellis. Mapping discovery over
revealing schemas. (tech. rep. available, submitted for publication).

[6] V. Kantere, D. Bousounis, and Timos K. Sellis. A tool for mapping
discovery over revealing schemas. In EDBT, pages 1124–1127, 2009.

[7] V. Kantere, G. Orfanoudakis, and T. Sellis. Approximate query
answering in a pdms. (tech. rep. available, submitted for publication).

[8] V. Kantere, M.-E. Politou, and T. Sellis. Conceptual synopses of
semantics in social networks sharing structured data. In OTM

Conferences (2), pages 1367–1384, 2008.

[9] V. Kantere, D. Tsoumakos, T. Sellis, and N. Roussopoulos. Groupeer:
Dynamic clustering of p2p databases. In Inf. Syst., volume 34, pages
62–86, 2009.

1374

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /Courier-Oblique
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Symbol
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /Times-Roman
 /ZapfDingbats
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

