HyPer-sonic Combined Transaction AND Query Processing

Florian Funke?, Alfons Kemper:, Thomas Neumann?

Fakultat fir Informatik
Technische Universitdt Minchen
BoltzmannstralBe 3, D-85748 Garching

2 .
neumann@in.tum.de

Oflorian.funke@in.tum.de | 'kemper@in.tum.de |

ABSTRACT

In this demo we will prove that it is — against common belief — in-
deed possible to build a main-memory database system that achieves
world-record transaction processing throughput and best-of-breed
OLAP query response times in one system in parallel on the same
database state. The two workloads of online transaction processing
(OLTP) and online analytical processing (OLAP) present different
challenges for database architectures. Currently, users with high
rates of mission-critical transactions have split their data into two
separate systems, one database for OLTP and one so-called data
warehouse for OLAP. While allowing for decent transaction rates,
this separation has many disadvantages including data freshness
issues due to the delay caused by only periodically initiating the
Extract Transform Load-data staging and excessive resource con-
sumption due to maintaining two separate information systems. We
present an efficient hybrid system, called HyPer, that can handle
both OLTP and OLAP simultaneously by using hardware-assisted
replication mechanisms to maintain consistent snapshots of the trans-
actional data. HyPer is a main-memory database system that guar-
antees the full ACID properties for OLTP transactions and executes
OLAP query sessions (multiple queries) on arbitrarily current and
consistent snapshots. The utilization of the processor-inherent sup-
port for virtual memory management (address translation, caching,
copy-on-write) yields both at the same time: unprecedentedly high
transaction rates as high as 100,000+ transactions per second and
very fast OLAP query response times on a single system executing
both workloads in parallel. The performance analysis is based on a
combined TPC-C and TPC-H benchmark.

1. INTRODUCTION

There have been strong arguments by industry leaders, e.g., Hasso
Plattner of SAP [6], that our current support for real-time Business
Intelligence is inappropriate. The currently exercised separation of
transaction processing on the OLTP database and BI query process-
ing on the data warehouse that is only periodically refreshed violates
this goal. We propose to enhance the transactional database with
highly effective query processing capabilities. Real-time/operation-
al business intelligence demands to execute OLAP queries on the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 37th International Conference on Very Large Data Bases,
August 29th - September 3rd 2011, Seattle, Washington.

Proceedings of the VLDB Endowment, Vol. 4, No. 12

Copyright 2011 VLDB Endowment 2150-8097/11/08... $ 10.00.

1367

Hybrid OLTP&OLAP Database Systems

Dedicated OLAP Engines \/ Dedicated OLTP Engines
MonetDB, Vertica VoltDB (H-Store)
SAP T-REX (BWA) TimesTen, SolidDB
IBM ISAO (BLINK) Many start-ups
-- OLTP -- OLAP

Figure 1: Best of Both Worlds: OLAP and OLTP.

current, up-to-date state of the transactional OLTP data. Therefore,
mixed workloads of OLTP transaction processing and OLAP query
processing on the same data (or the same replicated data state) have
to be supported. This is somewhat counter to the recent trend of
building dedicated systems for different applications. In this demo
we will prove that it is — against common belief — indeed possible to
build a main-memory database system that achieves world-record
transaction processing throughput and best-of-breed OLAP query
response times in one system in parallel on the same database
state. This unprecedentedly high combined performance is achieved
by exploiting the hardware-assisted virtual memory management
facilities of modern operating systems.

The quest for a hybrid mixed workload system that reconciles
the best of both worlds, high-throughput OLTP engines and high-
performance OLAP query processors, is depicted in Figure 1. In the
OLAP “world” there are highly efficient OLAP query processors
based on column store technologies, as pioneered by MonetDB [1].
In the OLTP “world” main-memory database systems such as the
recently developed VoltDB [3] (or the time-proven TimesTen) excel
in transaction throughput. The goal we set out to pursue was the
design of a database system that achieves the same excellent OLTP
and OLAP performance in one system in parallel on the same
data to enable the “information at your fingertips” performance
requirements of an operational store.

Different architectures were proposed for achieving the real-time
BI goal: versioning of the data and thereby separating the query
from the transactions workload, continuous DW refreshing, het-
erogeneous workload management, update staging by periodically
merging the update delta into the queryable main database, batch
processing of updates and queries, and our newly developed vir-
tual memory snapshot mechanism based on hardware-supported
shadowed pages. The latter approach constitutes a main-memory
database system — an architecture that receives renewed and in-
creasing interest due to recent hardware developments. Currently,
hardware vendors offer cost-effective servers with a TB of RAM
for only ca. $50,000. This makes it possible to maintain the trans-
actional data of even the largest applications in main memory of
one (or a few) server(s). The RAMcloud development at Stanford
is based on a similar observation by estimating, for example, Ama-

OLAP Queries

-~ oo oeoe
OLTP Requests /Tx | [| | | i .. ’;‘-\ead a
- o ooer ©) :
b) .-
e &
QO

Virtual Memory

OLAP Queries

-~ o ooee
.‘-I.:(-e-e-ié-a
OLTP Requests /Tx @ 4
-oooe il
©O) ©)
©)
b &

N <@

OOQ b’fr\
N

Virtual Memory

Figure 2: Forking a new Snapshot (left) and copy-on-write/update (right).

zon’s transactional data as follows: At 15 billion revenue per year
and an average item price of $15 the yearly data volume of 1 billion
order-lines can be stored in about 64 GB (assuming that an order-
line is as compact as it is in the TPC-C benchmark). We do not
propose to abandon data warehouses as there is a need to collect,
clean, and transform vast amounts of transactional and other, non-
transactional data for in depth data analysis, such as data mining.
Our goal is to enhance in-memory transactional database systems
with highly effective BI query processing capabilities. Hardware
progress favors in-memory technologies, as is also indicated by the
many start-up companies developing OLTP main-memory databases,
such as VoltDB, Clustrix, Akiban, DBshards, NimbusDB, ScaleDB,
Lightwolf, and ElectronDB.

To demonstrate the performance of a hybrid database workload
consisting of OLTP and BI/OLAP processing, we developed a new
OLTP&OLAP benchmark that combines the transaction processing
functionality of the TPC-C benchmark with the query suite of the
TPC-H benchmark in one mixed workload. Based on this benchmark
we substantiate the claim that it is indeed possible to architect a
hybrid system that can achieve the transactional throughput rates of
dedicated in-memory OLTP systems and, in parallel, execute a BI
workload on the same data at the same performance as dedicated
OLAP systems, such as in-memory column stores.

2. TECHNICAL REALIZATION

We have developed the novel hybrid OLTP&OLAP database
system HyPer that is based on snapshotting transactional data via
the virtual memory management of the operating system [4]. In
this architecture the OLTP process “owns” the database and peri-
odically (e.g., in the order of seconds or minutes) forks an OLAP
process. This OLAP process constitutes a fresh transaction consis-
tent snapshot of the database. Thereby, we exploit operating systems
functionality to create virtual memory snapshots for new, cloned pro-
cesses. In Unix, for example, this is done by creating a child process
of the OLTP process via the fork system call. One possibility to
guarantee transactional consistency is to fork only after quiescing
the transaction processing. Actually, this constraint can be relaxed
by utilizing the undo log (that is anyway maintained in-memory for
all running transactions) to convert an action consistent snapshot
(created in the middle of transactions) into a transaction consistent
one.

The forked child process obtains an exact copy of the parent
processes address space, as exemplified in Figure 2 by the overlayed
page frame panel. This virtual memory snapshot that is created by
the fork-operation will be used for executing a session of OLAP
queries — as indicated on the right hand side of Figure 2. These

queries can be executed in parallel threads or serially, depending on
the system resources or client requirements.

The snapshot stays in precisely the state that existed at the time the
fork took place. Fortunately, state-of-the-art operating systems do
not physically copy the memory segments right away. Rather, they
employ a lazy copy-on-update strategy — as sketched out in Figure 2.
Initially, parent process (OLTP) and child process (OLAP) share
the same physical memory segments by translating either virtual
addresses (e.g., to object a) to the same physical main memory
location. The sharing of the memory segments is highlighted in the
graphics by the dotted frames. A dotted frame represents a virtual
memory page that was not (yet) replicated. Only when an object,
like data item a, is updated, the OS- and hardware-supported copy-
on-update mechanism initiate the replication of the virtual memory
page on which a resides. Thereafter, the new state denoted a’ is
accessible by the OLTP-process that executes the transactions and
the old state denoted a is accessible by the OLAP query session.

In essence, the virtual memory snapshot mechanism constitutes
a OS/hardware supported shadow paging mechanism as proposed
decades ago for disk-based database systems. However, the original
proposal incurred severe costs as it had to be software-controlled
and it destroyed the clustering on disk. Neither of these drawbacks
occurs in the virtual memory snapshotting as clustering across RAM
pages is not an issue. Furthermore, the sharing of pages and the
necessary copy-on-update/write is managed by the operating system
with effective hardware support of the MMU (memory management
unit) via the page table that translates VM addresses to physical
pages and traps necessary replication (copy-on-write) actions. There-
fore, the page replication is extremely efficiently done in 2 ps as we
measured in a micro-benchmark.

HyPer adheres to the ACID paradigm for the transactional pro-
cessing. The aromicity is guaranteed by maintaining the above
mentioned undo-log in main-memory. The durability is achieved
by efficiently writing logical redo-log records via a high-bandwidth
network to a storage server and relying on group commit. The
VM snapshot mechanism enables us to periodically write transac-
tion consistent snapshots (mimicked as OLAP session) to a storage
server (cf. Figure 3. As far as isolation is concerned we follow the
approach pioneered in H-Store/VoltDB [3] of lockless synchroniza-
tion. Transactions, which constitute stored procedures written in a
SQL-like scripting language, are executed serially on their corre-
sponding partition. If more than one partition is needed we resort to
a serial (i.e., exclusive) operation mode.

HyPer’s configuration as a single primary node system — that
we propose to demonstrate with two interconnected laptop servers
—with a secondary server for OLAP load balancing and stand-by is
shown in Figure 3. The secondary server is “fed” by the logical log

1368

iy
&
N
] (©)
Ol e
©) A
OLTP Requests/Tx ©) & O<q/°
oeoeoeer g = @ \S‘@&&‘
2 £
‘q () z
OF %
<> el
Redo- o ,' Virtual Memory
Log [To
: Storage
é Server

q
&3 ©
A4 [©)
(® ‘ o@p&
© \&2\) G\;:S)b
on e
s,
&

Virtual Memor

Figure 3: Secondary Server: Stand-By for OLTP and Active
for OLAP.

records that are transmitted to the storage server for durability and
to the secondary for availability and OLAP load balancing.

The primary as well as the secondary server are capable to create
multiple snapshots that overlap in time. This can simply be achieved
by periodically (or on demand) fork-ing a new snapshot and thus
starting a new OLAP query session process. This is exemplified on
the top (primary server) of Figure 3. Here we sketch the one and
only OLTP process’es current database state (the front panel) and
three active query session processes’ snapshots — the oldest being
the one in the background. Such a snapshot can also be used to back-
up a Tx-consistent database archive. The successive state changes
are highlighted by the four different states of data item a (the oldest
state), a’, a”’, and a””’ (the youngest transaction consistent state).
Obviously, most data items do not change in between different
snapshots as we expect to create snapshots for most up-to-date
querying at intervals of a few seconds — rather than minutes or hours
as is the case in current separated data warehouse solutions with
ETL data staging. The number of active snapshots is, in principle,
not limited, as each “lives” in its own process. By adjusting the
priority we can make sure that the mission critical OLTP process is
always allocated a core — even if the OLAP processes are numerous
and/or utilize multi-threading and thus exceed the number of cores.
A snapshot is deleted after the last query of a session is finished.

3. DEMO

Our demo of the HyPer system is based on a new benchmark we
call CH-Benchmark [2] to denote that it is a “merge” of the two
standard TPC benchmarks (www . tpc.org): The TPC-C bench-
mark was designed to evaluate OLTP database system performance
and the TPC-H benchmark for analyzing OLAP query performance.
Both benchmarks “simulate” a sales order processing (order en-
try, payment, delivery) system of a merchandising company. The

OLTP Workload OLAP Workload

(n=1 parallel Tx Streams) (m=1 parallel Query Streams

% —

uo”éﬁ@fﬁ'es) ! Qn(1)

44% Q2 QT{(Z)

Q3 Qn(3)

Q4 Qn(4)

Q20 Qn(20)

Q21 Qn(21)

Q22 Qn(22)
I L—1

Figure 4: Mixed OLTP&OLAP Workload Benchmark.

benchmark constitutes the core functionality of such a commercial
merchandiser like Amazon.

The database schema of the CH-Benchmark is based based on aug-
menting the TPC-C schema. The original TPC-C schema, that we
kept entirely unchanged, consists of the 9 relations: Warehouse (W),
District (10xW), Customer (W=30k), Order (W*30k), Order-Line
(W=x%300k), Stock (W=100k), Item (100k), and History (W*30k). In
addition, we included three relations from the TPC-H benchmark in
order to be able to formulate all 22 queries of this benchmark in a
meaningful way: There are 10,000 Suppliers that are referenced via
a foreign key of the Stock relation. Thus, there is a fixed, randomly
selected Supplier per Item/Warehouse combination. The relations
Nation and Region model the geographic location of Suppliers and
Customers.

The TPC-C OLTP transactions include entering and delivering
orders, recording payments, checking the status of orders, and mon-
itoring the level of stock at the warehouses — cf. left-hand side of
Figure 4. All these transaction, including the read-only transactions
Order-Status and Stock-Level have to be executed in serializable
semantics — in HyPer’s case via the OLTP workload queue. For
the comprehensive OLTP&OLAP Benchmark we adapted the 22
queries of the TPC-H benchmark for the CH schema. In the re-
formulation we made sure that the queries retained their semantics
(from a business point of view) and their syntactical structure. The
OLAP queries do not benefit from indexes or database partitioning
as they all require scanning and aggregating large portions of the
database.

In the demo (Figure 5) we will demonstrate that HyPer achieves
unprecedented performance on this mixed workload benchmark.
The OLTP transaction throughput of 200,000 Tx per second is better
than for any other database system even though, at the same time,
the OLAP queries are processed in parallel. Also, the OLAP query
response times of, e.g., subseconds on a database with 3.6 mio
Order-Lines, are as good as for any dedicated “query-only” OLAP
engine — even while the OLTP processing takes place at “full speed”
at the same time on the HyPer system. These performance results, as
measured on a live system installed on a commodity (10,000 Euro)
server, are shown in the performance monitor of Figure 5 — which
will be visualized as a real-time “dash board” during the demo.

We will continuously monitor the performance aggregated over
time windows. Thereby, we can show the effects of forking new
snapshots on the memory utilization as sketched on the top left-hand
side of the screen shot: The continuously increasing memory con-

1369

www.tpc.org

Memory consumption over time

Transactions per second

300,000 4
250,000 —
200,000 —
150,000 —
100,000 —

50,000
j —t g 3 g g 4 oL

0

REE RS e e e
40 50

e
60 70 80
Time (s)

= Memory usage

PID #8568 | PID #8569 | PID #8570 |

R EEEEEEaEEEeE s menne]
90 100 110 120 130

T

126 127 128 129 130
Time

«NO o PAY © 05 o DEL o SL o Total

o e o
122 123 124 125

T
6

& =

1

w -]
capd
@

T
12

Query ID

L i e e
19 20 21 22,

m
|| || I
13 14 15 16 17 18

Figure 5: The Performance Monitor in Action: 4 Query Sessions in parallel to Transaction Processing.

sumption is due to the heavy insert rates of the TPC-C benchmark.
The downward step in the curves is caused by terminating a snapshot
(i.e., terminating a forked OLAP process and freeing its replicated
memory pages). The upward steps are caused by creating a new
snapshot that accumulated replicated pages due to the copy-on-write
mechanism of the virtual memory management.

During the demo, the transaction and the query load can be dy-
namically varied. Also, the creation (forking) of a new snapshot can
be manually triggered. Furthermore, it is possible to interactively
add new queries to the OLAP workload. The real-time performance
monitor allows to visualize the effects of these variations.

To demonstrate HyPer’s SQL-based transaction scripting lan-
guage, we can also interactively code the (simple) Voter benchmark
that was promoted by VoltDB as a Web-scale benchmark to mimic
the American Idol phone based voting.

4. SUMMARY

In this demo we want to convince the community that it is —
against common belief — possible to architect and build a database
system that accommodates both, transaction processing and OLAP/BI
query processing in parallel at phenomenal performance. We will
demonstrate that the combined OLTP&OLAP-performance is in-
deed superior to the performance of the best-performing dedicated
database systems. HyPer’s OLTP throughput is better than VoltDB’s
published TPC-C performance and HyPer’s OLAP query response
times are superior to MonetDB’s query response times. It should be
emphasized that HyPer can match (or beat) these two best-of-breed
transaction (VoltDB) and query (MonetDB) processing engines at
the same time by performing both workloads in parallel on the
same database state. HyPer’s performance is due to the following
design criteria:

e HyPer relies on in-memory data management without the
ballast of traditional database systems caused by DBMS-
controlled page structures and buffer management. The SQL
table definitions are transformed into simple vector-based
virtual memory representations — which constitutes a column-
oriented physical storage scheme.

(1]

[2

—

(3]

(4]

(5]
(6]

1370

e The OLAP processing is separated from the mission-critical
OLTP transaction processing by fork-ing virtual memory
snapshots. Thus, no concurrency control mechanisms are
needed — other than the hardware-assisted VM management —
to separate the two workload classes.

e Transactions and queries are specified in SQL and are effi-
ciently compiled into LLVM assembly code [5].

e As in VoltDB, the parallel transactions are separated via lock-
free admission control that allows only non-conflicting trans-
actions at the same time.

o HyPer relies on logical logging where, in essence, the invo-
cation parameters of the stored (transaction) procedures are
logged via a high-speed network.

REFERENCES

P. A. Boncz, S. Manegold, and M. L. Kersten, “Database
architecture evolution: Mammals flourished long before
dinosaurs became extinct,” PVLDB, vol. 2, no. 2, pp.
1648-1653, 2009.

R. Cole, F. Funke, L. Giakoumakis, A. Kemper, S. Krompaf,
H. Kuno, R. Nambiar, T. Neumann, M. Poess, K.-U. Sattler,
M. Seibold, E. Simon, and F. Waas, “The mixed workload
CH-benCHmark,” in DBTest, 2011, p. 8.

S. Harizopoulos, D. J. Abadi, S. Madden, and M. Stonebraker,
“OLTP through the looking glass, and what we found there,” in
SIGMOD, 2008, pp. 981-992.

A. Kemper and T. Neumann, “HyPer: A hybrid OLTP&OLAP
main memory database system based on virtual memory
snapshots,” in ICDE, 2011, pp. 195-206.

T. Neumann, “Efficiently compiling efficient query plans,” in
VLDB, 2011, pp. 539-550.

H. Plattner, “A common database approach for OLTP and
OLAP using an in-memory column database,” in SIGMOD,
2009, pp. 1-2.

	Introduction
	Technical Realization
	Demo
	Summary
	References

